Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
michael@0 | 1 | /* |
michael@0 | 2 | * Copyright 2012 Google Inc. |
michael@0 | 3 | * |
michael@0 | 4 | * Use of this source code is governed by a BSD-style license that can be |
michael@0 | 5 | * found in the LICENSE file. |
michael@0 | 6 | */ |
michael@0 | 7 | #include "SkIntersections.h" |
michael@0 | 8 | #include "SkPathOpsLine.h" |
michael@0 | 9 | #include "SkPathOpsQuad.h" |
michael@0 | 10 | |
michael@0 | 11 | /* |
michael@0 | 12 | Find the interection of a line and quadratic by solving for valid t values. |
michael@0 | 13 | |
michael@0 | 14 | From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve |
michael@0 | 15 | |
michael@0 | 16 | "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three |
michael@0 | 17 | control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where |
michael@0 | 18 | A, B and C are points and t goes from zero to one. |
michael@0 | 19 | |
michael@0 | 20 | This will give you two equations: |
michael@0 | 21 | |
michael@0 | 22 | x = a(1 - t)^2 + b(1 - t)t + ct^2 |
michael@0 | 23 | y = d(1 - t)^2 + e(1 - t)t + ft^2 |
michael@0 | 24 | |
michael@0 | 25 | If you add for instance the line equation (y = kx + m) to that, you'll end up |
michael@0 | 26 | with three equations and three unknowns (x, y and t)." |
michael@0 | 27 | |
michael@0 | 28 | Similar to above, the quadratic is represented as |
michael@0 | 29 | x = a(1-t)^2 + 2b(1-t)t + ct^2 |
michael@0 | 30 | y = d(1-t)^2 + 2e(1-t)t + ft^2 |
michael@0 | 31 | and the line as |
michael@0 | 32 | y = g*x + h |
michael@0 | 33 | |
michael@0 | 34 | Using Mathematica, solve for the values of t where the quadratic intersects the |
michael@0 | 35 | line: |
michael@0 | 36 | |
michael@0 | 37 | (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, |
michael@0 | 38 | d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x] |
michael@0 | 39 | (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + |
michael@0 | 40 | g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2) |
michael@0 | 41 | (in) Solve[t1 == 0, t] |
michael@0 | 42 | (out) { |
michael@0 | 43 | {t -> (-2 d + 2 e + 2 a g - 2 b g - |
michael@0 | 44 | Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
michael@0 | 45 | 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
michael@0 | 46 | (2 (-d + 2 e - f + a g - 2 b g + c g)) |
michael@0 | 47 | }, |
michael@0 | 48 | {t -> (-2 d + 2 e + 2 a g - 2 b g + |
michael@0 | 49 | Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
michael@0 | 50 | 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
michael@0 | 51 | (2 (-d + 2 e - f + a g - 2 b g + c g)) |
michael@0 | 52 | } |
michael@0 | 53 | } |
michael@0 | 54 | |
michael@0 | 55 | Using the results above (when the line tends towards horizontal) |
michael@0 | 56 | A = (-(d - 2*e + f) + g*(a - 2*b + c) ) |
michael@0 | 57 | B = 2*( (d - e ) - g*(a - b ) ) |
michael@0 | 58 | C = (-(d ) + g*(a ) + h ) |
michael@0 | 59 | |
michael@0 | 60 | If g goes to infinity, we can rewrite the line in terms of x. |
michael@0 | 61 | x = g'*y + h' |
michael@0 | 62 | |
michael@0 | 63 | And solve accordingly in Mathematica: |
michael@0 | 64 | |
michael@0 | 65 | (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', |
michael@0 | 66 | d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y] |
michael@0 | 67 | (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - |
michael@0 | 68 | g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2) |
michael@0 | 69 | (in) Solve[t2 == 0, t] |
michael@0 | 70 | (out) { |
michael@0 | 71 | {t -> (2 a - 2 b - 2 d g' + 2 e g' - |
michael@0 | 72 | Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
michael@0 | 73 | 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) / |
michael@0 | 74 | (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
michael@0 | 75 | }, |
michael@0 | 76 | {t -> (2 a - 2 b - 2 d g' + 2 e g' + |
michael@0 | 77 | Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
michael@0 | 78 | 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/ |
michael@0 | 79 | (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
michael@0 | 80 | } |
michael@0 | 81 | } |
michael@0 | 82 | |
michael@0 | 83 | Thus, if the slope of the line tends towards vertical, we use: |
michael@0 | 84 | A = ( (a - 2*b + c) - g'*(d - 2*e + f) ) |
michael@0 | 85 | B = 2*(-(a - b ) + g'*(d - e ) ) |
michael@0 | 86 | C = ( (a ) - g'*(d ) - h' ) |
michael@0 | 87 | */ |
michael@0 | 88 | |
michael@0 | 89 | |
michael@0 | 90 | class LineQuadraticIntersections { |
michael@0 | 91 | public: |
michael@0 | 92 | enum PinTPoint { |
michael@0 | 93 | kPointUninitialized, |
michael@0 | 94 | kPointInitialized |
michael@0 | 95 | }; |
michael@0 | 96 | |
michael@0 | 97 | LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i) |
michael@0 | 98 | : fQuad(q) |
michael@0 | 99 | , fLine(l) |
michael@0 | 100 | , fIntersections(i) |
michael@0 | 101 | , fAllowNear(true) { |
michael@0 | 102 | i->setMax(2); |
michael@0 | 103 | } |
michael@0 | 104 | |
michael@0 | 105 | void allowNear(bool allow) { |
michael@0 | 106 | fAllowNear = allow; |
michael@0 | 107 | } |
michael@0 | 108 | |
michael@0 | 109 | int intersectRay(double roots[2]) { |
michael@0 | 110 | /* |
michael@0 | 111 | solve by rotating line+quad so line is horizontal, then finding the roots |
michael@0 | 112 | set up matrix to rotate quad to x-axis |
michael@0 | 113 | |cos(a) -sin(a)| |
michael@0 | 114 | |sin(a) cos(a)| |
michael@0 | 115 | note that cos(a) = A(djacent) / Hypoteneuse |
michael@0 | 116 | sin(a) = O(pposite) / Hypoteneuse |
michael@0 | 117 | since we are computing Ts, we can ignore hypoteneuse, the scale factor: |
michael@0 | 118 | | A -O | |
michael@0 | 119 | | O A | |
michael@0 | 120 | A = line[1].fX - line[0].fX (adjacent side of the right triangle) |
michael@0 | 121 | O = line[1].fY - line[0].fY (opposite side of the right triangle) |
michael@0 | 122 | for each of the three points (e.g. n = 0 to 2) |
michael@0 | 123 | quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O |
michael@0 | 124 | */ |
michael@0 | 125 | double adj = fLine[1].fX - fLine[0].fX; |
michael@0 | 126 | double opp = fLine[1].fY - fLine[0].fY; |
michael@0 | 127 | double r[3]; |
michael@0 | 128 | for (int n = 0; n < 3; ++n) { |
michael@0 | 129 | r[n] = (fQuad[n].fY - fLine[0].fY) * adj - (fQuad[n].fX - fLine[0].fX) * opp; |
michael@0 | 130 | } |
michael@0 | 131 | double A = r[2]; |
michael@0 | 132 | double B = r[1]; |
michael@0 | 133 | double C = r[0]; |
michael@0 | 134 | A += C - 2 * B; // A = a - 2*b + c |
michael@0 | 135 | B -= C; // B = -(b - c) |
michael@0 | 136 | return SkDQuad::RootsValidT(A, 2 * B, C, roots); |
michael@0 | 137 | } |
michael@0 | 138 | |
michael@0 | 139 | int intersect() { |
michael@0 | 140 | addExactEndPoints(); |
michael@0 | 141 | if (fAllowNear) { |
michael@0 | 142 | addNearEndPoints(); |
michael@0 | 143 | } |
michael@0 | 144 | if (fIntersections->used() == 2) { |
michael@0 | 145 | // FIXME : need sharable code that turns spans into coincident if middle point is on |
michael@0 | 146 | } else { |
michael@0 | 147 | double rootVals[2]; |
michael@0 | 148 | int roots = intersectRay(rootVals); |
michael@0 | 149 | for (int index = 0; index < roots; ++index) { |
michael@0 | 150 | double quadT = rootVals[index]; |
michael@0 | 151 | double lineT = findLineT(quadT); |
michael@0 | 152 | SkDPoint pt; |
michael@0 | 153 | if (pinTs(&quadT, &lineT, &pt, kPointUninitialized)) { |
michael@0 | 154 | fIntersections->insert(quadT, lineT, pt); |
michael@0 | 155 | } |
michael@0 | 156 | } |
michael@0 | 157 | } |
michael@0 | 158 | return fIntersections->used(); |
michael@0 | 159 | } |
michael@0 | 160 | |
michael@0 | 161 | int horizontalIntersect(double axisIntercept, double roots[2]) { |
michael@0 | 162 | double D = fQuad[2].fY; // f |
michael@0 | 163 | double E = fQuad[1].fY; // e |
michael@0 | 164 | double F = fQuad[0].fY; // d |
michael@0 | 165 | D += F - 2 * E; // D = d - 2*e + f |
michael@0 | 166 | E -= F; // E = -(d - e) |
michael@0 | 167 | F -= axisIntercept; |
michael@0 | 168 | return SkDQuad::RootsValidT(D, 2 * E, F, roots); |
michael@0 | 169 | } |
michael@0 | 170 | |
michael@0 | 171 | int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
michael@0 | 172 | addExactHorizontalEndPoints(left, right, axisIntercept); |
michael@0 | 173 | if (fAllowNear) { |
michael@0 | 174 | addNearHorizontalEndPoints(left, right, axisIntercept); |
michael@0 | 175 | } |
michael@0 | 176 | double rootVals[2]; |
michael@0 | 177 | int roots = horizontalIntersect(axisIntercept, rootVals); |
michael@0 | 178 | for (int index = 0; index < roots; ++index) { |
michael@0 | 179 | double quadT = rootVals[index]; |
michael@0 | 180 | SkDPoint pt = fQuad.ptAtT(quadT); |
michael@0 | 181 | double lineT = (pt.fX - left) / (right - left); |
michael@0 | 182 | if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) { |
michael@0 | 183 | fIntersections->insert(quadT, lineT, pt); |
michael@0 | 184 | } |
michael@0 | 185 | } |
michael@0 | 186 | if (flipped) { |
michael@0 | 187 | fIntersections->flip(); |
michael@0 | 188 | } |
michael@0 | 189 | return fIntersections->used(); |
michael@0 | 190 | } |
michael@0 | 191 | |
michael@0 | 192 | int verticalIntersect(double axisIntercept, double roots[2]) { |
michael@0 | 193 | double D = fQuad[2].fX; // f |
michael@0 | 194 | double E = fQuad[1].fX; // e |
michael@0 | 195 | double F = fQuad[0].fX; // d |
michael@0 | 196 | D += F - 2 * E; // D = d - 2*e + f |
michael@0 | 197 | E -= F; // E = -(d - e) |
michael@0 | 198 | F -= axisIntercept; |
michael@0 | 199 | return SkDQuad::RootsValidT(D, 2 * E, F, roots); |
michael@0 | 200 | } |
michael@0 | 201 | |
michael@0 | 202 | int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
michael@0 | 203 | addExactVerticalEndPoints(top, bottom, axisIntercept); |
michael@0 | 204 | if (fAllowNear) { |
michael@0 | 205 | addNearVerticalEndPoints(top, bottom, axisIntercept); |
michael@0 | 206 | } |
michael@0 | 207 | double rootVals[2]; |
michael@0 | 208 | int roots = verticalIntersect(axisIntercept, rootVals); |
michael@0 | 209 | for (int index = 0; index < roots; ++index) { |
michael@0 | 210 | double quadT = rootVals[index]; |
michael@0 | 211 | SkDPoint pt = fQuad.ptAtT(quadT); |
michael@0 | 212 | double lineT = (pt.fY - top) / (bottom - top); |
michael@0 | 213 | if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) { |
michael@0 | 214 | fIntersections->insert(quadT, lineT, pt); |
michael@0 | 215 | } |
michael@0 | 216 | } |
michael@0 | 217 | if (flipped) { |
michael@0 | 218 | fIntersections->flip(); |
michael@0 | 219 | } |
michael@0 | 220 | return fIntersections->used(); |
michael@0 | 221 | } |
michael@0 | 222 | |
michael@0 | 223 | protected: |
michael@0 | 224 | // add endpoints first to get zero and one t values exactly |
michael@0 | 225 | void addExactEndPoints() { |
michael@0 | 226 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
michael@0 | 227 | double lineT = fLine.exactPoint(fQuad[qIndex]); |
michael@0 | 228 | if (lineT < 0) { |
michael@0 | 229 | continue; |
michael@0 | 230 | } |
michael@0 | 231 | double quadT = (double) (qIndex >> 1); |
michael@0 | 232 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
michael@0 | 233 | } |
michael@0 | 234 | } |
michael@0 | 235 | |
michael@0 | 236 | void addNearEndPoints() { |
michael@0 | 237 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
michael@0 | 238 | double quadT = (double) (qIndex >> 1); |
michael@0 | 239 | if (fIntersections->hasT(quadT)) { |
michael@0 | 240 | continue; |
michael@0 | 241 | } |
michael@0 | 242 | double lineT = fLine.nearPoint(fQuad[qIndex]); |
michael@0 | 243 | if (lineT < 0) { |
michael@0 | 244 | continue; |
michael@0 | 245 | } |
michael@0 | 246 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
michael@0 | 247 | } |
michael@0 | 248 | // FIXME: see if line end is nearly on quad |
michael@0 | 249 | } |
michael@0 | 250 | |
michael@0 | 251 | void addExactHorizontalEndPoints(double left, double right, double y) { |
michael@0 | 252 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
michael@0 | 253 | double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y); |
michael@0 | 254 | if (lineT < 0) { |
michael@0 | 255 | continue; |
michael@0 | 256 | } |
michael@0 | 257 | double quadT = (double) (qIndex >> 1); |
michael@0 | 258 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
michael@0 | 259 | } |
michael@0 | 260 | } |
michael@0 | 261 | |
michael@0 | 262 | void addNearHorizontalEndPoints(double left, double right, double y) { |
michael@0 | 263 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
michael@0 | 264 | double quadT = (double) (qIndex >> 1); |
michael@0 | 265 | if (fIntersections->hasT(quadT)) { |
michael@0 | 266 | continue; |
michael@0 | 267 | } |
michael@0 | 268 | double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y); |
michael@0 | 269 | if (lineT < 0) { |
michael@0 | 270 | continue; |
michael@0 | 271 | } |
michael@0 | 272 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
michael@0 | 273 | } |
michael@0 | 274 | // FIXME: see if line end is nearly on quad |
michael@0 | 275 | } |
michael@0 | 276 | |
michael@0 | 277 | void addExactVerticalEndPoints(double top, double bottom, double x) { |
michael@0 | 278 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
michael@0 | 279 | double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x); |
michael@0 | 280 | if (lineT < 0) { |
michael@0 | 281 | continue; |
michael@0 | 282 | } |
michael@0 | 283 | double quadT = (double) (qIndex >> 1); |
michael@0 | 284 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
michael@0 | 285 | } |
michael@0 | 286 | } |
michael@0 | 287 | |
michael@0 | 288 | void addNearVerticalEndPoints(double top, double bottom, double x) { |
michael@0 | 289 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
michael@0 | 290 | double quadT = (double) (qIndex >> 1); |
michael@0 | 291 | if (fIntersections->hasT(quadT)) { |
michael@0 | 292 | continue; |
michael@0 | 293 | } |
michael@0 | 294 | double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x); |
michael@0 | 295 | if (lineT < 0) { |
michael@0 | 296 | continue; |
michael@0 | 297 | } |
michael@0 | 298 | fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
michael@0 | 299 | } |
michael@0 | 300 | // FIXME: see if line end is nearly on quad |
michael@0 | 301 | } |
michael@0 | 302 | |
michael@0 | 303 | double findLineT(double t) { |
michael@0 | 304 | SkDPoint xy = fQuad.ptAtT(t); |
michael@0 | 305 | double dx = fLine[1].fX - fLine[0].fX; |
michael@0 | 306 | double dy = fLine[1].fY - fLine[0].fY; |
michael@0 | 307 | if (fabs(dx) > fabs(dy)) { |
michael@0 | 308 | return (xy.fX - fLine[0].fX) / dx; |
michael@0 | 309 | } |
michael@0 | 310 | return (xy.fY - fLine[0].fY) / dy; |
michael@0 | 311 | } |
michael@0 | 312 | |
michael@0 | 313 | bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) { |
michael@0 | 314 | if (!approximately_one_or_less(*lineT)) { |
michael@0 | 315 | return false; |
michael@0 | 316 | } |
michael@0 | 317 | if (!approximately_zero_or_more(*lineT)) { |
michael@0 | 318 | return false; |
michael@0 | 319 | } |
michael@0 | 320 | double qT = *quadT = SkPinT(*quadT); |
michael@0 | 321 | double lT = *lineT = SkPinT(*lineT); |
michael@0 | 322 | if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) { |
michael@0 | 323 | *pt = fLine.ptAtT(lT); |
michael@0 | 324 | } else if (ptSet == kPointUninitialized) { |
michael@0 | 325 | *pt = fQuad.ptAtT(qT); |
michael@0 | 326 | } |
michael@0 | 327 | SkPoint gridPt = pt->asSkPoint(); |
michael@0 | 328 | if (gridPt == fLine[0].asSkPoint()) { |
michael@0 | 329 | *lineT = 0; |
michael@0 | 330 | } else if (gridPt == fLine[1].asSkPoint()) { |
michael@0 | 331 | *lineT = 1; |
michael@0 | 332 | } |
michael@0 | 333 | if (gridPt == fQuad[0].asSkPoint()) { |
michael@0 | 334 | *quadT = 0; |
michael@0 | 335 | } else if (gridPt == fQuad[2].asSkPoint()) { |
michael@0 | 336 | *quadT = 1; |
michael@0 | 337 | } |
michael@0 | 338 | return true; |
michael@0 | 339 | } |
michael@0 | 340 | |
michael@0 | 341 | private: |
michael@0 | 342 | const SkDQuad& fQuad; |
michael@0 | 343 | const SkDLine& fLine; |
michael@0 | 344 | SkIntersections* fIntersections; |
michael@0 | 345 | bool fAllowNear; |
michael@0 | 346 | }; |
michael@0 | 347 | |
michael@0 | 348 | // utility for pairs of coincident quads |
michael@0 | 349 | static double horizontalIntersect(const SkDQuad& quad, const SkDPoint& pt) { |
michael@0 | 350 | LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), |
michael@0 | 351 | static_cast<SkIntersections*>(0)); |
michael@0 | 352 | double rootVals[2]; |
michael@0 | 353 | int roots = q.horizontalIntersect(pt.fY, rootVals); |
michael@0 | 354 | for (int index = 0; index < roots; ++index) { |
michael@0 | 355 | double t = rootVals[index]; |
michael@0 | 356 | SkDPoint qPt = quad.ptAtT(t); |
michael@0 | 357 | if (AlmostEqualUlps(qPt.fX, pt.fX)) { |
michael@0 | 358 | return t; |
michael@0 | 359 | } |
michael@0 | 360 | } |
michael@0 | 361 | return -1; |
michael@0 | 362 | } |
michael@0 | 363 | |
michael@0 | 364 | static double verticalIntersect(const SkDQuad& quad, const SkDPoint& pt) { |
michael@0 | 365 | LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), |
michael@0 | 366 | static_cast<SkIntersections*>(0)); |
michael@0 | 367 | double rootVals[2]; |
michael@0 | 368 | int roots = q.verticalIntersect(pt.fX, rootVals); |
michael@0 | 369 | for (int index = 0; index < roots; ++index) { |
michael@0 | 370 | double t = rootVals[index]; |
michael@0 | 371 | SkDPoint qPt = quad.ptAtT(t); |
michael@0 | 372 | if (AlmostEqualUlps(qPt.fY, pt.fY)) { |
michael@0 | 373 | return t; |
michael@0 | 374 | } |
michael@0 | 375 | } |
michael@0 | 376 | return -1; |
michael@0 | 377 | } |
michael@0 | 378 | |
michael@0 | 379 | double SkIntersections::Axial(const SkDQuad& q1, const SkDPoint& p, bool vertical) { |
michael@0 | 380 | if (vertical) { |
michael@0 | 381 | return verticalIntersect(q1, p); |
michael@0 | 382 | } |
michael@0 | 383 | return horizontalIntersect(q1, p); |
michael@0 | 384 | } |
michael@0 | 385 | |
michael@0 | 386 | int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y, |
michael@0 | 387 | bool flipped) { |
michael@0 | 388 | SkDLine line = {{{ left, y }, { right, y }}}; |
michael@0 | 389 | LineQuadraticIntersections q(quad, line, this); |
michael@0 | 390 | return q.horizontalIntersect(y, left, right, flipped); |
michael@0 | 391 | } |
michael@0 | 392 | |
michael@0 | 393 | int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x, |
michael@0 | 394 | bool flipped) { |
michael@0 | 395 | SkDLine line = {{{ x, top }, { x, bottom }}}; |
michael@0 | 396 | LineQuadraticIntersections q(quad, line, this); |
michael@0 | 397 | return q.verticalIntersect(x, top, bottom, flipped); |
michael@0 | 398 | } |
michael@0 | 399 | |
michael@0 | 400 | int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) { |
michael@0 | 401 | LineQuadraticIntersections q(quad, line, this); |
michael@0 | 402 | q.allowNear(fAllowNear); |
michael@0 | 403 | return q.intersect(); |
michael@0 | 404 | } |
michael@0 | 405 | |
michael@0 | 406 | int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) { |
michael@0 | 407 | LineQuadraticIntersections q(quad, line, this); |
michael@0 | 408 | fUsed = q.intersectRay(fT[0]); |
michael@0 | 409 | for (int index = 0; index < fUsed; ++index) { |
michael@0 | 410 | fPt[index] = quad.ptAtT(fT[0][index]); |
michael@0 | 411 | } |
michael@0 | 412 | return fUsed; |
michael@0 | 413 | } |