Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | /* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */ |
michael@0 | 2 | /* |
michael@0 | 3 | * |
michael@0 | 4 | * Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc. |
michael@0 | 5 | * Copyright © 2000 SuSE, Inc. |
michael@0 | 6 | * 2005 Lars Knoll & Zack Rusin, Trolltech |
michael@0 | 7 | * Copyright © 2007 Red Hat, Inc. |
michael@0 | 8 | * |
michael@0 | 9 | * |
michael@0 | 10 | * Permission to use, copy, modify, distribute, and sell this software and its |
michael@0 | 11 | * documentation for any purpose is hereby granted without fee, provided that |
michael@0 | 12 | * the above copyright notice appear in all copies and that both that |
michael@0 | 13 | * copyright notice and this permission notice appear in supporting |
michael@0 | 14 | * documentation, and that the name of Keith Packard not be used in |
michael@0 | 15 | * advertising or publicity pertaining to distribution of the software without |
michael@0 | 16 | * specific, written prior permission. Keith Packard makes no |
michael@0 | 17 | * representations about the suitability of this software for any purpose. It |
michael@0 | 18 | * is provided "as is" without express or implied warranty. |
michael@0 | 19 | * |
michael@0 | 20 | * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS |
michael@0 | 21 | * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND |
michael@0 | 22 | * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY |
michael@0 | 23 | * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
michael@0 | 24 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN |
michael@0 | 25 | * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING |
michael@0 | 26 | * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS |
michael@0 | 27 | * SOFTWARE. |
michael@0 | 28 | */ |
michael@0 | 29 | |
michael@0 | 30 | #ifdef HAVE_CONFIG_H |
michael@0 | 31 | #include <config.h> |
michael@0 | 32 | #endif |
michael@0 | 33 | #include <stdlib.h> |
michael@0 | 34 | #include <math.h> |
michael@0 | 35 | #include "pixman-private.h" |
michael@0 | 36 | |
michael@0 | 37 | #include "pixman-dither.h" |
michael@0 | 38 | |
michael@0 | 39 | static inline pixman_fixed_32_32_t |
michael@0 | 40 | dot (pixman_fixed_48_16_t x1, |
michael@0 | 41 | pixman_fixed_48_16_t y1, |
michael@0 | 42 | pixman_fixed_48_16_t z1, |
michael@0 | 43 | pixman_fixed_48_16_t x2, |
michael@0 | 44 | pixman_fixed_48_16_t y2, |
michael@0 | 45 | pixman_fixed_48_16_t z2) |
michael@0 | 46 | { |
michael@0 | 47 | /* |
michael@0 | 48 | * Exact computation, assuming that the input values can |
michael@0 | 49 | * be represented as pixman_fixed_16_16_t |
michael@0 | 50 | */ |
michael@0 | 51 | return x1 * x2 + y1 * y2 + z1 * z2; |
michael@0 | 52 | } |
michael@0 | 53 | |
michael@0 | 54 | static inline double |
michael@0 | 55 | fdot (double x1, |
michael@0 | 56 | double y1, |
michael@0 | 57 | double z1, |
michael@0 | 58 | double x2, |
michael@0 | 59 | double y2, |
michael@0 | 60 | double z2) |
michael@0 | 61 | { |
michael@0 | 62 | /* |
michael@0 | 63 | * Error can be unbound in some special cases. |
michael@0 | 64 | * Using clever dot product algorithms (for example compensated |
michael@0 | 65 | * dot product) would improve this but make the code much less |
michael@0 | 66 | * obvious |
michael@0 | 67 | */ |
michael@0 | 68 | return x1 * x2 + y1 * y2 + z1 * z2; |
michael@0 | 69 | } |
michael@0 | 70 | |
michael@0 | 71 | static uint32_t |
michael@0 | 72 | radial_compute_color (double a, |
michael@0 | 73 | double b, |
michael@0 | 74 | double c, |
michael@0 | 75 | double inva, |
michael@0 | 76 | double dr, |
michael@0 | 77 | double mindr, |
michael@0 | 78 | pixman_gradient_walker_t *walker, |
michael@0 | 79 | pixman_repeat_t repeat) |
michael@0 | 80 | { |
michael@0 | 81 | /* |
michael@0 | 82 | * In this function error propagation can lead to bad results: |
michael@0 | 83 | * - discr can have an unbound error (if b*b-a*c is very small), |
michael@0 | 84 | * potentially making it the opposite sign of what it should have been |
michael@0 | 85 | * (thus clearing a pixel that would have been colored or vice-versa) |
michael@0 | 86 | * or propagating the error to sqrtdiscr; |
michael@0 | 87 | * if discr has the wrong sign or b is very small, this can lead to bad |
michael@0 | 88 | * results |
michael@0 | 89 | * |
michael@0 | 90 | * - the algorithm used to compute the solutions of the quadratic |
michael@0 | 91 | * equation is not numerically stable (but saves one division compared |
michael@0 | 92 | * to the numerically stable one); |
michael@0 | 93 | * this can be a problem if a*c is much smaller than b*b |
michael@0 | 94 | * |
michael@0 | 95 | * - the above problems are worse if a is small (as inva becomes bigger) |
michael@0 | 96 | */ |
michael@0 | 97 | double discr; |
michael@0 | 98 | |
michael@0 | 99 | if (a == 0) |
michael@0 | 100 | { |
michael@0 | 101 | double t; |
michael@0 | 102 | |
michael@0 | 103 | if (b == 0) |
michael@0 | 104 | return 0; |
michael@0 | 105 | |
michael@0 | 106 | t = pixman_fixed_1 / 2 * c / b; |
michael@0 | 107 | if (repeat == PIXMAN_REPEAT_NONE) |
michael@0 | 108 | { |
michael@0 | 109 | if (0 <= t && t <= pixman_fixed_1) |
michael@0 | 110 | return _pixman_gradient_walker_pixel (walker, t); |
michael@0 | 111 | } |
michael@0 | 112 | else |
michael@0 | 113 | { |
michael@0 | 114 | if (t * dr >= mindr) |
michael@0 | 115 | return _pixman_gradient_walker_pixel (walker, t); |
michael@0 | 116 | } |
michael@0 | 117 | |
michael@0 | 118 | return 0; |
michael@0 | 119 | } |
michael@0 | 120 | |
michael@0 | 121 | discr = fdot (b, a, 0, b, -c, 0); |
michael@0 | 122 | if (discr >= 0) |
michael@0 | 123 | { |
michael@0 | 124 | double sqrtdiscr, t0, t1; |
michael@0 | 125 | |
michael@0 | 126 | sqrtdiscr = sqrt (discr); |
michael@0 | 127 | t0 = (b + sqrtdiscr) * inva; |
michael@0 | 128 | t1 = (b - sqrtdiscr) * inva; |
michael@0 | 129 | |
michael@0 | 130 | /* |
michael@0 | 131 | * The root that must be used is the biggest one that belongs |
michael@0 | 132 | * to the valid range ([0,1] for PIXMAN_REPEAT_NONE, any |
michael@0 | 133 | * solution that results in a positive radius otherwise). |
michael@0 | 134 | * |
michael@0 | 135 | * If a > 0, t0 is the biggest solution, so if it is valid, it |
michael@0 | 136 | * is the correct result. |
michael@0 | 137 | * |
michael@0 | 138 | * If a < 0, only one of the solutions can be valid, so the |
michael@0 | 139 | * order in which they are tested is not important. |
michael@0 | 140 | */ |
michael@0 | 141 | if (repeat == PIXMAN_REPEAT_NONE) |
michael@0 | 142 | { |
michael@0 | 143 | if (0 <= t0 && t0 <= pixman_fixed_1) |
michael@0 | 144 | return _pixman_gradient_walker_pixel (walker, t0); |
michael@0 | 145 | else if (0 <= t1 && t1 <= pixman_fixed_1) |
michael@0 | 146 | return _pixman_gradient_walker_pixel (walker, t1); |
michael@0 | 147 | } |
michael@0 | 148 | else |
michael@0 | 149 | { |
michael@0 | 150 | if (t0 * dr >= mindr) |
michael@0 | 151 | return _pixman_gradient_walker_pixel (walker, t0); |
michael@0 | 152 | else if (t1 * dr >= mindr) |
michael@0 | 153 | return _pixman_gradient_walker_pixel (walker, t1); |
michael@0 | 154 | } |
michael@0 | 155 | } |
michael@0 | 156 | |
michael@0 | 157 | return 0; |
michael@0 | 158 | } |
michael@0 | 159 | |
michael@0 | 160 | static uint32_t * |
michael@0 | 161 | radial_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask) |
michael@0 | 162 | { |
michael@0 | 163 | /* |
michael@0 | 164 | * Implementation of radial gradients following the PDF specification. |
michael@0 | 165 | * See section 8.7.4.5.4 Type 3 (Radial) Shadings of the PDF Reference |
michael@0 | 166 | * Manual (PDF 32000-1:2008 at the time of this writing). |
michael@0 | 167 | * |
michael@0 | 168 | * In the radial gradient problem we are given two circles (c₁,r₁) and |
michael@0 | 169 | * (c₂,r₂) that define the gradient itself. |
michael@0 | 170 | * |
michael@0 | 171 | * Mathematically the gradient can be defined as the family of circles |
michael@0 | 172 | * |
michael@0 | 173 | * ((1-t)·c₁ + t·(c₂), (1-t)·r₁ + t·r₂) |
michael@0 | 174 | * |
michael@0 | 175 | * excluding those circles whose radius would be < 0. When a point |
michael@0 | 176 | * belongs to more than one circle, the one with a bigger t is the only |
michael@0 | 177 | * one that contributes to its color. When a point does not belong |
michael@0 | 178 | * to any of the circles, it is transparent black, i.e. RGBA (0, 0, 0, 0). |
michael@0 | 179 | * Further limitations on the range of values for t are imposed when |
michael@0 | 180 | * the gradient is not repeated, namely t must belong to [0,1]. |
michael@0 | 181 | * |
michael@0 | 182 | * The graphical result is the same as drawing the valid (radius > 0) |
michael@0 | 183 | * circles with increasing t in [-inf, +inf] (or in [0,1] if the gradient |
michael@0 | 184 | * is not repeated) using SOURCE operator composition. |
michael@0 | 185 | * |
michael@0 | 186 | * It looks like a cone pointing towards the viewer if the ending circle |
michael@0 | 187 | * is smaller than the starting one, a cone pointing inside the page if |
michael@0 | 188 | * the starting circle is the smaller one and like a cylinder if they |
michael@0 | 189 | * have the same radius. |
michael@0 | 190 | * |
michael@0 | 191 | * What we actually do is, given the point whose color we are interested |
michael@0 | 192 | * in, compute the t values for that point, solving for t in: |
michael@0 | 193 | * |
michael@0 | 194 | * length((1-t)·c₁ + t·(c₂) - p) = (1-t)·r₁ + t·r₂ |
michael@0 | 195 | * |
michael@0 | 196 | * Let's rewrite it in a simpler way, by defining some auxiliary |
michael@0 | 197 | * variables: |
michael@0 | 198 | * |
michael@0 | 199 | * cd = c₂ - c₁ |
michael@0 | 200 | * pd = p - c₁ |
michael@0 | 201 | * dr = r₂ - r₁ |
michael@0 | 202 | * length(t·cd - pd) = r₁ + t·dr |
michael@0 | 203 | * |
michael@0 | 204 | * which actually means |
michael@0 | 205 | * |
michael@0 | 206 | * hypot(t·cdx - pdx, t·cdy - pdy) = r₁ + t·dr |
michael@0 | 207 | * |
michael@0 | 208 | * or |
michael@0 | 209 | * |
michael@0 | 210 | * ⎷((t·cdx - pdx)² + (t·cdy - pdy)²) = r₁ + t·dr. |
michael@0 | 211 | * |
michael@0 | 212 | * If we impose (as stated earlier) that r₁ + t·dr >= 0, it becomes: |
michael@0 | 213 | * |
michael@0 | 214 | * (t·cdx - pdx)² + (t·cdy - pdy)² = (r₁ + t·dr)² |
michael@0 | 215 | * |
michael@0 | 216 | * where we can actually expand the squares and solve for t: |
michael@0 | 217 | * |
michael@0 | 218 | * t²cdx² - 2t·cdx·pdx + pdx² + t²cdy² - 2t·cdy·pdy + pdy² = |
michael@0 | 219 | * = r₁² + 2·r₁·t·dr + t²·dr² |
michael@0 | 220 | * |
michael@0 | 221 | * (cdx² + cdy² - dr²)t² - 2(cdx·pdx + cdy·pdy + r₁·dr)t + |
michael@0 | 222 | * (pdx² + pdy² - r₁²) = 0 |
michael@0 | 223 | * |
michael@0 | 224 | * A = cdx² + cdy² - dr² |
michael@0 | 225 | * B = pdx·cdx + pdy·cdy + r₁·dr |
michael@0 | 226 | * C = pdx² + pdy² - r₁² |
michael@0 | 227 | * At² - 2Bt + C = 0 |
michael@0 | 228 | * |
michael@0 | 229 | * The solutions (unless the equation degenerates because of A = 0) are: |
michael@0 | 230 | * |
michael@0 | 231 | * t = (B ± ⎷(B² - A·C)) / A |
michael@0 | 232 | * |
michael@0 | 233 | * The solution we are going to prefer is the bigger one, unless the |
michael@0 | 234 | * radius associated to it is negative (or it falls outside the valid t |
michael@0 | 235 | * range). |
michael@0 | 236 | * |
michael@0 | 237 | * Additional observations (useful for optimizations): |
michael@0 | 238 | * A does not depend on p |
michael@0 | 239 | * |
michael@0 | 240 | * A < 0 <=> one of the two circles completely contains the other one |
michael@0 | 241 | * <=> for every p, the radiuses associated with the two t solutions |
michael@0 | 242 | * have opposite sign |
michael@0 | 243 | */ |
michael@0 | 244 | pixman_image_t *image = iter->image; |
michael@0 | 245 | int x = iter->x; |
michael@0 | 246 | int y = iter->y; |
michael@0 | 247 | int width = iter->width; |
michael@0 | 248 | uint32_t *buffer = iter->buffer; |
michael@0 | 249 | |
michael@0 | 250 | gradient_t *gradient = (gradient_t *)image; |
michael@0 | 251 | radial_gradient_t *radial = (radial_gradient_t *)image; |
michael@0 | 252 | uint32_t *end = buffer + width; |
michael@0 | 253 | pixman_gradient_walker_t walker; |
michael@0 | 254 | pixman_vector_t v, unit; |
michael@0 | 255 | |
michael@0 | 256 | /* reference point is the center of the pixel */ |
michael@0 | 257 | v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2; |
michael@0 | 258 | v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2; |
michael@0 | 259 | v.vector[2] = pixman_fixed_1; |
michael@0 | 260 | |
michael@0 | 261 | _pixman_gradient_walker_init (&walker, gradient, image->common.repeat); |
michael@0 | 262 | |
michael@0 | 263 | if (image->common.transform) |
michael@0 | 264 | { |
michael@0 | 265 | if (!pixman_transform_point_3d (image->common.transform, &v)) |
michael@0 | 266 | return iter->buffer; |
michael@0 | 267 | |
michael@0 | 268 | unit.vector[0] = image->common.transform->matrix[0][0]; |
michael@0 | 269 | unit.vector[1] = image->common.transform->matrix[1][0]; |
michael@0 | 270 | unit.vector[2] = image->common.transform->matrix[2][0]; |
michael@0 | 271 | } |
michael@0 | 272 | else |
michael@0 | 273 | { |
michael@0 | 274 | unit.vector[0] = pixman_fixed_1; |
michael@0 | 275 | unit.vector[1] = 0; |
michael@0 | 276 | unit.vector[2] = 0; |
michael@0 | 277 | } |
michael@0 | 278 | |
michael@0 | 279 | if (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1) |
michael@0 | 280 | { |
michael@0 | 281 | /* |
michael@0 | 282 | * Given: |
michael@0 | 283 | * |
michael@0 | 284 | * t = (B ± ⎷(B² - A·C)) / A |
michael@0 | 285 | * |
michael@0 | 286 | * where |
michael@0 | 287 | * |
michael@0 | 288 | * A = cdx² + cdy² - dr² |
michael@0 | 289 | * B = pdx·cdx + pdy·cdy + r₁·dr |
michael@0 | 290 | * C = pdx² + pdy² - r₁² |
michael@0 | 291 | * det = B² - A·C |
michael@0 | 292 | * |
michael@0 | 293 | * Since we have an affine transformation, we know that (pdx, pdy) |
michael@0 | 294 | * increase linearly with each pixel, |
michael@0 | 295 | * |
michael@0 | 296 | * pdx = pdx₀ + n·ux, |
michael@0 | 297 | * pdy = pdy₀ + n·uy, |
michael@0 | 298 | * |
michael@0 | 299 | * we can then express B, C and det through multiple differentiation. |
michael@0 | 300 | */ |
michael@0 | 301 | pixman_fixed_32_32_t b, db, c, dc, ddc; |
michael@0 | 302 | |
michael@0 | 303 | /* warning: this computation may overflow */ |
michael@0 | 304 | v.vector[0] -= radial->c1.x; |
michael@0 | 305 | v.vector[1] -= radial->c1.y; |
michael@0 | 306 | |
michael@0 | 307 | /* |
michael@0 | 308 | * B and C are computed and updated exactly. |
michael@0 | 309 | * If fdot was used instead of dot, in the worst case it would |
michael@0 | 310 | * lose 11 bits of precision in each of the multiplication and |
michael@0 | 311 | * summing up would zero out all the bit that were preserved, |
michael@0 | 312 | * thus making the result 0 instead of the correct one. |
michael@0 | 313 | * This would mean a worst case of unbound relative error or |
michael@0 | 314 | * about 2^10 absolute error |
michael@0 | 315 | */ |
michael@0 | 316 | b = dot (v.vector[0], v.vector[1], radial->c1.radius, |
michael@0 | 317 | radial->delta.x, radial->delta.y, radial->delta.radius); |
michael@0 | 318 | db = dot (unit.vector[0], unit.vector[1], 0, |
michael@0 | 319 | radial->delta.x, radial->delta.y, 0); |
michael@0 | 320 | |
michael@0 | 321 | c = dot (v.vector[0], v.vector[1], |
michael@0 | 322 | -((pixman_fixed_48_16_t) radial->c1.radius), |
michael@0 | 323 | v.vector[0], v.vector[1], radial->c1.radius); |
michael@0 | 324 | dc = dot (2 * (pixman_fixed_48_16_t) v.vector[0] + unit.vector[0], |
michael@0 | 325 | 2 * (pixman_fixed_48_16_t) v.vector[1] + unit.vector[1], |
michael@0 | 326 | 0, |
michael@0 | 327 | unit.vector[0], unit.vector[1], 0); |
michael@0 | 328 | ddc = 2 * dot (unit.vector[0], unit.vector[1], 0, |
michael@0 | 329 | unit.vector[0], unit.vector[1], 0); |
michael@0 | 330 | |
michael@0 | 331 | while (buffer < end) |
michael@0 | 332 | { |
michael@0 | 333 | if (!mask || *mask++) |
michael@0 | 334 | { |
michael@0 | 335 | *buffer = radial_compute_color (radial->a, b, c, |
michael@0 | 336 | radial->inva, |
michael@0 | 337 | radial->delta.radius, |
michael@0 | 338 | radial->mindr, |
michael@0 | 339 | &walker, |
michael@0 | 340 | image->common.repeat); |
michael@0 | 341 | } |
michael@0 | 342 | |
michael@0 | 343 | b += db; |
michael@0 | 344 | c += dc; |
michael@0 | 345 | dc += ddc; |
michael@0 | 346 | ++buffer; |
michael@0 | 347 | } |
michael@0 | 348 | } |
michael@0 | 349 | else |
michael@0 | 350 | { |
michael@0 | 351 | /* projective */ |
michael@0 | 352 | /* Warning: |
michael@0 | 353 | * error propagation guarantees are much looser than in the affine case |
michael@0 | 354 | */ |
michael@0 | 355 | while (buffer < end) |
michael@0 | 356 | { |
michael@0 | 357 | if (!mask || *mask++) |
michael@0 | 358 | { |
michael@0 | 359 | if (v.vector[2] != 0) |
michael@0 | 360 | { |
michael@0 | 361 | double pdx, pdy, invv2, b, c; |
michael@0 | 362 | |
michael@0 | 363 | invv2 = 1. * pixman_fixed_1 / v.vector[2]; |
michael@0 | 364 | |
michael@0 | 365 | pdx = v.vector[0] * invv2 - radial->c1.x; |
michael@0 | 366 | /* / pixman_fixed_1 */ |
michael@0 | 367 | |
michael@0 | 368 | pdy = v.vector[1] * invv2 - radial->c1.y; |
michael@0 | 369 | /* / pixman_fixed_1 */ |
michael@0 | 370 | |
michael@0 | 371 | b = fdot (pdx, pdy, radial->c1.radius, |
michael@0 | 372 | radial->delta.x, radial->delta.y, |
michael@0 | 373 | radial->delta.radius); |
michael@0 | 374 | /* / pixman_fixed_1 / pixman_fixed_1 */ |
michael@0 | 375 | |
michael@0 | 376 | c = fdot (pdx, pdy, -radial->c1.radius, |
michael@0 | 377 | pdx, pdy, radial->c1.radius); |
michael@0 | 378 | /* / pixman_fixed_1 / pixman_fixed_1 */ |
michael@0 | 379 | |
michael@0 | 380 | *buffer = radial_compute_color (radial->a, b, c, |
michael@0 | 381 | radial->inva, |
michael@0 | 382 | radial->delta.radius, |
michael@0 | 383 | radial->mindr, |
michael@0 | 384 | &walker, |
michael@0 | 385 | image->common.repeat); |
michael@0 | 386 | } |
michael@0 | 387 | else |
michael@0 | 388 | { |
michael@0 | 389 | *buffer = 0; |
michael@0 | 390 | } |
michael@0 | 391 | } |
michael@0 | 392 | |
michael@0 | 393 | ++buffer; |
michael@0 | 394 | |
michael@0 | 395 | v.vector[0] += unit.vector[0]; |
michael@0 | 396 | v.vector[1] += unit.vector[1]; |
michael@0 | 397 | v.vector[2] += unit.vector[2]; |
michael@0 | 398 | } |
michael@0 | 399 | } |
michael@0 | 400 | |
michael@0 | 401 | iter->y++; |
michael@0 | 402 | return iter->buffer; |
michael@0 | 403 | } |
michael@0 | 404 | |
michael@0 | 405 | static uint32_t * |
michael@0 | 406 | radial_get_scanline_16 (pixman_iter_t *iter, const uint32_t *mask) |
michael@0 | 407 | { |
michael@0 | 408 | /* |
michael@0 | 409 | * Implementation of radial gradients following the PDF specification. |
michael@0 | 410 | * See section 8.7.4.5.4 Type 3 (Radial) Shadings of the PDF Reference |
michael@0 | 411 | * Manual (PDF 32000-1:2008 at the time of this writing). |
michael@0 | 412 | * |
michael@0 | 413 | * In the radial gradient problem we are given two circles (c₁,r₁) and |
michael@0 | 414 | * (c₂,r₂) that define the gradient itself. |
michael@0 | 415 | * |
michael@0 | 416 | * Mathematically the gradient can be defined as the family of circles |
michael@0 | 417 | * |
michael@0 | 418 | * ((1-t)·c₁ + t·(c₂), (1-t)·r₁ + t·r₂) |
michael@0 | 419 | * |
michael@0 | 420 | * excluding those circles whose radius would be < 0. When a point |
michael@0 | 421 | * belongs to more than one circle, the one with a bigger t is the only |
michael@0 | 422 | * one that contributes to its color. When a point does not belong |
michael@0 | 423 | * to any of the circles, it is transparent black, i.e. RGBA (0, 0, 0, 0). |
michael@0 | 424 | * Further limitations on the range of values for t are imposed when |
michael@0 | 425 | * the gradient is not repeated, namely t must belong to [0,1]. |
michael@0 | 426 | * |
michael@0 | 427 | * The graphical result is the same as drawing the valid (radius > 0) |
michael@0 | 428 | * circles with increasing t in [-inf, +inf] (or in [0,1] if the gradient |
michael@0 | 429 | * is not repeated) using SOURCE operator composition. |
michael@0 | 430 | * |
michael@0 | 431 | * It looks like a cone pointing towards the viewer if the ending circle |
michael@0 | 432 | * is smaller than the starting one, a cone pointing inside the page if |
michael@0 | 433 | * the starting circle is the smaller one and like a cylinder if they |
michael@0 | 434 | * have the same radius. |
michael@0 | 435 | * |
michael@0 | 436 | * What we actually do is, given the point whose color we are interested |
michael@0 | 437 | * in, compute the t values for that point, solving for t in: |
michael@0 | 438 | * |
michael@0 | 439 | * length((1-t)·c₁ + t·(c₂) - p) = (1-t)·r₁ + t·r₂ |
michael@0 | 440 | * |
michael@0 | 441 | * Let's rewrite it in a simpler way, by defining some auxiliary |
michael@0 | 442 | * variables: |
michael@0 | 443 | * |
michael@0 | 444 | * cd = c₂ - c₁ |
michael@0 | 445 | * pd = p - c₁ |
michael@0 | 446 | * dr = r₂ - r₁ |
michael@0 | 447 | * length(t·cd - pd) = r₁ + t·dr |
michael@0 | 448 | * |
michael@0 | 449 | * which actually means |
michael@0 | 450 | * |
michael@0 | 451 | * hypot(t·cdx - pdx, t·cdy - pdy) = r₁ + t·dr |
michael@0 | 452 | * |
michael@0 | 453 | * or |
michael@0 | 454 | * |
michael@0 | 455 | * ⎷((t·cdx - pdx)² + (t·cdy - pdy)²) = r₁ + t·dr. |
michael@0 | 456 | * |
michael@0 | 457 | * If we impose (as stated earlier) that r₁ + t·dr >= 0, it becomes: |
michael@0 | 458 | * |
michael@0 | 459 | * (t·cdx - pdx)² + (t·cdy - pdy)² = (r₁ + t·dr)² |
michael@0 | 460 | * |
michael@0 | 461 | * where we can actually expand the squares and solve for t: |
michael@0 | 462 | * |
michael@0 | 463 | * t²cdx² - 2t·cdx·pdx + pdx² + t²cdy² - 2t·cdy·pdy + pdy² = |
michael@0 | 464 | * = r₁² + 2·r₁·t·dr + t²·dr² |
michael@0 | 465 | * |
michael@0 | 466 | * (cdx² + cdy² - dr²)t² - 2(cdx·pdx + cdy·pdy + r₁·dr)t + |
michael@0 | 467 | * (pdx² + pdy² - r₁²) = 0 |
michael@0 | 468 | * |
michael@0 | 469 | * A = cdx² + cdy² - dr² |
michael@0 | 470 | * B = pdx·cdx + pdy·cdy + r₁·dr |
michael@0 | 471 | * C = pdx² + pdy² - r₁² |
michael@0 | 472 | * At² - 2Bt + C = 0 |
michael@0 | 473 | * |
michael@0 | 474 | * The solutions (unless the equation degenerates because of A = 0) are: |
michael@0 | 475 | * |
michael@0 | 476 | * t = (B ± ⎷(B² - A·C)) / A |
michael@0 | 477 | * |
michael@0 | 478 | * The solution we are going to prefer is the bigger one, unless the |
michael@0 | 479 | * radius associated to it is negative (or it falls outside the valid t |
michael@0 | 480 | * range). |
michael@0 | 481 | * |
michael@0 | 482 | * Additional observations (useful for optimizations): |
michael@0 | 483 | * A does not depend on p |
michael@0 | 484 | * |
michael@0 | 485 | * A < 0 <=> one of the two circles completely contains the other one |
michael@0 | 486 | * <=> for every p, the radiuses associated with the two t solutions |
michael@0 | 487 | * have opposite sign |
michael@0 | 488 | */ |
michael@0 | 489 | pixman_image_t *image = iter->image; |
michael@0 | 490 | int x = iter->x; |
michael@0 | 491 | int y = iter->y; |
michael@0 | 492 | int width = iter->width; |
michael@0 | 493 | uint16_t *buffer = iter->buffer; |
michael@0 | 494 | pixman_bool_t toggle = ((x ^ y) & 1); |
michael@0 | 495 | |
michael@0 | 496 | gradient_t *gradient = (gradient_t *)image; |
michael@0 | 497 | radial_gradient_t *radial = (radial_gradient_t *)image; |
michael@0 | 498 | uint16_t *end = buffer + width; |
michael@0 | 499 | pixman_gradient_walker_t walker; |
michael@0 | 500 | pixman_vector_t v, unit; |
michael@0 | 501 | |
michael@0 | 502 | /* reference point is the center of the pixel */ |
michael@0 | 503 | v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2; |
michael@0 | 504 | v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2; |
michael@0 | 505 | v.vector[2] = pixman_fixed_1; |
michael@0 | 506 | |
michael@0 | 507 | _pixman_gradient_walker_init (&walker, gradient, image->common.repeat); |
michael@0 | 508 | |
michael@0 | 509 | if (image->common.transform) |
michael@0 | 510 | { |
michael@0 | 511 | if (!pixman_transform_point_3d (image->common.transform, &v)) |
michael@0 | 512 | return iter->buffer; |
michael@0 | 513 | |
michael@0 | 514 | unit.vector[0] = image->common.transform->matrix[0][0]; |
michael@0 | 515 | unit.vector[1] = image->common.transform->matrix[1][0]; |
michael@0 | 516 | unit.vector[2] = image->common.transform->matrix[2][0]; |
michael@0 | 517 | } |
michael@0 | 518 | else |
michael@0 | 519 | { |
michael@0 | 520 | unit.vector[0] = pixman_fixed_1; |
michael@0 | 521 | unit.vector[1] = 0; |
michael@0 | 522 | unit.vector[2] = 0; |
michael@0 | 523 | } |
michael@0 | 524 | |
michael@0 | 525 | if (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1) |
michael@0 | 526 | { |
michael@0 | 527 | /* |
michael@0 | 528 | * Given: |
michael@0 | 529 | * |
michael@0 | 530 | * t = (B ± ⎷(B² - A·C)) / A |
michael@0 | 531 | * |
michael@0 | 532 | * where |
michael@0 | 533 | * |
michael@0 | 534 | * A = cdx² + cdy² - dr² |
michael@0 | 535 | * B = pdx·cdx + pdy·cdy + r₁·dr |
michael@0 | 536 | * C = pdx² + pdy² - r₁² |
michael@0 | 537 | * det = B² - A·C |
michael@0 | 538 | * |
michael@0 | 539 | * Since we have an affine transformation, we know that (pdx, pdy) |
michael@0 | 540 | * increase linearly with each pixel, |
michael@0 | 541 | * |
michael@0 | 542 | * pdx = pdx₀ + n·ux, |
michael@0 | 543 | * pdy = pdy₀ + n·uy, |
michael@0 | 544 | * |
michael@0 | 545 | * we can then express B, C and det through multiple differentiation. |
michael@0 | 546 | */ |
michael@0 | 547 | pixman_fixed_32_32_t b, db, c, dc, ddc; |
michael@0 | 548 | |
michael@0 | 549 | /* warning: this computation may overflow */ |
michael@0 | 550 | v.vector[0] -= radial->c1.x; |
michael@0 | 551 | v.vector[1] -= radial->c1.y; |
michael@0 | 552 | |
michael@0 | 553 | /* |
michael@0 | 554 | * B and C are computed and updated exactly. |
michael@0 | 555 | * If fdot was used instead of dot, in the worst case it would |
michael@0 | 556 | * lose 11 bits of precision in each of the multiplication and |
michael@0 | 557 | * summing up would zero out all the bit that were preserved, |
michael@0 | 558 | * thus making the result 0 instead of the correct one. |
michael@0 | 559 | * This would mean a worst case of unbound relative error or |
michael@0 | 560 | * about 2^10 absolute error |
michael@0 | 561 | */ |
michael@0 | 562 | b = dot (v.vector[0], v.vector[1], radial->c1.radius, |
michael@0 | 563 | radial->delta.x, radial->delta.y, radial->delta.radius); |
michael@0 | 564 | db = dot (unit.vector[0], unit.vector[1], 0, |
michael@0 | 565 | radial->delta.x, radial->delta.y, 0); |
michael@0 | 566 | |
michael@0 | 567 | c = dot (v.vector[0], v.vector[1], |
michael@0 | 568 | -((pixman_fixed_48_16_t) radial->c1.radius), |
michael@0 | 569 | v.vector[0], v.vector[1], radial->c1.radius); |
michael@0 | 570 | dc = dot (2 * (pixman_fixed_48_16_t) v.vector[0] + unit.vector[0], |
michael@0 | 571 | 2 * (pixman_fixed_48_16_t) v.vector[1] + unit.vector[1], |
michael@0 | 572 | 0, |
michael@0 | 573 | unit.vector[0], unit.vector[1], 0); |
michael@0 | 574 | ddc = 2 * dot (unit.vector[0], unit.vector[1], 0, |
michael@0 | 575 | unit.vector[0], unit.vector[1], 0); |
michael@0 | 576 | |
michael@0 | 577 | while (buffer < end) |
michael@0 | 578 | { |
michael@0 | 579 | if (!mask || *mask++) |
michael@0 | 580 | { |
michael@0 | 581 | *buffer = dither_8888_to_0565( |
michael@0 | 582 | radial_compute_color (radial->a, b, c, |
michael@0 | 583 | radial->inva, |
michael@0 | 584 | radial->delta.radius, |
michael@0 | 585 | radial->mindr, |
michael@0 | 586 | &walker, |
michael@0 | 587 | image->common.repeat), |
michael@0 | 588 | toggle); |
michael@0 | 589 | } |
michael@0 | 590 | |
michael@0 | 591 | toggle ^= 1; |
michael@0 | 592 | b += db; |
michael@0 | 593 | c += dc; |
michael@0 | 594 | dc += ddc; |
michael@0 | 595 | ++buffer; |
michael@0 | 596 | } |
michael@0 | 597 | } |
michael@0 | 598 | else |
michael@0 | 599 | { |
michael@0 | 600 | /* projective */ |
michael@0 | 601 | /* Warning: |
michael@0 | 602 | * error propagation guarantees are much looser than in the affine case |
michael@0 | 603 | */ |
michael@0 | 604 | while (buffer < end) |
michael@0 | 605 | { |
michael@0 | 606 | if (!mask || *mask++) |
michael@0 | 607 | { |
michael@0 | 608 | if (v.vector[2] != 0) |
michael@0 | 609 | { |
michael@0 | 610 | double pdx, pdy, invv2, b, c; |
michael@0 | 611 | |
michael@0 | 612 | invv2 = 1. * pixman_fixed_1 / v.vector[2]; |
michael@0 | 613 | |
michael@0 | 614 | pdx = v.vector[0] * invv2 - radial->c1.x; |
michael@0 | 615 | /* / pixman_fixed_1 */ |
michael@0 | 616 | |
michael@0 | 617 | pdy = v.vector[1] * invv2 - radial->c1.y; |
michael@0 | 618 | /* / pixman_fixed_1 */ |
michael@0 | 619 | |
michael@0 | 620 | b = fdot (pdx, pdy, radial->c1.radius, |
michael@0 | 621 | radial->delta.x, radial->delta.y, |
michael@0 | 622 | radial->delta.radius); |
michael@0 | 623 | /* / pixman_fixed_1 / pixman_fixed_1 */ |
michael@0 | 624 | |
michael@0 | 625 | c = fdot (pdx, pdy, -radial->c1.radius, |
michael@0 | 626 | pdx, pdy, radial->c1.radius); |
michael@0 | 627 | /* / pixman_fixed_1 / pixman_fixed_1 */ |
michael@0 | 628 | |
michael@0 | 629 | *buffer = dither_8888_to_0565 ( |
michael@0 | 630 | radial_compute_color (radial->a, b, c, |
michael@0 | 631 | radial->inva, |
michael@0 | 632 | radial->delta.radius, |
michael@0 | 633 | radial->mindr, |
michael@0 | 634 | &walker, |
michael@0 | 635 | image->common.repeat), |
michael@0 | 636 | toggle); |
michael@0 | 637 | } |
michael@0 | 638 | else |
michael@0 | 639 | { |
michael@0 | 640 | *buffer = 0; |
michael@0 | 641 | } |
michael@0 | 642 | } |
michael@0 | 643 | |
michael@0 | 644 | ++buffer; |
michael@0 | 645 | toggle ^= 1; |
michael@0 | 646 | |
michael@0 | 647 | v.vector[0] += unit.vector[0]; |
michael@0 | 648 | v.vector[1] += unit.vector[1]; |
michael@0 | 649 | v.vector[2] += unit.vector[2]; |
michael@0 | 650 | } |
michael@0 | 651 | } |
michael@0 | 652 | |
michael@0 | 653 | iter->y++; |
michael@0 | 654 | return iter->buffer; |
michael@0 | 655 | } |
michael@0 | 656 | static uint32_t * |
michael@0 | 657 | radial_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask) |
michael@0 | 658 | { |
michael@0 | 659 | uint32_t *buffer = radial_get_scanline_narrow (iter, NULL); |
michael@0 | 660 | |
michael@0 | 661 | pixman_expand_to_float ( |
michael@0 | 662 | (argb_t *)buffer, buffer, PIXMAN_a8r8g8b8, iter->width); |
michael@0 | 663 | |
michael@0 | 664 | return buffer; |
michael@0 | 665 | } |
michael@0 | 666 | |
michael@0 | 667 | void |
michael@0 | 668 | _pixman_radial_gradient_iter_init (pixman_image_t *image, pixman_iter_t *iter) |
michael@0 | 669 | { |
michael@0 | 670 | if (iter->iter_flags & ITER_16) |
michael@0 | 671 | iter->get_scanline = radial_get_scanline_16; |
michael@0 | 672 | else if (iter->iter_flags & ITER_NARROW) |
michael@0 | 673 | iter->get_scanline = radial_get_scanline_narrow; |
michael@0 | 674 | else |
michael@0 | 675 | iter->get_scanline = radial_get_scanline_wide; |
michael@0 | 676 | } |
michael@0 | 677 | |
michael@0 | 678 | |
michael@0 | 679 | PIXMAN_EXPORT pixman_image_t * |
michael@0 | 680 | pixman_image_create_radial_gradient (const pixman_point_fixed_t * inner, |
michael@0 | 681 | const pixman_point_fixed_t * outer, |
michael@0 | 682 | pixman_fixed_t inner_radius, |
michael@0 | 683 | pixman_fixed_t outer_radius, |
michael@0 | 684 | const pixman_gradient_stop_t *stops, |
michael@0 | 685 | int n_stops) |
michael@0 | 686 | { |
michael@0 | 687 | pixman_image_t *image; |
michael@0 | 688 | radial_gradient_t *radial; |
michael@0 | 689 | |
michael@0 | 690 | image = _pixman_image_allocate (); |
michael@0 | 691 | |
michael@0 | 692 | if (!image) |
michael@0 | 693 | return NULL; |
michael@0 | 694 | |
michael@0 | 695 | radial = &image->radial; |
michael@0 | 696 | |
michael@0 | 697 | if (!_pixman_init_gradient (&radial->common, stops, n_stops)) |
michael@0 | 698 | { |
michael@0 | 699 | free (image); |
michael@0 | 700 | return NULL; |
michael@0 | 701 | } |
michael@0 | 702 | |
michael@0 | 703 | image->type = RADIAL; |
michael@0 | 704 | |
michael@0 | 705 | radial->c1.x = inner->x; |
michael@0 | 706 | radial->c1.y = inner->y; |
michael@0 | 707 | radial->c1.radius = inner_radius; |
michael@0 | 708 | radial->c2.x = outer->x; |
michael@0 | 709 | radial->c2.y = outer->y; |
michael@0 | 710 | radial->c2.radius = outer_radius; |
michael@0 | 711 | |
michael@0 | 712 | /* warning: this computations may overflow */ |
michael@0 | 713 | radial->delta.x = radial->c2.x - radial->c1.x; |
michael@0 | 714 | radial->delta.y = radial->c2.y - radial->c1.y; |
michael@0 | 715 | radial->delta.radius = radial->c2.radius - radial->c1.radius; |
michael@0 | 716 | |
michael@0 | 717 | /* computed exactly, then cast to double -> every bit of the double |
michael@0 | 718 | representation is correct (53 bits) */ |
michael@0 | 719 | radial->a = dot (radial->delta.x, radial->delta.y, -radial->delta.radius, |
michael@0 | 720 | radial->delta.x, radial->delta.y, radial->delta.radius); |
michael@0 | 721 | if (radial->a != 0) |
michael@0 | 722 | radial->inva = 1. * pixman_fixed_1 / radial->a; |
michael@0 | 723 | |
michael@0 | 724 | radial->mindr = -1. * pixman_fixed_1 * radial->c1.radius; |
michael@0 | 725 | |
michael@0 | 726 | return image; |
michael@0 | 727 | } |