|
1 // Another approach is to start with the implicit form of one curve and solve |
|
2 // (seek implicit coefficients in QuadraticParameter.cpp |
|
3 // by substituting in the parametric form of the other. |
|
4 // The downside of this approach is that early rejects are difficult to come by. |
|
5 // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step |
|
6 |
|
7 |
|
8 #include "SkDQuadImplicit.h" |
|
9 #include "SkIntersections.h" |
|
10 #include "SkPathOpsLine.h" |
|
11 #include "SkQuarticRoot.h" |
|
12 #include "SkTArray.h" |
|
13 #include "SkTSort.h" |
|
14 |
|
15 /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F |
|
16 * and given x = at^2 + bt + c (the parameterized form) |
|
17 * y = dt^2 + et + f |
|
18 * then |
|
19 * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F |
|
20 */ |
|
21 |
|
22 static int findRoots(const SkDQuadImplicit& i, const SkDQuad& quad, double roots[4], |
|
23 bool oneHint, bool flip, int firstCubicRoot) { |
|
24 SkDQuad flipped; |
|
25 const SkDQuad& q = flip ? (flipped = quad.flip()) : quad; |
|
26 double a, b, c; |
|
27 SkDQuad::SetABC(&q[0].fX, &a, &b, &c); |
|
28 double d, e, f; |
|
29 SkDQuad::SetABC(&q[0].fY, &d, &e, &f); |
|
30 const double t4 = i.x2() * a * a |
|
31 + i.xy() * a * d |
|
32 + i.y2() * d * d; |
|
33 const double t3 = 2 * i.x2() * a * b |
|
34 + i.xy() * (a * e + b * d) |
|
35 + 2 * i.y2() * d * e; |
|
36 const double t2 = i.x2() * (b * b + 2 * a * c) |
|
37 + i.xy() * (c * d + b * e + a * f) |
|
38 + i.y2() * (e * e + 2 * d * f) |
|
39 + i.x() * a |
|
40 + i.y() * d; |
|
41 const double t1 = 2 * i.x2() * b * c |
|
42 + i.xy() * (c * e + b * f) |
|
43 + 2 * i.y2() * e * f |
|
44 + i.x() * b |
|
45 + i.y() * e; |
|
46 const double t0 = i.x2() * c * c |
|
47 + i.xy() * c * f |
|
48 + i.y2() * f * f |
|
49 + i.x() * c |
|
50 + i.y() * f |
|
51 + i.c(); |
|
52 int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots); |
|
53 if (rootCount < 0) { |
|
54 rootCount = SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots); |
|
55 } |
|
56 if (flip) { |
|
57 for (int index = 0; index < rootCount; ++index) { |
|
58 roots[index] = 1 - roots[index]; |
|
59 } |
|
60 } |
|
61 return rootCount; |
|
62 } |
|
63 |
|
64 static int addValidRoots(const double roots[4], const int count, double valid[4]) { |
|
65 int result = 0; |
|
66 int index; |
|
67 for (index = 0; index < count; ++index) { |
|
68 if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) { |
|
69 continue; |
|
70 } |
|
71 double t = 1 - roots[index]; |
|
72 if (approximately_less_than_zero(t)) { |
|
73 t = 0; |
|
74 } else if (approximately_greater_than_one(t)) { |
|
75 t = 1; |
|
76 } |
|
77 valid[result++] = t; |
|
78 } |
|
79 return result; |
|
80 } |
|
81 |
|
82 static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2) { |
|
83 // the idea here is to see at minimum do a quick reject by rotating all points |
|
84 // to either side of the line formed by connecting the endpoints |
|
85 // if the opposite curves points are on the line or on the other side, the |
|
86 // curves at most intersect at the endpoints |
|
87 for (int oddMan = 0; oddMan < 3; ++oddMan) { |
|
88 const SkDPoint* endPt[2]; |
|
89 for (int opp = 1; opp < 3; ++opp) { |
|
90 int end = oddMan ^ opp; // choose a value not equal to oddMan |
|
91 if (3 == end) { // and correct so that largest value is 1 or 2 |
|
92 end = opp; |
|
93 } |
|
94 endPt[opp - 1] = &q1[end]; |
|
95 } |
|
96 double origX = endPt[0]->fX; |
|
97 double origY = endPt[0]->fY; |
|
98 double adj = endPt[1]->fX - origX; |
|
99 double opp = endPt[1]->fY - origY; |
|
100 double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp; |
|
101 if (approximately_zero(sign)) { |
|
102 goto tryNextHalfPlane; |
|
103 } |
|
104 for (int n = 0; n < 3; ++n) { |
|
105 double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp; |
|
106 if (test * sign > 0 && !precisely_zero(test)) { |
|
107 goto tryNextHalfPlane; |
|
108 } |
|
109 } |
|
110 return true; |
|
111 tryNextHalfPlane: |
|
112 ; |
|
113 } |
|
114 return false; |
|
115 } |
|
116 |
|
117 // returns false if there's more than one intercept or the intercept doesn't match the point |
|
118 // returns true if the intercept was successfully added or if the |
|
119 // original quads need to be subdivided |
|
120 static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax, |
|
121 SkIntersections* i, bool* subDivide) { |
|
122 double tMid = (tMin + tMax) / 2; |
|
123 SkDPoint mid = q2.ptAtT(tMid); |
|
124 SkDLine line; |
|
125 line[0] = line[1] = mid; |
|
126 SkDVector dxdy = q2.dxdyAtT(tMid); |
|
127 line[0] -= dxdy; |
|
128 line[1] += dxdy; |
|
129 SkIntersections rootTs; |
|
130 rootTs.allowNear(false); |
|
131 int roots = rootTs.intersect(q1, line); |
|
132 if (roots == 0) { |
|
133 if (subDivide) { |
|
134 *subDivide = true; |
|
135 } |
|
136 return true; |
|
137 } |
|
138 if (roots == 2) { |
|
139 return false; |
|
140 } |
|
141 SkDPoint pt2 = q1.ptAtT(rootTs[0][0]); |
|
142 if (!pt2.approximatelyEqual(mid)) { |
|
143 return false; |
|
144 } |
|
145 i->insertSwap(rootTs[0][0], tMid, pt2); |
|
146 return true; |
|
147 } |
|
148 |
|
149 static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2, |
|
150 double t2s, double t2e, SkIntersections* i, bool* subDivide) { |
|
151 SkDQuad hull = q1.subDivide(t1s, t1e); |
|
152 SkDLine line = {{hull[2], hull[0]}}; |
|
153 const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] }; |
|
154 const size_t kTestCount = SK_ARRAY_COUNT(testLines); |
|
155 SkSTArray<kTestCount * 2, double, true> tsFound; |
|
156 for (size_t index = 0; index < kTestCount; ++index) { |
|
157 SkIntersections rootTs; |
|
158 rootTs.allowNear(false); |
|
159 int roots = rootTs.intersect(q2, *testLines[index]); |
|
160 for (int idx2 = 0; idx2 < roots; ++idx2) { |
|
161 double t = rootTs[0][idx2]; |
|
162 #ifdef SK_DEBUG |
|
163 SkDPoint qPt = q2.ptAtT(t); |
|
164 SkDPoint lPt = testLines[index]->ptAtT(rootTs[1][idx2]); |
|
165 SkASSERT(qPt.approximatelyPEqual(lPt)); |
|
166 #endif |
|
167 if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) { |
|
168 continue; |
|
169 } |
|
170 tsFound.push_back(rootTs[0][idx2]); |
|
171 } |
|
172 } |
|
173 int tCount = tsFound.count(); |
|
174 if (tCount <= 0) { |
|
175 return true; |
|
176 } |
|
177 double tMin, tMax; |
|
178 if (tCount == 1) { |
|
179 tMin = tMax = tsFound[0]; |
|
180 } else { |
|
181 SkASSERT(tCount > 1); |
|
182 SkTQSort<double>(tsFound.begin(), tsFound.end() - 1); |
|
183 tMin = tsFound[0]; |
|
184 tMax = tsFound[tsFound.count() - 1]; |
|
185 } |
|
186 SkDPoint end = q2.ptAtT(t2s); |
|
187 bool startInTriangle = hull.pointInHull(end); |
|
188 if (startInTriangle) { |
|
189 tMin = t2s; |
|
190 } |
|
191 end = q2.ptAtT(t2e); |
|
192 bool endInTriangle = hull.pointInHull(end); |
|
193 if (endInTriangle) { |
|
194 tMax = t2e; |
|
195 } |
|
196 int split = 0; |
|
197 SkDVector dxy1, dxy2; |
|
198 if (tMin != tMax || tCount > 2) { |
|
199 dxy2 = q2.dxdyAtT(tMin); |
|
200 for (int index = 1; index < tCount; ++index) { |
|
201 dxy1 = dxy2; |
|
202 dxy2 = q2.dxdyAtT(tsFound[index]); |
|
203 double dot = dxy1.dot(dxy2); |
|
204 if (dot < 0) { |
|
205 split = index - 1; |
|
206 break; |
|
207 } |
|
208 } |
|
209 } |
|
210 if (split == 0) { // there's one point |
|
211 if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) { |
|
212 return true; |
|
213 } |
|
214 i->swap(); |
|
215 return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide); |
|
216 } |
|
217 // At this point, we have two ranges of t values -- treat each separately at the split |
|
218 bool result; |
|
219 if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) { |
|
220 result = true; |
|
221 } else { |
|
222 i->swap(); |
|
223 result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide); |
|
224 } |
|
225 if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) { |
|
226 result = true; |
|
227 } else { |
|
228 i->swap(); |
|
229 result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide); |
|
230 } |
|
231 return result; |
|
232 } |
|
233 |
|
234 static double flat_measure(const SkDQuad& q) { |
|
235 SkDVector mid = q[1] - q[0]; |
|
236 SkDVector dxy = q[2] - q[0]; |
|
237 double length = dxy.length(); // OPTIMIZE: get rid of sqrt |
|
238 return fabs(mid.cross(dxy) / length); |
|
239 } |
|
240 |
|
241 // FIXME ? should this measure both and then use the quad that is the flattest as the line? |
|
242 static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { |
|
243 double measure = flat_measure(q1); |
|
244 // OPTIMIZE: (get rid of sqrt) use approximately_zero |
|
245 if (!approximately_zero_sqrt(measure)) { |
|
246 return false; |
|
247 } |
|
248 return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL); |
|
249 } |
|
250 |
|
251 // FIXME: if flat measure is sufficiently large, then probably the quartic solution failed |
|
252 // avoid imprecision incurred with chopAt |
|
253 static void relaxed_is_linear(const SkDQuad* q1, double s1, double e1, const SkDQuad* q2, |
|
254 double s2, double e2, SkIntersections* i) { |
|
255 double m1 = flat_measure(*q1); |
|
256 double m2 = flat_measure(*q2); |
|
257 i->reset(); |
|
258 const SkDQuad* rounder, *flatter; |
|
259 double sf, midf, ef, sr, er; |
|
260 if (m2 < m1) { |
|
261 rounder = q1; |
|
262 sr = s1; |
|
263 er = e1; |
|
264 flatter = q2; |
|
265 sf = s2; |
|
266 midf = (s2 + e2) / 2; |
|
267 ef = e2; |
|
268 } else { |
|
269 rounder = q2; |
|
270 sr = s2; |
|
271 er = e2; |
|
272 flatter = q1; |
|
273 sf = s1; |
|
274 midf = (s1 + e1) / 2; |
|
275 ef = e1; |
|
276 } |
|
277 bool subDivide = false; |
|
278 is_linear_inner(*flatter, sf, ef, *rounder, sr, er, i, &subDivide); |
|
279 if (subDivide) { |
|
280 relaxed_is_linear(flatter, sf, midf, rounder, sr, er, i); |
|
281 relaxed_is_linear(flatter, midf, ef, rounder, sr, er, i); |
|
282 } |
|
283 if (m2 < m1) { |
|
284 i->swapPts(); |
|
285 } |
|
286 } |
|
287 |
|
288 // each time through the loop, this computes values it had from the last loop |
|
289 // if i == j == 1, the center values are still good |
|
290 // otherwise, for i != 1 or j != 1, four of the values are still good |
|
291 // and if i == 1 ^ j == 1, an additional value is good |
|
292 static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed, |
|
293 double* t2Seed, SkDPoint* pt) { |
|
294 double tStep = ROUGH_EPSILON; |
|
295 SkDPoint t1[3], t2[3]; |
|
296 int calcMask = ~0; |
|
297 do { |
|
298 if (calcMask & (1 << 1)) t1[1] = quad1.ptAtT(*t1Seed); |
|
299 if (calcMask & (1 << 4)) t2[1] = quad2.ptAtT(*t2Seed); |
|
300 if (t1[1].approximatelyEqual(t2[1])) { |
|
301 *pt = t1[1]; |
|
302 #if ONE_OFF_DEBUG |
|
303 SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__, |
|
304 t1Seed, t2Seed, t1[1].fX, t1[1].fY, t2[1].fX, t2[1].fY); |
|
305 #endif |
|
306 return true; |
|
307 } |
|
308 if (calcMask & (1 << 0)) t1[0] = quad1.ptAtT(*t1Seed - tStep); |
|
309 if (calcMask & (1 << 2)) t1[2] = quad1.ptAtT(*t1Seed + tStep); |
|
310 if (calcMask & (1 << 3)) t2[0] = quad2.ptAtT(*t2Seed - tStep); |
|
311 if (calcMask & (1 << 5)) t2[2] = quad2.ptAtT(*t2Seed + tStep); |
|
312 double dist[3][3]; |
|
313 // OPTIMIZE: using calcMask value permits skipping some distance calcuations |
|
314 // if prior loop's results are moved to correct slot for reuse |
|
315 dist[1][1] = t1[1].distanceSquared(t2[1]); |
|
316 int best_i = 1, best_j = 1; |
|
317 for (int i = 0; i < 3; ++i) { |
|
318 for (int j = 0; j < 3; ++j) { |
|
319 if (i == 1 && j == 1) { |
|
320 continue; |
|
321 } |
|
322 dist[i][j] = t1[i].distanceSquared(t2[j]); |
|
323 if (dist[best_i][best_j] > dist[i][j]) { |
|
324 best_i = i; |
|
325 best_j = j; |
|
326 } |
|
327 } |
|
328 } |
|
329 if (best_i == 1 && best_j == 1) { |
|
330 tStep /= 2; |
|
331 if (tStep < FLT_EPSILON_HALF) { |
|
332 break; |
|
333 } |
|
334 calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5); |
|
335 continue; |
|
336 } |
|
337 if (best_i == 0) { |
|
338 *t1Seed -= tStep; |
|
339 t1[2] = t1[1]; |
|
340 t1[1] = t1[0]; |
|
341 calcMask = 1 << 0; |
|
342 } else if (best_i == 2) { |
|
343 *t1Seed += tStep; |
|
344 t1[0] = t1[1]; |
|
345 t1[1] = t1[2]; |
|
346 calcMask = 1 << 2; |
|
347 } else { |
|
348 calcMask = 0; |
|
349 } |
|
350 if (best_j == 0) { |
|
351 *t2Seed -= tStep; |
|
352 t2[2] = t2[1]; |
|
353 t2[1] = t2[0]; |
|
354 calcMask |= 1 << 3; |
|
355 } else if (best_j == 2) { |
|
356 *t2Seed += tStep; |
|
357 t2[0] = t2[1]; |
|
358 t2[1] = t2[2]; |
|
359 calcMask |= 1 << 5; |
|
360 } |
|
361 } while (true); |
|
362 #if ONE_OFF_DEBUG |
|
363 SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__, |
|
364 t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY); |
|
365 #endif |
|
366 return false; |
|
367 } |
|
368 |
|
369 static void lookNearEnd(const SkDQuad& q1, const SkDQuad& q2, int testT, |
|
370 const SkIntersections& orig, bool swap, SkIntersections* i) { |
|
371 if (orig.used() == 1 && orig[!swap][0] == testT) { |
|
372 return; |
|
373 } |
|
374 if (orig.used() == 2 && orig[!swap][1] == testT) { |
|
375 return; |
|
376 } |
|
377 SkDLine tmpLine; |
|
378 int testTIndex = testT << 1; |
|
379 tmpLine[0] = tmpLine[1] = q2[testTIndex]; |
|
380 tmpLine[1].fX += q2[1].fY - q2[testTIndex].fY; |
|
381 tmpLine[1].fY -= q2[1].fX - q2[testTIndex].fX; |
|
382 SkIntersections impTs; |
|
383 impTs.intersectRay(q1, tmpLine); |
|
384 for (int index = 0; index < impTs.used(); ++index) { |
|
385 SkDPoint realPt = impTs.pt(index); |
|
386 if (!tmpLine[0].approximatelyEqual(realPt)) { |
|
387 continue; |
|
388 } |
|
389 if (swap) { |
|
390 i->insert(testT, impTs[0][index], tmpLine[0]); |
|
391 } else { |
|
392 i->insert(impTs[0][index], testT, tmpLine[0]); |
|
393 } |
|
394 } |
|
395 } |
|
396 |
|
397 int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) { |
|
398 fMax = 4; |
|
399 // if the quads share an end point, check to see if they overlap |
|
400 for (int i1 = 0; i1 < 3; i1 += 2) { |
|
401 for (int i2 = 0; i2 < 3; i2 += 2) { |
|
402 if (q1[i1].asSkPoint() == q2[i2].asSkPoint()) { |
|
403 insert(i1 >> 1, i2 >> 1, q1[i1]); |
|
404 } |
|
405 } |
|
406 } |
|
407 SkASSERT(fUsed < 3); |
|
408 if (only_end_pts_in_common(q1, q2)) { |
|
409 return fUsed; |
|
410 } |
|
411 if (only_end_pts_in_common(q2, q1)) { |
|
412 return fUsed; |
|
413 } |
|
414 // see if either quad is really a line |
|
415 // FIXME: figure out why reduce step didn't find this earlier |
|
416 if (is_linear(q1, q2, this)) { |
|
417 return fUsed; |
|
418 } |
|
419 SkIntersections swapped; |
|
420 swapped.setMax(fMax); |
|
421 if (is_linear(q2, q1, &swapped)) { |
|
422 swapped.swapPts(); |
|
423 set(swapped); |
|
424 return fUsed; |
|
425 } |
|
426 SkIntersections copyI(*this); |
|
427 lookNearEnd(q1, q2, 0, *this, false, ©I); |
|
428 lookNearEnd(q1, q2, 1, *this, false, ©I); |
|
429 lookNearEnd(q2, q1, 0, *this, true, ©I); |
|
430 lookNearEnd(q2, q1, 1, *this, true, ©I); |
|
431 int innerEqual = 0; |
|
432 if (copyI.fUsed >= 2) { |
|
433 SkASSERT(copyI.fUsed <= 4); |
|
434 double width = copyI[0][1] - copyI[0][0]; |
|
435 int midEnd = 1; |
|
436 for (int index = 2; index < copyI.fUsed; ++index) { |
|
437 double testWidth = copyI[0][index] - copyI[0][index - 1]; |
|
438 if (testWidth <= width) { |
|
439 continue; |
|
440 } |
|
441 midEnd = index; |
|
442 } |
|
443 for (int index = 0; index < 2; ++index) { |
|
444 double testT = (copyI[0][midEnd] * (index + 1) |
|
445 + copyI[0][midEnd - 1] * (2 - index)) / 3; |
|
446 SkDPoint testPt1 = q1.ptAtT(testT); |
|
447 testT = (copyI[1][midEnd] * (index + 1) + copyI[1][midEnd - 1] * (2 - index)) / 3; |
|
448 SkDPoint testPt2 = q2.ptAtT(testT); |
|
449 innerEqual += testPt1.approximatelyEqual(testPt2); |
|
450 } |
|
451 } |
|
452 bool expectCoincident = copyI.fUsed >= 2 && innerEqual == 2; |
|
453 if (expectCoincident) { |
|
454 reset(); |
|
455 insertCoincident(copyI[0][0], copyI[1][0], copyI.fPt[0]); |
|
456 int last = copyI.fUsed - 1; |
|
457 insertCoincident(copyI[0][last], copyI[1][last], copyI.fPt[last]); |
|
458 return fUsed; |
|
459 } |
|
460 SkDQuadImplicit i1(q1); |
|
461 SkDQuadImplicit i2(q2); |
|
462 int index; |
|
463 bool flip1 = q1[2] == q2[0]; |
|
464 bool flip2 = q1[0] == q2[2]; |
|
465 bool useCubic = q1[0] == q2[0]; |
|
466 double roots1[4]; |
|
467 int rootCount = findRoots(i2, q1, roots1, useCubic, flip1, 0); |
|
468 // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1 |
|
469 double roots1Copy[4]; |
|
470 int r1Count = addValidRoots(roots1, rootCount, roots1Copy); |
|
471 SkDPoint pts1[4]; |
|
472 for (index = 0; index < r1Count; ++index) { |
|
473 pts1[index] = q1.ptAtT(roots1Copy[index]); |
|
474 } |
|
475 double roots2[4]; |
|
476 int rootCount2 = findRoots(i1, q2, roots2, useCubic, flip2, 0); |
|
477 double roots2Copy[4]; |
|
478 int r2Count = addValidRoots(roots2, rootCount2, roots2Copy); |
|
479 SkDPoint pts2[4]; |
|
480 for (index = 0; index < r2Count; ++index) { |
|
481 pts2[index] = q2.ptAtT(roots2Copy[index]); |
|
482 } |
|
483 if (r1Count == r2Count && r1Count <= 1) { |
|
484 if (r1Count == 1 && used() == 0) { |
|
485 if (pts1[0].approximatelyEqual(pts2[0])) { |
|
486 insert(roots1Copy[0], roots2Copy[0], pts1[0]); |
|
487 } else if (pts1[0].moreRoughlyEqual(pts2[0])) { |
|
488 // experiment: try to find intersection by chasing t |
|
489 if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) { |
|
490 insert(roots1Copy[0], roots2Copy[0], pts1[0]); |
|
491 } |
|
492 } |
|
493 } |
|
494 return fUsed; |
|
495 } |
|
496 int closest[4]; |
|
497 double dist[4]; |
|
498 bool foundSomething = false; |
|
499 for (index = 0; index < r1Count; ++index) { |
|
500 dist[index] = DBL_MAX; |
|
501 closest[index] = -1; |
|
502 for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) { |
|
503 if (!pts2[ndex2].approximatelyEqual(pts1[index])) { |
|
504 continue; |
|
505 } |
|
506 double dx = pts2[ndex2].fX - pts1[index].fX; |
|
507 double dy = pts2[ndex2].fY - pts1[index].fY; |
|
508 double distance = dx * dx + dy * dy; |
|
509 if (dist[index] <= distance) { |
|
510 continue; |
|
511 } |
|
512 for (int outer = 0; outer < index; ++outer) { |
|
513 if (closest[outer] != ndex2) { |
|
514 continue; |
|
515 } |
|
516 if (dist[outer] < distance) { |
|
517 goto next; |
|
518 } |
|
519 closest[outer] = -1; |
|
520 } |
|
521 dist[index] = distance; |
|
522 closest[index] = ndex2; |
|
523 foundSomething = true; |
|
524 next: |
|
525 ; |
|
526 } |
|
527 } |
|
528 if (r1Count && r2Count && !foundSomething) { |
|
529 relaxed_is_linear(&q1, 0, 1, &q2, 0, 1, this); |
|
530 return fUsed; |
|
531 } |
|
532 int used = 0; |
|
533 do { |
|
534 double lowest = DBL_MAX; |
|
535 int lowestIndex = -1; |
|
536 for (index = 0; index < r1Count; ++index) { |
|
537 if (closest[index] < 0) { |
|
538 continue; |
|
539 } |
|
540 if (roots1Copy[index] < lowest) { |
|
541 lowestIndex = index; |
|
542 lowest = roots1Copy[index]; |
|
543 } |
|
544 } |
|
545 if (lowestIndex < 0) { |
|
546 break; |
|
547 } |
|
548 insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]], |
|
549 pts1[lowestIndex]); |
|
550 closest[lowestIndex] = -1; |
|
551 } while (++used < r1Count); |
|
552 return fUsed; |
|
553 } |