|
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
|
2 // Use of this source code is governed by a BSD-style license that can be |
|
3 // found in the LICENSE file. |
|
4 |
|
5 // PLEASE READ: Do you really need a singleton? |
|
6 // |
|
7 // Singletons make it hard to determine the lifetime of an object, which can |
|
8 // lead to buggy code and spurious crashes. |
|
9 // |
|
10 // Instead of adding another singleton into the mix, try to identify either: |
|
11 // a) An existing singleton that can manage your object's lifetime |
|
12 // b) Locations where you can deterministically create the object and pass |
|
13 // into other objects |
|
14 // |
|
15 // If you absolutely need a singleton, please keep them as trivial as possible |
|
16 // and ideally a leaf dependency. Singletons get problematic when they attempt |
|
17 // to do too much in their destructor or have circular dependencies. |
|
18 |
|
19 #ifndef BASE_MEMORY_SINGLETON_H_ |
|
20 #define BASE_MEMORY_SINGLETON_H_ |
|
21 |
|
22 #include "base/at_exit.h" |
|
23 #include "base/atomicops.h" |
|
24 #include "base/base_export.h" |
|
25 #include "base/memory/aligned_memory.h" |
|
26 #include "base/third_party/dynamic_annotations/dynamic_annotations.h" |
|
27 #include "base/threading/thread_restrictions.h" |
|
28 |
|
29 namespace base { |
|
30 namespace internal { |
|
31 |
|
32 // Our AtomicWord doubles as a spinlock, where a value of |
|
33 // kBeingCreatedMarker means the spinlock is being held for creation. |
|
34 static const subtle::AtomicWord kBeingCreatedMarker = 1; |
|
35 |
|
36 // We pull out some of the functionality into a non-templated function, so that |
|
37 // we can implement the more complicated pieces out of line in the .cc file. |
|
38 BASE_EXPORT subtle::AtomicWord WaitForInstance(subtle::AtomicWord* instance); |
|
39 |
|
40 } // namespace internal |
|
41 } // namespace base |
|
42 |
|
43 // TODO(joth): Move more of this file into namespace base |
|
44 |
|
45 // Default traits for Singleton<Type>. Calls operator new and operator delete on |
|
46 // the object. Registers automatic deletion at process exit. |
|
47 // Overload if you need arguments or another memory allocation function. |
|
48 template<typename Type> |
|
49 struct DefaultSingletonTraits { |
|
50 // Allocates the object. |
|
51 static Type* New() { |
|
52 // The parenthesis is very important here; it forces POD type |
|
53 // initialization. |
|
54 return new Type(); |
|
55 } |
|
56 |
|
57 // Destroys the object. |
|
58 static void Delete(Type* x) { |
|
59 delete x; |
|
60 } |
|
61 |
|
62 // Set to true to automatically register deletion of the object on process |
|
63 // exit. See below for the required call that makes this happen. |
|
64 static const bool kRegisterAtExit = true; |
|
65 |
|
66 // Set to false to disallow access on a non-joinable thread. This is |
|
67 // different from kRegisterAtExit because StaticMemorySingletonTraits allows |
|
68 // access on non-joinable threads, and gracefully handles this. |
|
69 static const bool kAllowedToAccessOnNonjoinableThread = false; |
|
70 }; |
|
71 |
|
72 |
|
73 // Alternate traits for use with the Singleton<Type>. Identical to |
|
74 // DefaultSingletonTraits except that the Singleton will not be cleaned up |
|
75 // at exit. |
|
76 template<typename Type> |
|
77 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> { |
|
78 static const bool kRegisterAtExit = false; |
|
79 static const bool kAllowedToAccessOnNonjoinableThread = true; |
|
80 }; |
|
81 |
|
82 |
|
83 // Alternate traits for use with the Singleton<Type>. Allocates memory |
|
84 // for the singleton instance from a static buffer. The singleton will |
|
85 // be cleaned up at exit, but can't be revived after destruction unless |
|
86 // the Resurrect() method is called. |
|
87 // |
|
88 // This is useful for a certain category of things, notably logging and |
|
89 // tracing, where the singleton instance is of a type carefully constructed to |
|
90 // be safe to access post-destruction. |
|
91 // In logging and tracing you'll typically get stray calls at odd times, like |
|
92 // during static destruction, thread teardown and the like, and there's a |
|
93 // termination race on the heap-based singleton - e.g. if one thread calls |
|
94 // get(), but then another thread initiates AtExit processing, the first thread |
|
95 // may call into an object residing in unallocated memory. If the instance is |
|
96 // allocated from the data segment, then this is survivable. |
|
97 // |
|
98 // The destructor is to deallocate system resources, in this case to unregister |
|
99 // a callback the system will invoke when logging levels change. Note that |
|
100 // this is also used in e.g. Chrome Frame, where you have to allow for the |
|
101 // possibility of loading briefly into someone else's process space, and |
|
102 // so leaking is not an option, as that would sabotage the state of your host |
|
103 // process once you've unloaded. |
|
104 template <typename Type> |
|
105 struct StaticMemorySingletonTraits { |
|
106 // WARNING: User has to deal with get() in the singleton class |
|
107 // this is traits for returning NULL. |
|
108 static Type* New() { |
|
109 // Only constructs once and returns pointer; otherwise returns NULL. |
|
110 if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1)) |
|
111 return NULL; |
|
112 |
|
113 return new(buffer_.void_data()) Type(); |
|
114 } |
|
115 |
|
116 static void Delete(Type* p) { |
|
117 if (p != NULL) |
|
118 p->Type::~Type(); |
|
119 } |
|
120 |
|
121 static const bool kRegisterAtExit = true; |
|
122 static const bool kAllowedToAccessOnNonjoinableThread = true; |
|
123 |
|
124 // Exposed for unittesting. |
|
125 static void Resurrect() { |
|
126 base::subtle::NoBarrier_Store(&dead_, 0); |
|
127 } |
|
128 |
|
129 private: |
|
130 static base::AlignedMemory<sizeof(Type), ALIGNOF(Type)> buffer_; |
|
131 // Signal the object was already deleted, so it is not revived. |
|
132 static base::subtle::Atomic32 dead_; |
|
133 }; |
|
134 |
|
135 template <typename Type> base::AlignedMemory<sizeof(Type), ALIGNOF(Type)> |
|
136 StaticMemorySingletonTraits<Type>::buffer_; |
|
137 template <typename Type> base::subtle::Atomic32 |
|
138 StaticMemorySingletonTraits<Type>::dead_ = 0; |
|
139 |
|
140 // The Singleton<Type, Traits, DifferentiatingType> class manages a single |
|
141 // instance of Type which will be created on first use and will be destroyed at |
|
142 // normal process exit). The Trait::Delete function will not be called on |
|
143 // abnormal process exit. |
|
144 // |
|
145 // DifferentiatingType is used as a key to differentiate two different |
|
146 // singletons having the same memory allocation functions but serving a |
|
147 // different purpose. This is mainly used for Locks serving different purposes. |
|
148 // |
|
149 // Example usage: |
|
150 // |
|
151 // In your header: |
|
152 // template <typename T> struct DefaultSingletonTraits; |
|
153 // class FooClass { |
|
154 // public: |
|
155 // static FooClass* GetInstance(); <-- See comment below on this. |
|
156 // void Bar() { ... } |
|
157 // private: |
|
158 // FooClass() { ... } |
|
159 // friend struct DefaultSingletonTraits<FooClass>; |
|
160 // |
|
161 // DISALLOW_COPY_AND_ASSIGN(FooClass); |
|
162 // }; |
|
163 // |
|
164 // In your source file: |
|
165 // #include "base/memory/singleton.h" |
|
166 // FooClass* FooClass::GetInstance() { |
|
167 // return Singleton<FooClass>::get(); |
|
168 // } |
|
169 // |
|
170 // And to call methods on FooClass: |
|
171 // FooClass::GetInstance()->Bar(); |
|
172 // |
|
173 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance |
|
174 // and it is important that FooClass::GetInstance() is not inlined in the |
|
175 // header. This makes sure that when source files from multiple targets include |
|
176 // this header they don't end up with different copies of the inlined code |
|
177 // creating multiple copies of the singleton. |
|
178 // |
|
179 // Singleton<> has no non-static members and doesn't need to actually be |
|
180 // instantiated. |
|
181 // |
|
182 // This class is itself thread-safe. The underlying Type must of course be |
|
183 // thread-safe if you want to use it concurrently. Two parameters may be tuned |
|
184 // depending on the user's requirements. |
|
185 // |
|
186 // Glossary: |
|
187 // RAE = kRegisterAtExit |
|
188 // |
|
189 // On every platform, if Traits::RAE is true, the singleton will be destroyed at |
|
190 // process exit. More precisely it uses base::AtExitManager which requires an |
|
191 // object of this type to be instantiated. AtExitManager mimics the semantics |
|
192 // of atexit() such as LIFO order but under Windows is safer to call. For more |
|
193 // information see at_exit.h. |
|
194 // |
|
195 // If Traits::RAE is false, the singleton will not be freed at process exit, |
|
196 // thus the singleton will be leaked if it is ever accessed. Traits::RAE |
|
197 // shouldn't be false unless absolutely necessary. Remember that the heap where |
|
198 // the object is allocated may be destroyed by the CRT anyway. |
|
199 // |
|
200 // Caveats: |
|
201 // (a) Every call to get(), operator->() and operator*() incurs some overhead |
|
202 // (16ns on my P4/2.8GHz) to check whether the object has already been |
|
203 // initialized. You may wish to cache the result of get(); it will not |
|
204 // change. |
|
205 // |
|
206 // (b) Your factory function must never throw an exception. This class is not |
|
207 // exception-safe. |
|
208 // |
|
209 template <typename Type, |
|
210 typename Traits = DefaultSingletonTraits<Type>, |
|
211 typename DifferentiatingType = Type> |
|
212 class Singleton { |
|
213 private: |
|
214 // Classes using the Singleton<T> pattern should declare a GetInstance() |
|
215 // method and call Singleton::get() from within that. |
|
216 friend Type* Type::GetInstance(); |
|
217 |
|
218 // Allow TraceLog tests to test tracing after OnExit. |
|
219 friend class DeleteTraceLogForTesting; |
|
220 |
|
221 // This class is safe to be constructed and copy-constructed since it has no |
|
222 // member. |
|
223 |
|
224 // Return a pointer to the one true instance of the class. |
|
225 static Type* get() { |
|
226 #ifndef NDEBUG |
|
227 // Avoid making TLS lookup on release builds. |
|
228 if (!Traits::kAllowedToAccessOnNonjoinableThread) |
|
229 base::ThreadRestrictions::AssertSingletonAllowed(); |
|
230 #endif |
|
231 |
|
232 base::subtle::AtomicWord value = base::subtle::NoBarrier_Load(&instance_); |
|
233 if (value != 0 && value != base::internal::kBeingCreatedMarker) { |
|
234 // See the corresponding HAPPENS_BEFORE below. |
|
235 ANNOTATE_HAPPENS_AFTER(&instance_); |
|
236 return reinterpret_cast<Type*>(value); |
|
237 } |
|
238 |
|
239 // Object isn't created yet, maybe we will get to create it, let's try... |
|
240 if (base::subtle::Acquire_CompareAndSwap( |
|
241 &instance_, 0, base::internal::kBeingCreatedMarker) == 0) { |
|
242 // instance_ was NULL and is now kBeingCreatedMarker. Only one thread |
|
243 // will ever get here. Threads might be spinning on us, and they will |
|
244 // stop right after we do this store. |
|
245 Type* newval = Traits::New(); |
|
246 |
|
247 // This annotation helps race detectors recognize correct lock-less |
|
248 // synchronization between different threads calling get(). |
|
249 // See the corresponding HAPPENS_AFTER below and above. |
|
250 ANNOTATE_HAPPENS_BEFORE(&instance_); |
|
251 base::subtle::Release_Store( |
|
252 &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval)); |
|
253 |
|
254 if (newval != NULL && Traits::kRegisterAtExit) |
|
255 base::AtExitManager::RegisterCallback(OnExit, NULL); |
|
256 |
|
257 return newval; |
|
258 } |
|
259 |
|
260 // We hit a race. Wait for the other thread to complete it. |
|
261 value = base::internal::WaitForInstance(&instance_); |
|
262 |
|
263 // See the corresponding HAPPENS_BEFORE above. |
|
264 ANNOTATE_HAPPENS_AFTER(&instance_); |
|
265 return reinterpret_cast<Type*>(value); |
|
266 } |
|
267 |
|
268 // Adapter function for use with AtExit(). This should be called single |
|
269 // threaded, so don't use atomic operations. |
|
270 // Calling OnExit while singleton is in use by other threads is a mistake. |
|
271 static void OnExit(void* /*unused*/) { |
|
272 // AtExit should only ever be register after the singleton instance was |
|
273 // created. We should only ever get here with a valid instance_ pointer. |
|
274 Traits::Delete( |
|
275 reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_))); |
|
276 instance_ = 0; |
|
277 } |
|
278 static base::subtle::AtomicWord instance_; |
|
279 }; |
|
280 |
|
281 template <typename Type, typename Traits, typename DifferentiatingType> |
|
282 base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>:: |
|
283 instance_ = 0; |
|
284 |
|
285 #endif // BASE_MEMORY_SINGLETON_H_ |