|
1 /* |
|
2 * Copyright 2012 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 #include "SkIntersections.h" |
|
8 #include "SkPathOpsLine.h" |
|
9 #include "SkPathOpsQuad.h" |
|
10 |
|
11 /* |
|
12 Find the interection of a line and quadratic by solving for valid t values. |
|
13 |
|
14 From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve |
|
15 |
|
16 "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three |
|
17 control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where |
|
18 A, B and C are points and t goes from zero to one. |
|
19 |
|
20 This will give you two equations: |
|
21 |
|
22 x = a(1 - t)^2 + b(1 - t)t + ct^2 |
|
23 y = d(1 - t)^2 + e(1 - t)t + ft^2 |
|
24 |
|
25 If you add for instance the line equation (y = kx + m) to that, you'll end up |
|
26 with three equations and three unknowns (x, y and t)." |
|
27 |
|
28 Similar to above, the quadratic is represented as |
|
29 x = a(1-t)^2 + 2b(1-t)t + ct^2 |
|
30 y = d(1-t)^2 + 2e(1-t)t + ft^2 |
|
31 and the line as |
|
32 y = g*x + h |
|
33 |
|
34 Using Mathematica, solve for the values of t where the quadratic intersects the |
|
35 line: |
|
36 |
|
37 (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, |
|
38 d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x] |
|
39 (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + |
|
40 g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2) |
|
41 (in) Solve[t1 == 0, t] |
|
42 (out) { |
|
43 {t -> (-2 d + 2 e + 2 a g - 2 b g - |
|
44 Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
|
45 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
|
46 (2 (-d + 2 e - f + a g - 2 b g + c g)) |
|
47 }, |
|
48 {t -> (-2 d + 2 e + 2 a g - 2 b g + |
|
49 Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
|
50 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
|
51 (2 (-d + 2 e - f + a g - 2 b g + c g)) |
|
52 } |
|
53 } |
|
54 |
|
55 Using the results above (when the line tends towards horizontal) |
|
56 A = (-(d - 2*e + f) + g*(a - 2*b + c) ) |
|
57 B = 2*( (d - e ) - g*(a - b ) ) |
|
58 C = (-(d ) + g*(a ) + h ) |
|
59 |
|
60 If g goes to infinity, we can rewrite the line in terms of x. |
|
61 x = g'*y + h' |
|
62 |
|
63 And solve accordingly in Mathematica: |
|
64 |
|
65 (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', |
|
66 d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y] |
|
67 (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - |
|
68 g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2) |
|
69 (in) Solve[t2 == 0, t] |
|
70 (out) { |
|
71 {t -> (2 a - 2 b - 2 d g' + 2 e g' - |
|
72 Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
|
73 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) / |
|
74 (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
|
75 }, |
|
76 {t -> (2 a - 2 b - 2 d g' + 2 e g' + |
|
77 Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
|
78 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/ |
|
79 (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
|
80 } |
|
81 } |
|
82 |
|
83 Thus, if the slope of the line tends towards vertical, we use: |
|
84 A = ( (a - 2*b + c) - g'*(d - 2*e + f) ) |
|
85 B = 2*(-(a - b ) + g'*(d - e ) ) |
|
86 C = ( (a ) - g'*(d ) - h' ) |
|
87 */ |
|
88 |
|
89 |
|
90 class LineQuadraticIntersections { |
|
91 public: |
|
92 enum PinTPoint { |
|
93 kPointUninitialized, |
|
94 kPointInitialized |
|
95 }; |
|
96 |
|
97 LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i) |
|
98 : fQuad(q) |
|
99 , fLine(l) |
|
100 , fIntersections(i) |
|
101 , fAllowNear(true) { |
|
102 i->setMax(2); |
|
103 } |
|
104 |
|
105 void allowNear(bool allow) { |
|
106 fAllowNear = allow; |
|
107 } |
|
108 |
|
109 int intersectRay(double roots[2]) { |
|
110 /* |
|
111 solve by rotating line+quad so line is horizontal, then finding the roots |
|
112 set up matrix to rotate quad to x-axis |
|
113 |cos(a) -sin(a)| |
|
114 |sin(a) cos(a)| |
|
115 note that cos(a) = A(djacent) / Hypoteneuse |
|
116 sin(a) = O(pposite) / Hypoteneuse |
|
117 since we are computing Ts, we can ignore hypoteneuse, the scale factor: |
|
118 | A -O | |
|
119 | O A | |
|
120 A = line[1].fX - line[0].fX (adjacent side of the right triangle) |
|
121 O = line[1].fY - line[0].fY (opposite side of the right triangle) |
|
122 for each of the three points (e.g. n = 0 to 2) |
|
123 quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O |
|
124 */ |
|
125 double adj = fLine[1].fX - fLine[0].fX; |
|
126 double opp = fLine[1].fY - fLine[0].fY; |
|
127 double r[3]; |
|
128 for (int n = 0; n < 3; ++n) { |
|
129 r[n] = (fQuad[n].fY - fLine[0].fY) * adj - (fQuad[n].fX - fLine[0].fX) * opp; |
|
130 } |
|
131 double A = r[2]; |
|
132 double B = r[1]; |
|
133 double C = r[0]; |
|
134 A += C - 2 * B; // A = a - 2*b + c |
|
135 B -= C; // B = -(b - c) |
|
136 return SkDQuad::RootsValidT(A, 2 * B, C, roots); |
|
137 } |
|
138 |
|
139 int intersect() { |
|
140 addExactEndPoints(); |
|
141 if (fAllowNear) { |
|
142 addNearEndPoints(); |
|
143 } |
|
144 if (fIntersections->used() == 2) { |
|
145 // FIXME : need sharable code that turns spans into coincident if middle point is on |
|
146 } else { |
|
147 double rootVals[2]; |
|
148 int roots = intersectRay(rootVals); |
|
149 for (int index = 0; index < roots; ++index) { |
|
150 double quadT = rootVals[index]; |
|
151 double lineT = findLineT(quadT); |
|
152 SkDPoint pt; |
|
153 if (pinTs(&quadT, &lineT, &pt, kPointUninitialized)) { |
|
154 fIntersections->insert(quadT, lineT, pt); |
|
155 } |
|
156 } |
|
157 } |
|
158 return fIntersections->used(); |
|
159 } |
|
160 |
|
161 int horizontalIntersect(double axisIntercept, double roots[2]) { |
|
162 double D = fQuad[2].fY; // f |
|
163 double E = fQuad[1].fY; // e |
|
164 double F = fQuad[0].fY; // d |
|
165 D += F - 2 * E; // D = d - 2*e + f |
|
166 E -= F; // E = -(d - e) |
|
167 F -= axisIntercept; |
|
168 return SkDQuad::RootsValidT(D, 2 * E, F, roots); |
|
169 } |
|
170 |
|
171 int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
|
172 addExactHorizontalEndPoints(left, right, axisIntercept); |
|
173 if (fAllowNear) { |
|
174 addNearHorizontalEndPoints(left, right, axisIntercept); |
|
175 } |
|
176 double rootVals[2]; |
|
177 int roots = horizontalIntersect(axisIntercept, rootVals); |
|
178 for (int index = 0; index < roots; ++index) { |
|
179 double quadT = rootVals[index]; |
|
180 SkDPoint pt = fQuad.ptAtT(quadT); |
|
181 double lineT = (pt.fX - left) / (right - left); |
|
182 if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) { |
|
183 fIntersections->insert(quadT, lineT, pt); |
|
184 } |
|
185 } |
|
186 if (flipped) { |
|
187 fIntersections->flip(); |
|
188 } |
|
189 return fIntersections->used(); |
|
190 } |
|
191 |
|
192 int verticalIntersect(double axisIntercept, double roots[2]) { |
|
193 double D = fQuad[2].fX; // f |
|
194 double E = fQuad[1].fX; // e |
|
195 double F = fQuad[0].fX; // d |
|
196 D += F - 2 * E; // D = d - 2*e + f |
|
197 E -= F; // E = -(d - e) |
|
198 F -= axisIntercept; |
|
199 return SkDQuad::RootsValidT(D, 2 * E, F, roots); |
|
200 } |
|
201 |
|
202 int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
|
203 addExactVerticalEndPoints(top, bottom, axisIntercept); |
|
204 if (fAllowNear) { |
|
205 addNearVerticalEndPoints(top, bottom, axisIntercept); |
|
206 } |
|
207 double rootVals[2]; |
|
208 int roots = verticalIntersect(axisIntercept, rootVals); |
|
209 for (int index = 0; index < roots; ++index) { |
|
210 double quadT = rootVals[index]; |
|
211 SkDPoint pt = fQuad.ptAtT(quadT); |
|
212 double lineT = (pt.fY - top) / (bottom - top); |
|
213 if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) { |
|
214 fIntersections->insert(quadT, lineT, pt); |
|
215 } |
|
216 } |
|
217 if (flipped) { |
|
218 fIntersections->flip(); |
|
219 } |
|
220 return fIntersections->used(); |
|
221 } |
|
222 |
|
223 protected: |
|
224 // add endpoints first to get zero and one t values exactly |
|
225 void addExactEndPoints() { |
|
226 for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
|
227 double lineT = fLine.exactPoint(fQuad[qIndex]); |
|
228 if (lineT < 0) { |
|
229 continue; |
|
230 } |
|
231 double quadT = (double) (qIndex >> 1); |
|
232 fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
|
233 } |
|
234 } |
|
235 |
|
236 void addNearEndPoints() { |
|
237 for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
|
238 double quadT = (double) (qIndex >> 1); |
|
239 if (fIntersections->hasT(quadT)) { |
|
240 continue; |
|
241 } |
|
242 double lineT = fLine.nearPoint(fQuad[qIndex]); |
|
243 if (lineT < 0) { |
|
244 continue; |
|
245 } |
|
246 fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
|
247 } |
|
248 // FIXME: see if line end is nearly on quad |
|
249 } |
|
250 |
|
251 void addExactHorizontalEndPoints(double left, double right, double y) { |
|
252 for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
|
253 double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y); |
|
254 if (lineT < 0) { |
|
255 continue; |
|
256 } |
|
257 double quadT = (double) (qIndex >> 1); |
|
258 fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
|
259 } |
|
260 } |
|
261 |
|
262 void addNearHorizontalEndPoints(double left, double right, double y) { |
|
263 for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
|
264 double quadT = (double) (qIndex >> 1); |
|
265 if (fIntersections->hasT(quadT)) { |
|
266 continue; |
|
267 } |
|
268 double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y); |
|
269 if (lineT < 0) { |
|
270 continue; |
|
271 } |
|
272 fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
|
273 } |
|
274 // FIXME: see if line end is nearly on quad |
|
275 } |
|
276 |
|
277 void addExactVerticalEndPoints(double top, double bottom, double x) { |
|
278 for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
|
279 double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x); |
|
280 if (lineT < 0) { |
|
281 continue; |
|
282 } |
|
283 double quadT = (double) (qIndex >> 1); |
|
284 fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
|
285 } |
|
286 } |
|
287 |
|
288 void addNearVerticalEndPoints(double top, double bottom, double x) { |
|
289 for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
|
290 double quadT = (double) (qIndex >> 1); |
|
291 if (fIntersections->hasT(quadT)) { |
|
292 continue; |
|
293 } |
|
294 double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x); |
|
295 if (lineT < 0) { |
|
296 continue; |
|
297 } |
|
298 fIntersections->insert(quadT, lineT, fQuad[qIndex]); |
|
299 } |
|
300 // FIXME: see if line end is nearly on quad |
|
301 } |
|
302 |
|
303 double findLineT(double t) { |
|
304 SkDPoint xy = fQuad.ptAtT(t); |
|
305 double dx = fLine[1].fX - fLine[0].fX; |
|
306 double dy = fLine[1].fY - fLine[0].fY; |
|
307 if (fabs(dx) > fabs(dy)) { |
|
308 return (xy.fX - fLine[0].fX) / dx; |
|
309 } |
|
310 return (xy.fY - fLine[0].fY) / dy; |
|
311 } |
|
312 |
|
313 bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) { |
|
314 if (!approximately_one_or_less(*lineT)) { |
|
315 return false; |
|
316 } |
|
317 if (!approximately_zero_or_more(*lineT)) { |
|
318 return false; |
|
319 } |
|
320 double qT = *quadT = SkPinT(*quadT); |
|
321 double lT = *lineT = SkPinT(*lineT); |
|
322 if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) { |
|
323 *pt = fLine.ptAtT(lT); |
|
324 } else if (ptSet == kPointUninitialized) { |
|
325 *pt = fQuad.ptAtT(qT); |
|
326 } |
|
327 SkPoint gridPt = pt->asSkPoint(); |
|
328 if (gridPt == fLine[0].asSkPoint()) { |
|
329 *lineT = 0; |
|
330 } else if (gridPt == fLine[1].asSkPoint()) { |
|
331 *lineT = 1; |
|
332 } |
|
333 if (gridPt == fQuad[0].asSkPoint()) { |
|
334 *quadT = 0; |
|
335 } else if (gridPt == fQuad[2].asSkPoint()) { |
|
336 *quadT = 1; |
|
337 } |
|
338 return true; |
|
339 } |
|
340 |
|
341 private: |
|
342 const SkDQuad& fQuad; |
|
343 const SkDLine& fLine; |
|
344 SkIntersections* fIntersections; |
|
345 bool fAllowNear; |
|
346 }; |
|
347 |
|
348 // utility for pairs of coincident quads |
|
349 static double horizontalIntersect(const SkDQuad& quad, const SkDPoint& pt) { |
|
350 LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), |
|
351 static_cast<SkIntersections*>(0)); |
|
352 double rootVals[2]; |
|
353 int roots = q.horizontalIntersect(pt.fY, rootVals); |
|
354 for (int index = 0; index < roots; ++index) { |
|
355 double t = rootVals[index]; |
|
356 SkDPoint qPt = quad.ptAtT(t); |
|
357 if (AlmostEqualUlps(qPt.fX, pt.fX)) { |
|
358 return t; |
|
359 } |
|
360 } |
|
361 return -1; |
|
362 } |
|
363 |
|
364 static double verticalIntersect(const SkDQuad& quad, const SkDPoint& pt) { |
|
365 LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), |
|
366 static_cast<SkIntersections*>(0)); |
|
367 double rootVals[2]; |
|
368 int roots = q.verticalIntersect(pt.fX, rootVals); |
|
369 for (int index = 0; index < roots; ++index) { |
|
370 double t = rootVals[index]; |
|
371 SkDPoint qPt = quad.ptAtT(t); |
|
372 if (AlmostEqualUlps(qPt.fY, pt.fY)) { |
|
373 return t; |
|
374 } |
|
375 } |
|
376 return -1; |
|
377 } |
|
378 |
|
379 double SkIntersections::Axial(const SkDQuad& q1, const SkDPoint& p, bool vertical) { |
|
380 if (vertical) { |
|
381 return verticalIntersect(q1, p); |
|
382 } |
|
383 return horizontalIntersect(q1, p); |
|
384 } |
|
385 |
|
386 int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y, |
|
387 bool flipped) { |
|
388 SkDLine line = {{{ left, y }, { right, y }}}; |
|
389 LineQuadraticIntersections q(quad, line, this); |
|
390 return q.horizontalIntersect(y, left, right, flipped); |
|
391 } |
|
392 |
|
393 int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x, |
|
394 bool flipped) { |
|
395 SkDLine line = {{{ x, top }, { x, bottom }}}; |
|
396 LineQuadraticIntersections q(quad, line, this); |
|
397 return q.verticalIntersect(x, top, bottom, flipped); |
|
398 } |
|
399 |
|
400 int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) { |
|
401 LineQuadraticIntersections q(quad, line, this); |
|
402 q.allowNear(fAllowNear); |
|
403 return q.intersect(); |
|
404 } |
|
405 |
|
406 int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) { |
|
407 LineQuadraticIntersections q(quad, line, this); |
|
408 fUsed = q.intersectRay(fT[0]); |
|
409 for (int index = 0; index < fUsed; ++index) { |
|
410 fPt[index] = quad.ptAtT(fT[0][index]); |
|
411 } |
|
412 return fUsed; |
|
413 } |