security/sandbox/chromium/base/memory/singleton.h

Wed, 31 Dec 2014 07:16:47 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 07:16:47 +0100
branch
TOR_BUG_9701
changeset 3
141e0f1194b1
permissions
-rw-r--r--

Revert simplistic fix pending revisit of Mozilla integration attempt.

michael@0 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
michael@0 2 // Use of this source code is governed by a BSD-style license that can be
michael@0 3 // found in the LICENSE file.
michael@0 4
michael@0 5 // PLEASE READ: Do you really need a singleton?
michael@0 6 //
michael@0 7 // Singletons make it hard to determine the lifetime of an object, which can
michael@0 8 // lead to buggy code and spurious crashes.
michael@0 9 //
michael@0 10 // Instead of adding another singleton into the mix, try to identify either:
michael@0 11 // a) An existing singleton that can manage your object's lifetime
michael@0 12 // b) Locations where you can deterministically create the object and pass
michael@0 13 // into other objects
michael@0 14 //
michael@0 15 // If you absolutely need a singleton, please keep them as trivial as possible
michael@0 16 // and ideally a leaf dependency. Singletons get problematic when they attempt
michael@0 17 // to do too much in their destructor or have circular dependencies.
michael@0 18
michael@0 19 #ifndef BASE_MEMORY_SINGLETON_H_
michael@0 20 #define BASE_MEMORY_SINGLETON_H_
michael@0 21
michael@0 22 #include "base/at_exit.h"
michael@0 23 #include "base/atomicops.h"
michael@0 24 #include "base/base_export.h"
michael@0 25 #include "base/memory/aligned_memory.h"
michael@0 26 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
michael@0 27 #include "base/threading/thread_restrictions.h"
michael@0 28
michael@0 29 namespace base {
michael@0 30 namespace internal {
michael@0 31
michael@0 32 // Our AtomicWord doubles as a spinlock, where a value of
michael@0 33 // kBeingCreatedMarker means the spinlock is being held for creation.
michael@0 34 static const subtle::AtomicWord kBeingCreatedMarker = 1;
michael@0 35
michael@0 36 // We pull out some of the functionality into a non-templated function, so that
michael@0 37 // we can implement the more complicated pieces out of line in the .cc file.
michael@0 38 BASE_EXPORT subtle::AtomicWord WaitForInstance(subtle::AtomicWord* instance);
michael@0 39
michael@0 40 } // namespace internal
michael@0 41 } // namespace base
michael@0 42
michael@0 43 // TODO(joth): Move more of this file into namespace base
michael@0 44
michael@0 45 // Default traits for Singleton<Type>. Calls operator new and operator delete on
michael@0 46 // the object. Registers automatic deletion at process exit.
michael@0 47 // Overload if you need arguments or another memory allocation function.
michael@0 48 template<typename Type>
michael@0 49 struct DefaultSingletonTraits {
michael@0 50 // Allocates the object.
michael@0 51 static Type* New() {
michael@0 52 // The parenthesis is very important here; it forces POD type
michael@0 53 // initialization.
michael@0 54 return new Type();
michael@0 55 }
michael@0 56
michael@0 57 // Destroys the object.
michael@0 58 static void Delete(Type* x) {
michael@0 59 delete x;
michael@0 60 }
michael@0 61
michael@0 62 // Set to true to automatically register deletion of the object on process
michael@0 63 // exit. See below for the required call that makes this happen.
michael@0 64 static const bool kRegisterAtExit = true;
michael@0 65
michael@0 66 // Set to false to disallow access on a non-joinable thread. This is
michael@0 67 // different from kRegisterAtExit because StaticMemorySingletonTraits allows
michael@0 68 // access on non-joinable threads, and gracefully handles this.
michael@0 69 static const bool kAllowedToAccessOnNonjoinableThread = false;
michael@0 70 };
michael@0 71
michael@0 72
michael@0 73 // Alternate traits for use with the Singleton<Type>. Identical to
michael@0 74 // DefaultSingletonTraits except that the Singleton will not be cleaned up
michael@0 75 // at exit.
michael@0 76 template<typename Type>
michael@0 77 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
michael@0 78 static const bool kRegisterAtExit = false;
michael@0 79 static const bool kAllowedToAccessOnNonjoinableThread = true;
michael@0 80 };
michael@0 81
michael@0 82
michael@0 83 // Alternate traits for use with the Singleton<Type>. Allocates memory
michael@0 84 // for the singleton instance from a static buffer. The singleton will
michael@0 85 // be cleaned up at exit, but can't be revived after destruction unless
michael@0 86 // the Resurrect() method is called.
michael@0 87 //
michael@0 88 // This is useful for a certain category of things, notably logging and
michael@0 89 // tracing, where the singleton instance is of a type carefully constructed to
michael@0 90 // be safe to access post-destruction.
michael@0 91 // In logging and tracing you'll typically get stray calls at odd times, like
michael@0 92 // during static destruction, thread teardown and the like, and there's a
michael@0 93 // termination race on the heap-based singleton - e.g. if one thread calls
michael@0 94 // get(), but then another thread initiates AtExit processing, the first thread
michael@0 95 // may call into an object residing in unallocated memory. If the instance is
michael@0 96 // allocated from the data segment, then this is survivable.
michael@0 97 //
michael@0 98 // The destructor is to deallocate system resources, in this case to unregister
michael@0 99 // a callback the system will invoke when logging levels change. Note that
michael@0 100 // this is also used in e.g. Chrome Frame, where you have to allow for the
michael@0 101 // possibility of loading briefly into someone else's process space, and
michael@0 102 // so leaking is not an option, as that would sabotage the state of your host
michael@0 103 // process once you've unloaded.
michael@0 104 template <typename Type>
michael@0 105 struct StaticMemorySingletonTraits {
michael@0 106 // WARNING: User has to deal with get() in the singleton class
michael@0 107 // this is traits for returning NULL.
michael@0 108 static Type* New() {
michael@0 109 // Only constructs once and returns pointer; otherwise returns NULL.
michael@0 110 if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1))
michael@0 111 return NULL;
michael@0 112
michael@0 113 return new(buffer_.void_data()) Type();
michael@0 114 }
michael@0 115
michael@0 116 static void Delete(Type* p) {
michael@0 117 if (p != NULL)
michael@0 118 p->Type::~Type();
michael@0 119 }
michael@0 120
michael@0 121 static const bool kRegisterAtExit = true;
michael@0 122 static const bool kAllowedToAccessOnNonjoinableThread = true;
michael@0 123
michael@0 124 // Exposed for unittesting.
michael@0 125 static void Resurrect() {
michael@0 126 base::subtle::NoBarrier_Store(&dead_, 0);
michael@0 127 }
michael@0 128
michael@0 129 private:
michael@0 130 static base::AlignedMemory<sizeof(Type), ALIGNOF(Type)> buffer_;
michael@0 131 // Signal the object was already deleted, so it is not revived.
michael@0 132 static base::subtle::Atomic32 dead_;
michael@0 133 };
michael@0 134
michael@0 135 template <typename Type> base::AlignedMemory<sizeof(Type), ALIGNOF(Type)>
michael@0 136 StaticMemorySingletonTraits<Type>::buffer_;
michael@0 137 template <typename Type> base::subtle::Atomic32
michael@0 138 StaticMemorySingletonTraits<Type>::dead_ = 0;
michael@0 139
michael@0 140 // The Singleton<Type, Traits, DifferentiatingType> class manages a single
michael@0 141 // instance of Type which will be created on first use and will be destroyed at
michael@0 142 // normal process exit). The Trait::Delete function will not be called on
michael@0 143 // abnormal process exit.
michael@0 144 //
michael@0 145 // DifferentiatingType is used as a key to differentiate two different
michael@0 146 // singletons having the same memory allocation functions but serving a
michael@0 147 // different purpose. This is mainly used for Locks serving different purposes.
michael@0 148 //
michael@0 149 // Example usage:
michael@0 150 //
michael@0 151 // In your header:
michael@0 152 // template <typename T> struct DefaultSingletonTraits;
michael@0 153 // class FooClass {
michael@0 154 // public:
michael@0 155 // static FooClass* GetInstance(); <-- See comment below on this.
michael@0 156 // void Bar() { ... }
michael@0 157 // private:
michael@0 158 // FooClass() { ... }
michael@0 159 // friend struct DefaultSingletonTraits<FooClass>;
michael@0 160 //
michael@0 161 // DISALLOW_COPY_AND_ASSIGN(FooClass);
michael@0 162 // };
michael@0 163 //
michael@0 164 // In your source file:
michael@0 165 // #include "base/memory/singleton.h"
michael@0 166 // FooClass* FooClass::GetInstance() {
michael@0 167 // return Singleton<FooClass>::get();
michael@0 168 // }
michael@0 169 //
michael@0 170 // And to call methods on FooClass:
michael@0 171 // FooClass::GetInstance()->Bar();
michael@0 172 //
michael@0 173 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
michael@0 174 // and it is important that FooClass::GetInstance() is not inlined in the
michael@0 175 // header. This makes sure that when source files from multiple targets include
michael@0 176 // this header they don't end up with different copies of the inlined code
michael@0 177 // creating multiple copies of the singleton.
michael@0 178 //
michael@0 179 // Singleton<> has no non-static members and doesn't need to actually be
michael@0 180 // instantiated.
michael@0 181 //
michael@0 182 // This class is itself thread-safe. The underlying Type must of course be
michael@0 183 // thread-safe if you want to use it concurrently. Two parameters may be tuned
michael@0 184 // depending on the user's requirements.
michael@0 185 //
michael@0 186 // Glossary:
michael@0 187 // RAE = kRegisterAtExit
michael@0 188 //
michael@0 189 // On every platform, if Traits::RAE is true, the singleton will be destroyed at
michael@0 190 // process exit. More precisely it uses base::AtExitManager which requires an
michael@0 191 // object of this type to be instantiated. AtExitManager mimics the semantics
michael@0 192 // of atexit() such as LIFO order but under Windows is safer to call. For more
michael@0 193 // information see at_exit.h.
michael@0 194 //
michael@0 195 // If Traits::RAE is false, the singleton will not be freed at process exit,
michael@0 196 // thus the singleton will be leaked if it is ever accessed. Traits::RAE
michael@0 197 // shouldn't be false unless absolutely necessary. Remember that the heap where
michael@0 198 // the object is allocated may be destroyed by the CRT anyway.
michael@0 199 //
michael@0 200 // Caveats:
michael@0 201 // (a) Every call to get(), operator->() and operator*() incurs some overhead
michael@0 202 // (16ns on my P4/2.8GHz) to check whether the object has already been
michael@0 203 // initialized. You may wish to cache the result of get(); it will not
michael@0 204 // change.
michael@0 205 //
michael@0 206 // (b) Your factory function must never throw an exception. This class is not
michael@0 207 // exception-safe.
michael@0 208 //
michael@0 209 template <typename Type,
michael@0 210 typename Traits = DefaultSingletonTraits<Type>,
michael@0 211 typename DifferentiatingType = Type>
michael@0 212 class Singleton {
michael@0 213 private:
michael@0 214 // Classes using the Singleton<T> pattern should declare a GetInstance()
michael@0 215 // method and call Singleton::get() from within that.
michael@0 216 friend Type* Type::GetInstance();
michael@0 217
michael@0 218 // Allow TraceLog tests to test tracing after OnExit.
michael@0 219 friend class DeleteTraceLogForTesting;
michael@0 220
michael@0 221 // This class is safe to be constructed and copy-constructed since it has no
michael@0 222 // member.
michael@0 223
michael@0 224 // Return a pointer to the one true instance of the class.
michael@0 225 static Type* get() {
michael@0 226 #ifndef NDEBUG
michael@0 227 // Avoid making TLS lookup on release builds.
michael@0 228 if (!Traits::kAllowedToAccessOnNonjoinableThread)
michael@0 229 base::ThreadRestrictions::AssertSingletonAllowed();
michael@0 230 #endif
michael@0 231
michael@0 232 base::subtle::AtomicWord value = base::subtle::NoBarrier_Load(&instance_);
michael@0 233 if (value != 0 && value != base::internal::kBeingCreatedMarker) {
michael@0 234 // See the corresponding HAPPENS_BEFORE below.
michael@0 235 ANNOTATE_HAPPENS_AFTER(&instance_);
michael@0 236 return reinterpret_cast<Type*>(value);
michael@0 237 }
michael@0 238
michael@0 239 // Object isn't created yet, maybe we will get to create it, let's try...
michael@0 240 if (base::subtle::Acquire_CompareAndSwap(
michael@0 241 &instance_, 0, base::internal::kBeingCreatedMarker) == 0) {
michael@0 242 // instance_ was NULL and is now kBeingCreatedMarker. Only one thread
michael@0 243 // will ever get here. Threads might be spinning on us, and they will
michael@0 244 // stop right after we do this store.
michael@0 245 Type* newval = Traits::New();
michael@0 246
michael@0 247 // This annotation helps race detectors recognize correct lock-less
michael@0 248 // synchronization between different threads calling get().
michael@0 249 // See the corresponding HAPPENS_AFTER below and above.
michael@0 250 ANNOTATE_HAPPENS_BEFORE(&instance_);
michael@0 251 base::subtle::Release_Store(
michael@0 252 &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval));
michael@0 253
michael@0 254 if (newval != NULL && Traits::kRegisterAtExit)
michael@0 255 base::AtExitManager::RegisterCallback(OnExit, NULL);
michael@0 256
michael@0 257 return newval;
michael@0 258 }
michael@0 259
michael@0 260 // We hit a race. Wait for the other thread to complete it.
michael@0 261 value = base::internal::WaitForInstance(&instance_);
michael@0 262
michael@0 263 // See the corresponding HAPPENS_BEFORE above.
michael@0 264 ANNOTATE_HAPPENS_AFTER(&instance_);
michael@0 265 return reinterpret_cast<Type*>(value);
michael@0 266 }
michael@0 267
michael@0 268 // Adapter function for use with AtExit(). This should be called single
michael@0 269 // threaded, so don't use atomic operations.
michael@0 270 // Calling OnExit while singleton is in use by other threads is a mistake.
michael@0 271 static void OnExit(void* /*unused*/) {
michael@0 272 // AtExit should only ever be register after the singleton instance was
michael@0 273 // created. We should only ever get here with a valid instance_ pointer.
michael@0 274 Traits::Delete(
michael@0 275 reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_)));
michael@0 276 instance_ = 0;
michael@0 277 }
michael@0 278 static base::subtle::AtomicWord instance_;
michael@0 279 };
michael@0 280
michael@0 281 template <typename Type, typename Traits, typename DifferentiatingType>
michael@0 282 base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::
michael@0 283 instance_ = 0;
michael@0 284
michael@0 285 #endif // BASE_MEMORY_SINGLETON_H_

mercurial