Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | /** |
michael@0 | 2 | ******************************************************************************* |
michael@0 | 3 | * Copyright (C) 2006-2013, International Business Machines Corporation |
michael@0 | 4 | * and others. All Rights Reserved. |
michael@0 | 5 | ******************************************************************************* |
michael@0 | 6 | */ |
michael@0 | 7 | |
michael@0 | 8 | #include "unicode/utypes.h" |
michael@0 | 9 | |
michael@0 | 10 | #if !UCONFIG_NO_BREAK_ITERATION |
michael@0 | 11 | |
michael@0 | 12 | #include "brkeng.h" |
michael@0 | 13 | #include "dictbe.h" |
michael@0 | 14 | #include "unicode/uniset.h" |
michael@0 | 15 | #include "unicode/chariter.h" |
michael@0 | 16 | #include "unicode/ubrk.h" |
michael@0 | 17 | #include "uvector.h" |
michael@0 | 18 | #include "uassert.h" |
michael@0 | 19 | #include "unicode/normlzr.h" |
michael@0 | 20 | #include "cmemory.h" |
michael@0 | 21 | #include "dictionarydata.h" |
michael@0 | 22 | |
michael@0 | 23 | U_NAMESPACE_BEGIN |
michael@0 | 24 | |
michael@0 | 25 | /* |
michael@0 | 26 | ****************************************************************** |
michael@0 | 27 | */ |
michael@0 | 28 | |
michael@0 | 29 | DictionaryBreakEngine::DictionaryBreakEngine(uint32_t breakTypes) { |
michael@0 | 30 | fTypes = breakTypes; |
michael@0 | 31 | } |
michael@0 | 32 | |
michael@0 | 33 | DictionaryBreakEngine::~DictionaryBreakEngine() { |
michael@0 | 34 | } |
michael@0 | 35 | |
michael@0 | 36 | UBool |
michael@0 | 37 | DictionaryBreakEngine::handles(UChar32 c, int32_t breakType) const { |
michael@0 | 38 | return (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes) |
michael@0 | 39 | && fSet.contains(c)); |
michael@0 | 40 | } |
michael@0 | 41 | |
michael@0 | 42 | int32_t |
michael@0 | 43 | DictionaryBreakEngine::findBreaks( UText *text, |
michael@0 | 44 | int32_t startPos, |
michael@0 | 45 | int32_t endPos, |
michael@0 | 46 | UBool reverse, |
michael@0 | 47 | int32_t breakType, |
michael@0 | 48 | UStack &foundBreaks ) const { |
michael@0 | 49 | int32_t result = 0; |
michael@0 | 50 | |
michael@0 | 51 | // Find the span of characters included in the set. |
michael@0 | 52 | int32_t start = (int32_t)utext_getNativeIndex(text); |
michael@0 | 53 | int32_t current; |
michael@0 | 54 | int32_t rangeStart; |
michael@0 | 55 | int32_t rangeEnd; |
michael@0 | 56 | UChar32 c = utext_current32(text); |
michael@0 | 57 | if (reverse) { |
michael@0 | 58 | UBool isDict = fSet.contains(c); |
michael@0 | 59 | while((current = (int32_t)utext_getNativeIndex(text)) > startPos && isDict) { |
michael@0 | 60 | c = utext_previous32(text); |
michael@0 | 61 | isDict = fSet.contains(c); |
michael@0 | 62 | } |
michael@0 | 63 | rangeStart = (current < startPos) ? startPos : current+(isDict ? 0 : 1); |
michael@0 | 64 | rangeEnd = start + 1; |
michael@0 | 65 | } |
michael@0 | 66 | else { |
michael@0 | 67 | while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { |
michael@0 | 68 | utext_next32(text); // TODO: recast loop for postincrement |
michael@0 | 69 | c = utext_current32(text); |
michael@0 | 70 | } |
michael@0 | 71 | rangeStart = start; |
michael@0 | 72 | rangeEnd = current; |
michael@0 | 73 | } |
michael@0 | 74 | if (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)) { |
michael@0 | 75 | result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks); |
michael@0 | 76 | utext_setNativeIndex(text, current); |
michael@0 | 77 | } |
michael@0 | 78 | |
michael@0 | 79 | return result; |
michael@0 | 80 | } |
michael@0 | 81 | |
michael@0 | 82 | void |
michael@0 | 83 | DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { |
michael@0 | 84 | fSet = set; |
michael@0 | 85 | // Compact for caching |
michael@0 | 86 | fSet.compact(); |
michael@0 | 87 | } |
michael@0 | 88 | |
michael@0 | 89 | /* |
michael@0 | 90 | ****************************************************************** |
michael@0 | 91 | * PossibleWord |
michael@0 | 92 | */ |
michael@0 | 93 | |
michael@0 | 94 | // Helper class for improving readability of the Thai/Lao/Khmer word break |
michael@0 | 95 | // algorithm. The implementation is completely inline. |
michael@0 | 96 | |
michael@0 | 97 | // List size, limited by the maximum number of words in the dictionary |
michael@0 | 98 | // that form a nested sequence. |
michael@0 | 99 | #define POSSIBLE_WORD_LIST_MAX 20 |
michael@0 | 100 | |
michael@0 | 101 | class PossibleWord { |
michael@0 | 102 | private: |
michael@0 | 103 | // list of word candidate lengths, in increasing length order |
michael@0 | 104 | int32_t lengths[POSSIBLE_WORD_LIST_MAX]; |
michael@0 | 105 | int32_t count; // Count of candidates |
michael@0 | 106 | int32_t prefix; // The longest match with a dictionary word |
michael@0 | 107 | int32_t offset; // Offset in the text of these candidates |
michael@0 | 108 | int mark; // The preferred candidate's offset |
michael@0 | 109 | int current; // The candidate we're currently looking at |
michael@0 | 110 | |
michael@0 | 111 | public: |
michael@0 | 112 | PossibleWord(); |
michael@0 | 113 | ~PossibleWord(); |
michael@0 | 114 | |
michael@0 | 115 | // Fill the list of candidates if needed, select the longest, and return the number found |
michael@0 | 116 | int candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ); |
michael@0 | 117 | |
michael@0 | 118 | // Select the currently marked candidate, point after it in the text, and invalidate self |
michael@0 | 119 | int32_t acceptMarked( UText *text ); |
michael@0 | 120 | |
michael@0 | 121 | // Back up from the current candidate to the next shorter one; return TRUE if that exists |
michael@0 | 122 | // and point the text after it |
michael@0 | 123 | UBool backUp( UText *text ); |
michael@0 | 124 | |
michael@0 | 125 | // Return the longest prefix this candidate location shares with a dictionary word |
michael@0 | 126 | int32_t longestPrefix(); |
michael@0 | 127 | |
michael@0 | 128 | // Mark the current candidate as the one we like |
michael@0 | 129 | void markCurrent(); |
michael@0 | 130 | }; |
michael@0 | 131 | |
michael@0 | 132 | inline |
michael@0 | 133 | PossibleWord::PossibleWord() { |
michael@0 | 134 | offset = -1; |
michael@0 | 135 | } |
michael@0 | 136 | |
michael@0 | 137 | inline |
michael@0 | 138 | PossibleWord::~PossibleWord() { |
michael@0 | 139 | } |
michael@0 | 140 | |
michael@0 | 141 | inline int |
michael@0 | 142 | PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) { |
michael@0 | 143 | // TODO: If getIndex is too slow, use offset < 0 and add discardAll() |
michael@0 | 144 | int32_t start = (int32_t)utext_getNativeIndex(text); |
michael@0 | 145 | if (start != offset) { |
michael@0 | 146 | offset = start; |
michael@0 | 147 | prefix = dict->matches(text, rangeEnd-start, lengths, count, sizeof(lengths)/sizeof(lengths[0])); |
michael@0 | 148 | // Dictionary leaves text after longest prefix, not longest word. Back up. |
michael@0 | 149 | if (count <= 0) { |
michael@0 | 150 | utext_setNativeIndex(text, start); |
michael@0 | 151 | } |
michael@0 | 152 | } |
michael@0 | 153 | if (count > 0) { |
michael@0 | 154 | utext_setNativeIndex(text, start+lengths[count-1]); |
michael@0 | 155 | } |
michael@0 | 156 | current = count-1; |
michael@0 | 157 | mark = current; |
michael@0 | 158 | return count; |
michael@0 | 159 | } |
michael@0 | 160 | |
michael@0 | 161 | inline int32_t |
michael@0 | 162 | PossibleWord::acceptMarked( UText *text ) { |
michael@0 | 163 | utext_setNativeIndex(text, offset + lengths[mark]); |
michael@0 | 164 | return lengths[mark]; |
michael@0 | 165 | } |
michael@0 | 166 | |
michael@0 | 167 | inline UBool |
michael@0 | 168 | PossibleWord::backUp( UText *text ) { |
michael@0 | 169 | if (current > 0) { |
michael@0 | 170 | utext_setNativeIndex(text, offset + lengths[--current]); |
michael@0 | 171 | return TRUE; |
michael@0 | 172 | } |
michael@0 | 173 | return FALSE; |
michael@0 | 174 | } |
michael@0 | 175 | |
michael@0 | 176 | inline int32_t |
michael@0 | 177 | PossibleWord::longestPrefix() { |
michael@0 | 178 | return prefix; |
michael@0 | 179 | } |
michael@0 | 180 | |
michael@0 | 181 | inline void |
michael@0 | 182 | PossibleWord::markCurrent() { |
michael@0 | 183 | mark = current; |
michael@0 | 184 | } |
michael@0 | 185 | |
michael@0 | 186 | /* |
michael@0 | 187 | ****************************************************************** |
michael@0 | 188 | * ThaiBreakEngine |
michael@0 | 189 | */ |
michael@0 | 190 | |
michael@0 | 191 | // How many words in a row are "good enough"? |
michael@0 | 192 | #define THAI_LOOKAHEAD 3 |
michael@0 | 193 | |
michael@0 | 194 | // Will not combine a non-word with a preceding dictionary word longer than this |
michael@0 | 195 | #define THAI_ROOT_COMBINE_THRESHOLD 3 |
michael@0 | 196 | |
michael@0 | 197 | // Will not combine a non-word that shares at least this much prefix with a |
michael@0 | 198 | // dictionary word, with a preceding word |
michael@0 | 199 | #define THAI_PREFIX_COMBINE_THRESHOLD 3 |
michael@0 | 200 | |
michael@0 | 201 | // Ellision character |
michael@0 | 202 | #define THAI_PAIYANNOI 0x0E2F |
michael@0 | 203 | |
michael@0 | 204 | // Repeat character |
michael@0 | 205 | #define THAI_MAIYAMOK 0x0E46 |
michael@0 | 206 | |
michael@0 | 207 | // Minimum word size |
michael@0 | 208 | #define THAI_MIN_WORD 2 |
michael@0 | 209 | |
michael@0 | 210 | // Minimum number of characters for two words |
michael@0 | 211 | #define THAI_MIN_WORD_SPAN (THAI_MIN_WORD * 2) |
michael@0 | 212 | |
michael@0 | 213 | ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
michael@0 | 214 | : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)), |
michael@0 | 215 | fDictionary(adoptDictionary) |
michael@0 | 216 | { |
michael@0 | 217 | fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status); |
michael@0 | 218 | if (U_SUCCESS(status)) { |
michael@0 | 219 | setCharacters(fThaiWordSet); |
michael@0 | 220 | } |
michael@0 | 221 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status); |
michael@0 | 222 | fMarkSet.add(0x0020); |
michael@0 | 223 | fEndWordSet = fThaiWordSet; |
michael@0 | 224 | fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
michael@0 | 225 | fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
michael@0 | 226 | fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
michael@0 | 227 | fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
michael@0 | 228 | fSuffixSet.add(THAI_PAIYANNOI); |
michael@0 | 229 | fSuffixSet.add(THAI_MAIYAMOK); |
michael@0 | 230 | |
michael@0 | 231 | // Compact for caching. |
michael@0 | 232 | fMarkSet.compact(); |
michael@0 | 233 | fEndWordSet.compact(); |
michael@0 | 234 | fBeginWordSet.compact(); |
michael@0 | 235 | fSuffixSet.compact(); |
michael@0 | 236 | } |
michael@0 | 237 | |
michael@0 | 238 | ThaiBreakEngine::~ThaiBreakEngine() { |
michael@0 | 239 | delete fDictionary; |
michael@0 | 240 | } |
michael@0 | 241 | |
michael@0 | 242 | int32_t |
michael@0 | 243 | ThaiBreakEngine::divideUpDictionaryRange( UText *text, |
michael@0 | 244 | int32_t rangeStart, |
michael@0 | 245 | int32_t rangeEnd, |
michael@0 | 246 | UStack &foundBreaks ) const { |
michael@0 | 247 | if ((rangeEnd - rangeStart) < THAI_MIN_WORD_SPAN) { |
michael@0 | 248 | return 0; // Not enough characters for two words |
michael@0 | 249 | } |
michael@0 | 250 | |
michael@0 | 251 | uint32_t wordsFound = 0; |
michael@0 | 252 | int32_t wordLength; |
michael@0 | 253 | int32_t current; |
michael@0 | 254 | UErrorCode status = U_ZERO_ERROR; |
michael@0 | 255 | PossibleWord words[THAI_LOOKAHEAD]; |
michael@0 | 256 | UChar32 uc; |
michael@0 | 257 | |
michael@0 | 258 | utext_setNativeIndex(text, rangeStart); |
michael@0 | 259 | |
michael@0 | 260 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
michael@0 | 261 | wordLength = 0; |
michael@0 | 262 | |
michael@0 | 263 | // Look for candidate words at the current position |
michael@0 | 264 | int candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
michael@0 | 265 | |
michael@0 | 266 | // If we found exactly one, use that |
michael@0 | 267 | if (candidates == 1) { |
michael@0 | 268 | wordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
michael@0 | 269 | wordsFound += 1; |
michael@0 | 270 | } |
michael@0 | 271 | // If there was more than one, see which one can take us forward the most words |
michael@0 | 272 | else if (candidates > 1) { |
michael@0 | 273 | // If we're already at the end of the range, we're done |
michael@0 | 274 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
michael@0 | 275 | goto foundBest; |
michael@0 | 276 | } |
michael@0 | 277 | do { |
michael@0 | 278 | int wordsMatched = 1; |
michael@0 | 279 | if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
michael@0 | 280 | if (wordsMatched < 2) { |
michael@0 | 281 | // Followed by another dictionary word; mark first word as a good candidate |
michael@0 | 282 | words[wordsFound%THAI_LOOKAHEAD].markCurrent(); |
michael@0 | 283 | wordsMatched = 2; |
michael@0 | 284 | } |
michael@0 | 285 | |
michael@0 | 286 | // If we're already at the end of the range, we're done |
michael@0 | 287 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
michael@0 | 288 | goto foundBest; |
michael@0 | 289 | } |
michael@0 | 290 | |
michael@0 | 291 | // See if any of the possible second words is followed by a third word |
michael@0 | 292 | do { |
michael@0 | 293 | // If we find a third word, stop right away |
michael@0 | 294 | if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
michael@0 | 295 | words[wordsFound % THAI_LOOKAHEAD].markCurrent(); |
michael@0 | 296 | goto foundBest; |
michael@0 | 297 | } |
michael@0 | 298 | } |
michael@0 | 299 | while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text)); |
michael@0 | 300 | } |
michael@0 | 301 | } |
michael@0 | 302 | while (words[wordsFound % THAI_LOOKAHEAD].backUp(text)); |
michael@0 | 303 | foundBest: |
michael@0 | 304 | wordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
michael@0 | 305 | wordsFound += 1; |
michael@0 | 306 | } |
michael@0 | 307 | |
michael@0 | 308 | // We come here after having either found a word or not. We look ahead to the |
michael@0 | 309 | // next word. If it's not a dictionary word, we will combine it withe the word we |
michael@0 | 310 | // just found (if there is one), but only if the preceding word does not exceed |
michael@0 | 311 | // the threshold. |
michael@0 | 312 | // The text iterator should now be positioned at the end of the word we found. |
michael@0 | 313 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < THAI_ROOT_COMBINE_THRESHOLD) { |
michael@0 | 314 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
michael@0 | 315 | // no preceding word, or the non-word shares less than the minimum threshold |
michael@0 | 316 | // of characters with a dictionary word, then scan to resynchronize |
michael@0 | 317 | if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
michael@0 | 318 | && (wordLength == 0 |
michael@0 | 319 | || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { |
michael@0 | 320 | // Look for a plausible word boundary |
michael@0 | 321 | //TODO: This section will need a rework for UText. |
michael@0 | 322 | int32_t remaining = rangeEnd - (current+wordLength); |
michael@0 | 323 | UChar32 pc = utext_current32(text); |
michael@0 | 324 | int32_t chars = 0; |
michael@0 | 325 | for (;;) { |
michael@0 | 326 | utext_next32(text); |
michael@0 | 327 | uc = utext_current32(text); |
michael@0 | 328 | // TODO: Here we're counting on the fact that the SA languages are all |
michael@0 | 329 | // in the BMP. This should get fixed with the UText rework. |
michael@0 | 330 | chars += 1; |
michael@0 | 331 | if (--remaining <= 0) { |
michael@0 | 332 | break; |
michael@0 | 333 | } |
michael@0 | 334 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
michael@0 | 335 | // Maybe. See if it's in the dictionary. |
michael@0 | 336 | // NOTE: In the original Apple code, checked that the next |
michael@0 | 337 | // two characters after uc were not 0x0E4C THANTHAKHAT before |
michael@0 | 338 | // checking the dictionary. That is just a performance filter, |
michael@0 | 339 | // but it's not clear it's faster than checking the trie. |
michael@0 | 340 | int candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
michael@0 | 341 | utext_setNativeIndex(text, current + wordLength + chars); |
michael@0 | 342 | if (candidates > 0) { |
michael@0 | 343 | break; |
michael@0 | 344 | } |
michael@0 | 345 | } |
michael@0 | 346 | pc = uc; |
michael@0 | 347 | } |
michael@0 | 348 | |
michael@0 | 349 | // Bump the word count if there wasn't already one |
michael@0 | 350 | if (wordLength <= 0) { |
michael@0 | 351 | wordsFound += 1; |
michael@0 | 352 | } |
michael@0 | 353 | |
michael@0 | 354 | // Update the length with the passed-over characters |
michael@0 | 355 | wordLength += chars; |
michael@0 | 356 | } |
michael@0 | 357 | else { |
michael@0 | 358 | // Back up to where we were for next iteration |
michael@0 | 359 | utext_setNativeIndex(text, current+wordLength); |
michael@0 | 360 | } |
michael@0 | 361 | } |
michael@0 | 362 | |
michael@0 | 363 | // Never stop before a combining mark. |
michael@0 | 364 | int32_t currPos; |
michael@0 | 365 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
michael@0 | 366 | utext_next32(text); |
michael@0 | 367 | wordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
michael@0 | 368 | } |
michael@0 | 369 | |
michael@0 | 370 | // Look ahead for possible suffixes if a dictionary word does not follow. |
michael@0 | 371 | // We do this in code rather than using a rule so that the heuristic |
michael@0 | 372 | // resynch continues to function. For example, one of the suffix characters |
michael@0 | 373 | // could be a typo in the middle of a word. |
michael@0 | 374 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { |
michael@0 | 375 | if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
michael@0 | 376 | && fSuffixSet.contains(uc = utext_current32(text))) { |
michael@0 | 377 | if (uc == THAI_PAIYANNOI) { |
michael@0 | 378 | if (!fSuffixSet.contains(utext_previous32(text))) { |
michael@0 | 379 | // Skip over previous end and PAIYANNOI |
michael@0 | 380 | utext_next32(text); |
michael@0 | 381 | utext_next32(text); |
michael@0 | 382 | wordLength += 1; // Add PAIYANNOI to word |
michael@0 | 383 | uc = utext_current32(text); // Fetch next character |
michael@0 | 384 | } |
michael@0 | 385 | else { |
michael@0 | 386 | // Restore prior position |
michael@0 | 387 | utext_next32(text); |
michael@0 | 388 | } |
michael@0 | 389 | } |
michael@0 | 390 | if (uc == THAI_MAIYAMOK) { |
michael@0 | 391 | if (utext_previous32(text) != THAI_MAIYAMOK) { |
michael@0 | 392 | // Skip over previous end and MAIYAMOK |
michael@0 | 393 | utext_next32(text); |
michael@0 | 394 | utext_next32(text); |
michael@0 | 395 | wordLength += 1; // Add MAIYAMOK to word |
michael@0 | 396 | } |
michael@0 | 397 | else { |
michael@0 | 398 | // Restore prior position |
michael@0 | 399 | utext_next32(text); |
michael@0 | 400 | } |
michael@0 | 401 | } |
michael@0 | 402 | } |
michael@0 | 403 | else { |
michael@0 | 404 | utext_setNativeIndex(text, current+wordLength); |
michael@0 | 405 | } |
michael@0 | 406 | } |
michael@0 | 407 | |
michael@0 | 408 | // Did we find a word on this iteration? If so, push it on the break stack |
michael@0 | 409 | if (wordLength > 0) { |
michael@0 | 410 | foundBreaks.push((current+wordLength), status); |
michael@0 | 411 | } |
michael@0 | 412 | } |
michael@0 | 413 | |
michael@0 | 414 | // Don't return a break for the end of the dictionary range if there is one there. |
michael@0 | 415 | if (foundBreaks.peeki() >= rangeEnd) { |
michael@0 | 416 | (void) foundBreaks.popi(); |
michael@0 | 417 | wordsFound -= 1; |
michael@0 | 418 | } |
michael@0 | 419 | |
michael@0 | 420 | return wordsFound; |
michael@0 | 421 | } |
michael@0 | 422 | |
michael@0 | 423 | /* |
michael@0 | 424 | ****************************************************************** |
michael@0 | 425 | * LaoBreakEngine |
michael@0 | 426 | */ |
michael@0 | 427 | |
michael@0 | 428 | // How many words in a row are "good enough"? |
michael@0 | 429 | #define LAO_LOOKAHEAD 3 |
michael@0 | 430 | |
michael@0 | 431 | // Will not combine a non-word with a preceding dictionary word longer than this |
michael@0 | 432 | #define LAO_ROOT_COMBINE_THRESHOLD 3 |
michael@0 | 433 | |
michael@0 | 434 | // Will not combine a non-word that shares at least this much prefix with a |
michael@0 | 435 | // dictionary word, with a preceding word |
michael@0 | 436 | #define LAO_PREFIX_COMBINE_THRESHOLD 3 |
michael@0 | 437 | |
michael@0 | 438 | // Minimum word size |
michael@0 | 439 | #define LAO_MIN_WORD 2 |
michael@0 | 440 | |
michael@0 | 441 | // Minimum number of characters for two words |
michael@0 | 442 | #define LAO_MIN_WORD_SPAN (LAO_MIN_WORD * 2) |
michael@0 | 443 | |
michael@0 | 444 | LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
michael@0 | 445 | : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)), |
michael@0 | 446 | fDictionary(adoptDictionary) |
michael@0 | 447 | { |
michael@0 | 448 | fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status); |
michael@0 | 449 | if (U_SUCCESS(status)) { |
michael@0 | 450 | setCharacters(fLaoWordSet); |
michael@0 | 451 | } |
michael@0 | 452 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status); |
michael@0 | 453 | fMarkSet.add(0x0020); |
michael@0 | 454 | fEndWordSet = fLaoWordSet; |
michael@0 | 455 | fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels |
michael@0 | 456 | fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters) |
michael@0 | 457 | fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent) |
michael@0 | 458 | fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels |
michael@0 | 459 | |
michael@0 | 460 | // Compact for caching. |
michael@0 | 461 | fMarkSet.compact(); |
michael@0 | 462 | fEndWordSet.compact(); |
michael@0 | 463 | fBeginWordSet.compact(); |
michael@0 | 464 | } |
michael@0 | 465 | |
michael@0 | 466 | LaoBreakEngine::~LaoBreakEngine() { |
michael@0 | 467 | delete fDictionary; |
michael@0 | 468 | } |
michael@0 | 469 | |
michael@0 | 470 | int32_t |
michael@0 | 471 | LaoBreakEngine::divideUpDictionaryRange( UText *text, |
michael@0 | 472 | int32_t rangeStart, |
michael@0 | 473 | int32_t rangeEnd, |
michael@0 | 474 | UStack &foundBreaks ) const { |
michael@0 | 475 | if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) { |
michael@0 | 476 | return 0; // Not enough characters for two words |
michael@0 | 477 | } |
michael@0 | 478 | |
michael@0 | 479 | uint32_t wordsFound = 0; |
michael@0 | 480 | int32_t wordLength; |
michael@0 | 481 | int32_t current; |
michael@0 | 482 | UErrorCode status = U_ZERO_ERROR; |
michael@0 | 483 | PossibleWord words[LAO_LOOKAHEAD]; |
michael@0 | 484 | UChar32 uc; |
michael@0 | 485 | |
michael@0 | 486 | utext_setNativeIndex(text, rangeStart); |
michael@0 | 487 | |
michael@0 | 488 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
michael@0 | 489 | wordLength = 0; |
michael@0 | 490 | |
michael@0 | 491 | // Look for candidate words at the current position |
michael@0 | 492 | int candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
michael@0 | 493 | |
michael@0 | 494 | // If we found exactly one, use that |
michael@0 | 495 | if (candidates == 1) { |
michael@0 | 496 | wordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
michael@0 | 497 | wordsFound += 1; |
michael@0 | 498 | } |
michael@0 | 499 | // If there was more than one, see which one can take us forward the most words |
michael@0 | 500 | else if (candidates > 1) { |
michael@0 | 501 | // If we're already at the end of the range, we're done |
michael@0 | 502 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
michael@0 | 503 | goto foundBest; |
michael@0 | 504 | } |
michael@0 | 505 | do { |
michael@0 | 506 | int wordsMatched = 1; |
michael@0 | 507 | if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
michael@0 | 508 | if (wordsMatched < 2) { |
michael@0 | 509 | // Followed by another dictionary word; mark first word as a good candidate |
michael@0 | 510 | words[wordsFound%LAO_LOOKAHEAD].markCurrent(); |
michael@0 | 511 | wordsMatched = 2; |
michael@0 | 512 | } |
michael@0 | 513 | |
michael@0 | 514 | // If we're already at the end of the range, we're done |
michael@0 | 515 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
michael@0 | 516 | goto foundBest; |
michael@0 | 517 | } |
michael@0 | 518 | |
michael@0 | 519 | // See if any of the possible second words is followed by a third word |
michael@0 | 520 | do { |
michael@0 | 521 | // If we find a third word, stop right away |
michael@0 | 522 | if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
michael@0 | 523 | words[wordsFound % LAO_LOOKAHEAD].markCurrent(); |
michael@0 | 524 | goto foundBest; |
michael@0 | 525 | } |
michael@0 | 526 | } |
michael@0 | 527 | while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text)); |
michael@0 | 528 | } |
michael@0 | 529 | } |
michael@0 | 530 | while (words[wordsFound % LAO_LOOKAHEAD].backUp(text)); |
michael@0 | 531 | foundBest: |
michael@0 | 532 | wordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
michael@0 | 533 | wordsFound += 1; |
michael@0 | 534 | } |
michael@0 | 535 | |
michael@0 | 536 | // We come here after having either found a word or not. We look ahead to the |
michael@0 | 537 | // next word. If it's not a dictionary word, we will combine it withe the word we |
michael@0 | 538 | // just found (if there is one), but only if the preceding word does not exceed |
michael@0 | 539 | // the threshold. |
michael@0 | 540 | // The text iterator should now be positioned at the end of the word we found. |
michael@0 | 541 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < LAO_ROOT_COMBINE_THRESHOLD) { |
michael@0 | 542 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
michael@0 | 543 | // no preceding word, or the non-word shares less than the minimum threshold |
michael@0 | 544 | // of characters with a dictionary word, then scan to resynchronize |
michael@0 | 545 | if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
michael@0 | 546 | && (wordLength == 0 |
michael@0 | 547 | || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) { |
michael@0 | 548 | // Look for a plausible word boundary |
michael@0 | 549 | //TODO: This section will need a rework for UText. |
michael@0 | 550 | int32_t remaining = rangeEnd - (current+wordLength); |
michael@0 | 551 | UChar32 pc = utext_current32(text); |
michael@0 | 552 | int32_t chars = 0; |
michael@0 | 553 | for (;;) { |
michael@0 | 554 | utext_next32(text); |
michael@0 | 555 | uc = utext_current32(text); |
michael@0 | 556 | // TODO: Here we're counting on the fact that the SA languages are all |
michael@0 | 557 | // in the BMP. This should get fixed with the UText rework. |
michael@0 | 558 | chars += 1; |
michael@0 | 559 | if (--remaining <= 0) { |
michael@0 | 560 | break; |
michael@0 | 561 | } |
michael@0 | 562 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
michael@0 | 563 | // Maybe. See if it's in the dictionary. |
michael@0 | 564 | int candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
michael@0 | 565 | utext_setNativeIndex(text, current + wordLength + chars); |
michael@0 | 566 | if (candidates > 0) { |
michael@0 | 567 | break; |
michael@0 | 568 | } |
michael@0 | 569 | } |
michael@0 | 570 | pc = uc; |
michael@0 | 571 | } |
michael@0 | 572 | |
michael@0 | 573 | // Bump the word count if there wasn't already one |
michael@0 | 574 | if (wordLength <= 0) { |
michael@0 | 575 | wordsFound += 1; |
michael@0 | 576 | } |
michael@0 | 577 | |
michael@0 | 578 | // Update the length with the passed-over characters |
michael@0 | 579 | wordLength += chars; |
michael@0 | 580 | } |
michael@0 | 581 | else { |
michael@0 | 582 | // Back up to where we were for next iteration |
michael@0 | 583 | utext_setNativeIndex(text, current+wordLength); |
michael@0 | 584 | } |
michael@0 | 585 | } |
michael@0 | 586 | |
michael@0 | 587 | // Never stop before a combining mark. |
michael@0 | 588 | int32_t currPos; |
michael@0 | 589 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
michael@0 | 590 | utext_next32(text); |
michael@0 | 591 | wordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
michael@0 | 592 | } |
michael@0 | 593 | |
michael@0 | 594 | // Look ahead for possible suffixes if a dictionary word does not follow. |
michael@0 | 595 | // We do this in code rather than using a rule so that the heuristic |
michael@0 | 596 | // resynch continues to function. For example, one of the suffix characters |
michael@0 | 597 | // could be a typo in the middle of a word. |
michael@0 | 598 | // NOT CURRENTLY APPLICABLE TO LAO |
michael@0 | 599 | |
michael@0 | 600 | // Did we find a word on this iteration? If so, push it on the break stack |
michael@0 | 601 | if (wordLength > 0) { |
michael@0 | 602 | foundBreaks.push((current+wordLength), status); |
michael@0 | 603 | } |
michael@0 | 604 | } |
michael@0 | 605 | |
michael@0 | 606 | // Don't return a break for the end of the dictionary range if there is one there. |
michael@0 | 607 | if (foundBreaks.peeki() >= rangeEnd) { |
michael@0 | 608 | (void) foundBreaks.popi(); |
michael@0 | 609 | wordsFound -= 1; |
michael@0 | 610 | } |
michael@0 | 611 | |
michael@0 | 612 | return wordsFound; |
michael@0 | 613 | } |
michael@0 | 614 | |
michael@0 | 615 | /* |
michael@0 | 616 | ****************************************************************** |
michael@0 | 617 | * KhmerBreakEngine |
michael@0 | 618 | */ |
michael@0 | 619 | |
michael@0 | 620 | // How many words in a row are "good enough"? |
michael@0 | 621 | #define KHMER_LOOKAHEAD 3 |
michael@0 | 622 | |
michael@0 | 623 | // Will not combine a non-word with a preceding dictionary word longer than this |
michael@0 | 624 | #define KHMER_ROOT_COMBINE_THRESHOLD 3 |
michael@0 | 625 | |
michael@0 | 626 | // Will not combine a non-word that shares at least this much prefix with a |
michael@0 | 627 | // dictionary word, with a preceding word |
michael@0 | 628 | #define KHMER_PREFIX_COMBINE_THRESHOLD 3 |
michael@0 | 629 | |
michael@0 | 630 | // Minimum word size |
michael@0 | 631 | #define KHMER_MIN_WORD 2 |
michael@0 | 632 | |
michael@0 | 633 | // Minimum number of characters for two words |
michael@0 | 634 | #define KHMER_MIN_WORD_SPAN (KHMER_MIN_WORD * 2) |
michael@0 | 635 | |
michael@0 | 636 | KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
michael@0 | 637 | : DictionaryBreakEngine((1 << UBRK_WORD) | (1 << UBRK_LINE)), |
michael@0 | 638 | fDictionary(adoptDictionary) |
michael@0 | 639 | { |
michael@0 | 640 | fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status); |
michael@0 | 641 | if (U_SUCCESS(status)) { |
michael@0 | 642 | setCharacters(fKhmerWordSet); |
michael@0 | 643 | } |
michael@0 | 644 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status); |
michael@0 | 645 | fMarkSet.add(0x0020); |
michael@0 | 646 | fEndWordSet = fKhmerWordSet; |
michael@0 | 647 | fBeginWordSet.add(0x1780, 0x17B3); |
michael@0 | 648 | //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels |
michael@0 | 649 | //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word |
michael@0 | 650 | //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word |
michael@0 | 651 | fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters |
michael@0 | 652 | //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels |
michael@0 | 653 | // fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
michael@0 | 654 | // fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
michael@0 | 655 | // fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
michael@0 | 656 | // fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
michael@0 | 657 | // fSuffixSet.add(THAI_PAIYANNOI); |
michael@0 | 658 | // fSuffixSet.add(THAI_MAIYAMOK); |
michael@0 | 659 | |
michael@0 | 660 | // Compact for caching. |
michael@0 | 661 | fMarkSet.compact(); |
michael@0 | 662 | fEndWordSet.compact(); |
michael@0 | 663 | fBeginWordSet.compact(); |
michael@0 | 664 | // fSuffixSet.compact(); |
michael@0 | 665 | } |
michael@0 | 666 | |
michael@0 | 667 | KhmerBreakEngine::~KhmerBreakEngine() { |
michael@0 | 668 | delete fDictionary; |
michael@0 | 669 | } |
michael@0 | 670 | |
michael@0 | 671 | int32_t |
michael@0 | 672 | KhmerBreakEngine::divideUpDictionaryRange( UText *text, |
michael@0 | 673 | int32_t rangeStart, |
michael@0 | 674 | int32_t rangeEnd, |
michael@0 | 675 | UStack &foundBreaks ) const { |
michael@0 | 676 | if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { |
michael@0 | 677 | return 0; // Not enough characters for two words |
michael@0 | 678 | } |
michael@0 | 679 | |
michael@0 | 680 | uint32_t wordsFound = 0; |
michael@0 | 681 | int32_t wordLength; |
michael@0 | 682 | int32_t current; |
michael@0 | 683 | UErrorCode status = U_ZERO_ERROR; |
michael@0 | 684 | PossibleWord words[KHMER_LOOKAHEAD]; |
michael@0 | 685 | UChar32 uc; |
michael@0 | 686 | |
michael@0 | 687 | utext_setNativeIndex(text, rangeStart); |
michael@0 | 688 | |
michael@0 | 689 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
michael@0 | 690 | wordLength = 0; |
michael@0 | 691 | |
michael@0 | 692 | // Look for candidate words at the current position |
michael@0 | 693 | int candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
michael@0 | 694 | |
michael@0 | 695 | // If we found exactly one, use that |
michael@0 | 696 | if (candidates == 1) { |
michael@0 | 697 | wordLength = words[wordsFound%KHMER_LOOKAHEAD].acceptMarked(text); |
michael@0 | 698 | wordsFound += 1; |
michael@0 | 699 | } |
michael@0 | 700 | |
michael@0 | 701 | // If there was more than one, see which one can take us forward the most words |
michael@0 | 702 | else if (candidates > 1) { |
michael@0 | 703 | // If we're already at the end of the range, we're done |
michael@0 | 704 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
michael@0 | 705 | goto foundBest; |
michael@0 | 706 | } |
michael@0 | 707 | do { |
michael@0 | 708 | int wordsMatched = 1; |
michael@0 | 709 | if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
michael@0 | 710 | if (wordsMatched < 2) { |
michael@0 | 711 | // Followed by another dictionary word; mark first word as a good candidate |
michael@0 | 712 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
michael@0 | 713 | wordsMatched = 2; |
michael@0 | 714 | } |
michael@0 | 715 | |
michael@0 | 716 | // If we're already at the end of the range, we're done |
michael@0 | 717 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
michael@0 | 718 | goto foundBest; |
michael@0 | 719 | } |
michael@0 | 720 | |
michael@0 | 721 | // See if any of the possible second words is followed by a third word |
michael@0 | 722 | do { |
michael@0 | 723 | // If we find a third word, stop right away |
michael@0 | 724 | if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
michael@0 | 725 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
michael@0 | 726 | goto foundBest; |
michael@0 | 727 | } |
michael@0 | 728 | } |
michael@0 | 729 | while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text)); |
michael@0 | 730 | } |
michael@0 | 731 | } |
michael@0 | 732 | while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text)); |
michael@0 | 733 | foundBest: |
michael@0 | 734 | wordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
michael@0 | 735 | wordsFound += 1; |
michael@0 | 736 | } |
michael@0 | 737 | |
michael@0 | 738 | // We come here after having either found a word or not. We look ahead to the |
michael@0 | 739 | // next word. If it's not a dictionary word, we will combine it with the word we |
michael@0 | 740 | // just found (if there is one), but only if the preceding word does not exceed |
michael@0 | 741 | // the threshold. |
michael@0 | 742 | // The text iterator should now be positioned at the end of the word we found. |
michael@0 | 743 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < KHMER_ROOT_COMBINE_THRESHOLD) { |
michael@0 | 744 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
michael@0 | 745 | // no preceding word, or the non-word shares less than the minimum threshold |
michael@0 | 746 | // of characters with a dictionary word, then scan to resynchronize |
michael@0 | 747 | if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
michael@0 | 748 | && (wordLength == 0 |
michael@0 | 749 | || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { |
michael@0 | 750 | // Look for a plausible word boundary |
michael@0 | 751 | //TODO: This section will need a rework for UText. |
michael@0 | 752 | int32_t remaining = rangeEnd - (current+wordLength); |
michael@0 | 753 | UChar32 pc = utext_current32(text); |
michael@0 | 754 | int32_t chars = 0; |
michael@0 | 755 | for (;;) { |
michael@0 | 756 | utext_next32(text); |
michael@0 | 757 | uc = utext_current32(text); |
michael@0 | 758 | // TODO: Here we're counting on the fact that the SA languages are all |
michael@0 | 759 | // in the BMP. This should get fixed with the UText rework. |
michael@0 | 760 | chars += 1; |
michael@0 | 761 | if (--remaining <= 0) { |
michael@0 | 762 | break; |
michael@0 | 763 | } |
michael@0 | 764 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
michael@0 | 765 | // Maybe. See if it's in the dictionary. |
michael@0 | 766 | int candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
michael@0 | 767 | utext_setNativeIndex(text, current+wordLength+chars); |
michael@0 | 768 | if (candidates > 0) { |
michael@0 | 769 | break; |
michael@0 | 770 | } |
michael@0 | 771 | } |
michael@0 | 772 | pc = uc; |
michael@0 | 773 | } |
michael@0 | 774 | |
michael@0 | 775 | // Bump the word count if there wasn't already one |
michael@0 | 776 | if (wordLength <= 0) { |
michael@0 | 777 | wordsFound += 1; |
michael@0 | 778 | } |
michael@0 | 779 | |
michael@0 | 780 | // Update the length with the passed-over characters |
michael@0 | 781 | wordLength += chars; |
michael@0 | 782 | } |
michael@0 | 783 | else { |
michael@0 | 784 | // Back up to where we were for next iteration |
michael@0 | 785 | utext_setNativeIndex(text, current+wordLength); |
michael@0 | 786 | } |
michael@0 | 787 | } |
michael@0 | 788 | |
michael@0 | 789 | // Never stop before a combining mark. |
michael@0 | 790 | int32_t currPos; |
michael@0 | 791 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
michael@0 | 792 | utext_next32(text); |
michael@0 | 793 | wordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
michael@0 | 794 | } |
michael@0 | 795 | |
michael@0 | 796 | // Look ahead for possible suffixes if a dictionary word does not follow. |
michael@0 | 797 | // We do this in code rather than using a rule so that the heuristic |
michael@0 | 798 | // resynch continues to function. For example, one of the suffix characters |
michael@0 | 799 | // could be a typo in the middle of a word. |
michael@0 | 800 | // if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { |
michael@0 | 801 | // if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
michael@0 | 802 | // && fSuffixSet.contains(uc = utext_current32(text))) { |
michael@0 | 803 | // if (uc == KHMER_PAIYANNOI) { |
michael@0 | 804 | // if (!fSuffixSet.contains(utext_previous32(text))) { |
michael@0 | 805 | // // Skip over previous end and PAIYANNOI |
michael@0 | 806 | // utext_next32(text); |
michael@0 | 807 | // utext_next32(text); |
michael@0 | 808 | // wordLength += 1; // Add PAIYANNOI to word |
michael@0 | 809 | // uc = utext_current32(text); // Fetch next character |
michael@0 | 810 | // } |
michael@0 | 811 | // else { |
michael@0 | 812 | // // Restore prior position |
michael@0 | 813 | // utext_next32(text); |
michael@0 | 814 | // } |
michael@0 | 815 | // } |
michael@0 | 816 | // if (uc == KHMER_MAIYAMOK) { |
michael@0 | 817 | // if (utext_previous32(text) != KHMER_MAIYAMOK) { |
michael@0 | 818 | // // Skip over previous end and MAIYAMOK |
michael@0 | 819 | // utext_next32(text); |
michael@0 | 820 | // utext_next32(text); |
michael@0 | 821 | // wordLength += 1; // Add MAIYAMOK to word |
michael@0 | 822 | // } |
michael@0 | 823 | // else { |
michael@0 | 824 | // // Restore prior position |
michael@0 | 825 | // utext_next32(text); |
michael@0 | 826 | // } |
michael@0 | 827 | // } |
michael@0 | 828 | // } |
michael@0 | 829 | // else { |
michael@0 | 830 | // utext_setNativeIndex(text, current+wordLength); |
michael@0 | 831 | // } |
michael@0 | 832 | // } |
michael@0 | 833 | |
michael@0 | 834 | // Did we find a word on this iteration? If so, push it on the break stack |
michael@0 | 835 | if (wordLength > 0) { |
michael@0 | 836 | foundBreaks.push((current+wordLength), status); |
michael@0 | 837 | } |
michael@0 | 838 | } |
michael@0 | 839 | |
michael@0 | 840 | // Don't return a break for the end of the dictionary range if there is one there. |
michael@0 | 841 | if (foundBreaks.peeki() >= rangeEnd) { |
michael@0 | 842 | (void) foundBreaks.popi(); |
michael@0 | 843 | wordsFound -= 1; |
michael@0 | 844 | } |
michael@0 | 845 | |
michael@0 | 846 | return wordsFound; |
michael@0 | 847 | } |
michael@0 | 848 | |
michael@0 | 849 | #if !UCONFIG_NO_NORMALIZATION |
michael@0 | 850 | /* |
michael@0 | 851 | ****************************************************************** |
michael@0 | 852 | * CjkBreakEngine |
michael@0 | 853 | */ |
michael@0 | 854 | static const uint32_t kuint32max = 0xFFFFFFFF; |
michael@0 | 855 | CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status) |
michael@0 | 856 | : DictionaryBreakEngine(1 << UBRK_WORD), fDictionary(adoptDictionary) { |
michael@0 | 857 | // Korean dictionary only includes Hangul syllables |
michael@0 | 858 | fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status); |
michael@0 | 859 | fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status); |
michael@0 | 860 | fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status); |
michael@0 | 861 | fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status); |
michael@0 | 862 | |
michael@0 | 863 | if (U_SUCCESS(status)) { |
michael@0 | 864 | // handle Korean and Japanese/Chinese using different dictionaries |
michael@0 | 865 | if (type == kKorean) { |
michael@0 | 866 | setCharacters(fHangulWordSet); |
michael@0 | 867 | } else { //Chinese and Japanese |
michael@0 | 868 | UnicodeSet cjSet; |
michael@0 | 869 | cjSet.addAll(fHanWordSet); |
michael@0 | 870 | cjSet.addAll(fKatakanaWordSet); |
michael@0 | 871 | cjSet.addAll(fHiraganaWordSet); |
michael@0 | 872 | cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK |
michael@0 | 873 | cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK |
michael@0 | 874 | setCharacters(cjSet); |
michael@0 | 875 | } |
michael@0 | 876 | } |
michael@0 | 877 | } |
michael@0 | 878 | |
michael@0 | 879 | CjkBreakEngine::~CjkBreakEngine(){ |
michael@0 | 880 | delete fDictionary; |
michael@0 | 881 | } |
michael@0 | 882 | |
michael@0 | 883 | // The katakanaCost values below are based on the length frequencies of all |
michael@0 | 884 | // katakana phrases in the dictionary |
michael@0 | 885 | static const int kMaxKatakanaLength = 8; |
michael@0 | 886 | static const int kMaxKatakanaGroupLength = 20; |
michael@0 | 887 | static const uint32_t maxSnlp = 255; |
michael@0 | 888 | |
michael@0 | 889 | static inline uint32_t getKatakanaCost(int wordLength){ |
michael@0 | 890 | //TODO: fill array with actual values from dictionary! |
michael@0 | 891 | static const uint32_t katakanaCost[kMaxKatakanaLength + 1] |
michael@0 | 892 | = {8192, 984, 408, 240, 204, 252, 300, 372, 480}; |
michael@0 | 893 | return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength]; |
michael@0 | 894 | } |
michael@0 | 895 | |
michael@0 | 896 | static inline bool isKatakana(uint16_t value) { |
michael@0 | 897 | return (value >= 0x30A1u && value <= 0x30FEu && value != 0x30FBu) || |
michael@0 | 898 | (value >= 0xFF66u && value <= 0xFF9fu); |
michael@0 | 899 | } |
michael@0 | 900 | |
michael@0 | 901 | // A very simple helper class to streamline the buffer handling in |
michael@0 | 902 | // divideUpDictionaryRange. |
michael@0 | 903 | template<class T, size_t N> |
michael@0 | 904 | class AutoBuffer { |
michael@0 | 905 | public: |
michael@0 | 906 | AutoBuffer(size_t size) : buffer(stackBuffer), capacity(N) { |
michael@0 | 907 | if (size > N) { |
michael@0 | 908 | buffer = reinterpret_cast<T*>(uprv_malloc(sizeof(T)*size)); |
michael@0 | 909 | capacity = size; |
michael@0 | 910 | } |
michael@0 | 911 | } |
michael@0 | 912 | ~AutoBuffer() { |
michael@0 | 913 | if (buffer != stackBuffer) |
michael@0 | 914 | uprv_free(buffer); |
michael@0 | 915 | } |
michael@0 | 916 | |
michael@0 | 917 | T* elems() { |
michael@0 | 918 | return buffer; |
michael@0 | 919 | } |
michael@0 | 920 | |
michael@0 | 921 | const T& operator[] (size_t i) const { |
michael@0 | 922 | return buffer[i]; |
michael@0 | 923 | } |
michael@0 | 924 | |
michael@0 | 925 | T& operator[] (size_t i) { |
michael@0 | 926 | return buffer[i]; |
michael@0 | 927 | } |
michael@0 | 928 | |
michael@0 | 929 | // resize without copy |
michael@0 | 930 | void resize(size_t size) { |
michael@0 | 931 | if (size <= capacity) |
michael@0 | 932 | return; |
michael@0 | 933 | if (buffer != stackBuffer) |
michael@0 | 934 | uprv_free(buffer); |
michael@0 | 935 | buffer = reinterpret_cast<T*>(uprv_malloc(sizeof(T)*size)); |
michael@0 | 936 | capacity = size; |
michael@0 | 937 | } |
michael@0 | 938 | |
michael@0 | 939 | private: |
michael@0 | 940 | T stackBuffer[N]; |
michael@0 | 941 | T* buffer; |
michael@0 | 942 | AutoBuffer(); |
michael@0 | 943 | size_t capacity; |
michael@0 | 944 | }; |
michael@0 | 945 | |
michael@0 | 946 | |
michael@0 | 947 | /* |
michael@0 | 948 | * @param text A UText representing the text |
michael@0 | 949 | * @param rangeStart The start of the range of dictionary characters |
michael@0 | 950 | * @param rangeEnd The end of the range of dictionary characters |
michael@0 | 951 | * @param foundBreaks Output of C array of int32_t break positions, or 0 |
michael@0 | 952 | * @return The number of breaks found |
michael@0 | 953 | */ |
michael@0 | 954 | int32_t |
michael@0 | 955 | CjkBreakEngine::divideUpDictionaryRange( UText *text, |
michael@0 | 956 | int32_t rangeStart, |
michael@0 | 957 | int32_t rangeEnd, |
michael@0 | 958 | UStack &foundBreaks ) const { |
michael@0 | 959 | if (rangeStart >= rangeEnd) { |
michael@0 | 960 | return 0; |
michael@0 | 961 | } |
michael@0 | 962 | |
michael@0 | 963 | const size_t defaultInputLength = 80; |
michael@0 | 964 | size_t inputLength = rangeEnd - rangeStart; |
michael@0 | 965 | // TODO: Replace by UnicodeString. |
michael@0 | 966 | AutoBuffer<UChar, defaultInputLength> charString(inputLength); |
michael@0 | 967 | |
michael@0 | 968 | // Normalize the input string and put it in normalizedText. |
michael@0 | 969 | // The map from the indices of the normalized input to the raw |
michael@0 | 970 | // input is kept in charPositions. |
michael@0 | 971 | UErrorCode status = U_ZERO_ERROR; |
michael@0 | 972 | utext_extract(text, rangeStart, rangeEnd, charString.elems(), inputLength, &status); |
michael@0 | 973 | if (U_FAILURE(status)) { |
michael@0 | 974 | return 0; |
michael@0 | 975 | } |
michael@0 | 976 | |
michael@0 | 977 | UnicodeString inputString(charString.elems(), inputLength); |
michael@0 | 978 | // TODO: Use Normalizer2. |
michael@0 | 979 | UNormalizationMode norm_mode = UNORM_NFKC; |
michael@0 | 980 | UBool isNormalized = |
michael@0 | 981 | Normalizer::quickCheck(inputString, norm_mode, status) == UNORM_YES || |
michael@0 | 982 | Normalizer::isNormalized(inputString, norm_mode, status); |
michael@0 | 983 | |
michael@0 | 984 | // TODO: Replace by UVector32. |
michael@0 | 985 | AutoBuffer<int32_t, defaultInputLength> charPositions(inputLength + 1); |
michael@0 | 986 | int numChars = 0; |
michael@0 | 987 | UText normalizedText = UTEXT_INITIALIZER; |
michael@0 | 988 | // Needs to be declared here because normalizedText holds onto its buffer. |
michael@0 | 989 | UnicodeString normalizedString; |
michael@0 | 990 | if (isNormalized) { |
michael@0 | 991 | int32_t index = 0; |
michael@0 | 992 | charPositions[0] = 0; |
michael@0 | 993 | while(index < inputString.length()) { |
michael@0 | 994 | index = inputString.moveIndex32(index, 1); |
michael@0 | 995 | charPositions[++numChars] = index; |
michael@0 | 996 | } |
michael@0 | 997 | utext_openUnicodeString(&normalizedText, &inputString, &status); |
michael@0 | 998 | } |
michael@0 | 999 | else { |
michael@0 | 1000 | Normalizer::normalize(inputString, norm_mode, 0, normalizedString, status); |
michael@0 | 1001 | if (U_FAILURE(status)) { |
michael@0 | 1002 | return 0; |
michael@0 | 1003 | } |
michael@0 | 1004 | charPositions.resize(normalizedString.length() + 1); |
michael@0 | 1005 | Normalizer normalizer(charString.elems(), inputLength, norm_mode); |
michael@0 | 1006 | int32_t index = 0; |
michael@0 | 1007 | charPositions[0] = 0; |
michael@0 | 1008 | while(index < normalizer.endIndex()){ |
michael@0 | 1009 | /* UChar32 uc = */ normalizer.next(); |
michael@0 | 1010 | charPositions[++numChars] = index = normalizer.getIndex(); |
michael@0 | 1011 | } |
michael@0 | 1012 | utext_openUnicodeString(&normalizedText, &normalizedString, &status); |
michael@0 | 1013 | } |
michael@0 | 1014 | |
michael@0 | 1015 | if (U_FAILURE(status)) { |
michael@0 | 1016 | return 0; |
michael@0 | 1017 | } |
michael@0 | 1018 | |
michael@0 | 1019 | // From this point on, all the indices refer to the indices of |
michael@0 | 1020 | // the normalized input string. |
michael@0 | 1021 | |
michael@0 | 1022 | // bestSnlp[i] is the snlp of the best segmentation of the first i |
michael@0 | 1023 | // characters in the range to be matched. |
michael@0 | 1024 | // TODO: Replace by UVector32. |
michael@0 | 1025 | AutoBuffer<uint32_t, defaultInputLength> bestSnlp(numChars + 1); |
michael@0 | 1026 | bestSnlp[0] = 0; |
michael@0 | 1027 | for(int i = 1; i <= numChars; i++) { |
michael@0 | 1028 | bestSnlp[i] = kuint32max; |
michael@0 | 1029 | } |
michael@0 | 1030 | |
michael@0 | 1031 | // prev[i] is the index of the last CJK character in the previous word in |
michael@0 | 1032 | // the best segmentation of the first i characters. |
michael@0 | 1033 | // TODO: Replace by UVector32. |
michael@0 | 1034 | AutoBuffer<int, defaultInputLength> prev(numChars + 1); |
michael@0 | 1035 | for(int i = 0; i <= numChars; i++){ |
michael@0 | 1036 | prev[i] = -1; |
michael@0 | 1037 | } |
michael@0 | 1038 | |
michael@0 | 1039 | const size_t maxWordSize = 20; |
michael@0 | 1040 | // TODO: Replace both with UVector32. |
michael@0 | 1041 | AutoBuffer<int32_t, maxWordSize> values(numChars); |
michael@0 | 1042 | AutoBuffer<int32_t, maxWordSize> lengths(numChars); |
michael@0 | 1043 | |
michael@0 | 1044 | // Dynamic programming to find the best segmentation. |
michael@0 | 1045 | bool is_prev_katakana = false; |
michael@0 | 1046 | for (int32_t i = 0; i < numChars; ++i) { |
michael@0 | 1047 | //utext_setNativeIndex(text, rangeStart + i); |
michael@0 | 1048 | utext_setNativeIndex(&normalizedText, i); |
michael@0 | 1049 | if (bestSnlp[i] == kuint32max) |
michael@0 | 1050 | continue; |
michael@0 | 1051 | |
michael@0 | 1052 | int32_t count; |
michael@0 | 1053 | // limit maximum word length matched to size of current substring |
michael@0 | 1054 | int32_t maxSearchLength = (i + maxWordSize < (size_t) numChars)? maxWordSize : (numChars - i); |
michael@0 | 1055 | |
michael@0 | 1056 | fDictionary->matches(&normalizedText, maxSearchLength, lengths.elems(), count, maxSearchLength, values.elems()); |
michael@0 | 1057 | |
michael@0 | 1058 | // if there are no single character matches found in the dictionary |
michael@0 | 1059 | // starting with this charcter, treat character as a 1-character word |
michael@0 | 1060 | // with the highest value possible, i.e. the least likely to occur. |
michael@0 | 1061 | // Exclude Korean characters from this treatment, as they should be left |
michael@0 | 1062 | // together by default. |
michael@0 | 1063 | if((count == 0 || lengths[0] != 1) && |
michael@0 | 1064 | !fHangulWordSet.contains(utext_current32(&normalizedText))) { |
michael@0 | 1065 | values[count] = maxSnlp; |
michael@0 | 1066 | lengths[count++] = 1; |
michael@0 | 1067 | } |
michael@0 | 1068 | |
michael@0 | 1069 | for (int j = 0; j < count; j++) { |
michael@0 | 1070 | uint32_t newSnlp = bestSnlp[i] + values[j]; |
michael@0 | 1071 | if (newSnlp < bestSnlp[lengths[j] + i]) { |
michael@0 | 1072 | bestSnlp[lengths[j] + i] = newSnlp; |
michael@0 | 1073 | prev[lengths[j] + i] = i; |
michael@0 | 1074 | } |
michael@0 | 1075 | } |
michael@0 | 1076 | |
michael@0 | 1077 | // In Japanese, |
michael@0 | 1078 | // Katakana word in single character is pretty rare. So we apply |
michael@0 | 1079 | // the following heuristic to Katakana: any continuous run of Katakana |
michael@0 | 1080 | // characters is considered a candidate word with a default cost |
michael@0 | 1081 | // specified in the katakanaCost table according to its length. |
michael@0 | 1082 | //utext_setNativeIndex(text, rangeStart + i); |
michael@0 | 1083 | utext_setNativeIndex(&normalizedText, i); |
michael@0 | 1084 | bool is_katakana = isKatakana(utext_current32(&normalizedText)); |
michael@0 | 1085 | if (!is_prev_katakana && is_katakana) { |
michael@0 | 1086 | int j = i + 1; |
michael@0 | 1087 | utext_next32(&normalizedText); |
michael@0 | 1088 | // Find the end of the continuous run of Katakana characters |
michael@0 | 1089 | while (j < numChars && (j - i) < kMaxKatakanaGroupLength && |
michael@0 | 1090 | isKatakana(utext_current32(&normalizedText))) { |
michael@0 | 1091 | utext_next32(&normalizedText); |
michael@0 | 1092 | ++j; |
michael@0 | 1093 | } |
michael@0 | 1094 | if ((j - i) < kMaxKatakanaGroupLength) { |
michael@0 | 1095 | uint32_t newSnlp = bestSnlp[i] + getKatakanaCost(j - i); |
michael@0 | 1096 | if (newSnlp < bestSnlp[j]) { |
michael@0 | 1097 | bestSnlp[j] = newSnlp; |
michael@0 | 1098 | prev[j] = i; |
michael@0 | 1099 | } |
michael@0 | 1100 | } |
michael@0 | 1101 | } |
michael@0 | 1102 | is_prev_katakana = is_katakana; |
michael@0 | 1103 | } |
michael@0 | 1104 | |
michael@0 | 1105 | // Start pushing the optimal offset index into t_boundary (t for tentative). |
michael@0 | 1106 | // prev[numChars] is guaranteed to be meaningful. |
michael@0 | 1107 | // We'll first push in the reverse order, i.e., |
michael@0 | 1108 | // t_boundary[0] = numChars, and afterwards do a swap. |
michael@0 | 1109 | // TODO: Replace by UVector32. |
michael@0 | 1110 | AutoBuffer<int, maxWordSize> t_boundary(numChars + 1); |
michael@0 | 1111 | |
michael@0 | 1112 | int numBreaks = 0; |
michael@0 | 1113 | // No segmentation found, set boundary to end of range |
michael@0 | 1114 | if (bestSnlp[numChars] == kuint32max) { |
michael@0 | 1115 | t_boundary[numBreaks++] = numChars; |
michael@0 | 1116 | } else { |
michael@0 | 1117 | for (int i = numChars; i > 0; i = prev[i]) { |
michael@0 | 1118 | t_boundary[numBreaks++] = i; |
michael@0 | 1119 | } |
michael@0 | 1120 | U_ASSERT(prev[t_boundary[numBreaks - 1]] == 0); |
michael@0 | 1121 | } |
michael@0 | 1122 | |
michael@0 | 1123 | // Reverse offset index in t_boundary. |
michael@0 | 1124 | // Don't add a break for the start of the dictionary range if there is one |
michael@0 | 1125 | // there already. |
michael@0 | 1126 | if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) { |
michael@0 | 1127 | t_boundary[numBreaks++] = 0; |
michael@0 | 1128 | } |
michael@0 | 1129 | |
michael@0 | 1130 | // Now that we're done, convert positions in t_bdry[] (indices in |
michael@0 | 1131 | // the normalized input string) back to indices in the raw input string |
michael@0 | 1132 | // while reversing t_bdry and pushing values to foundBreaks. |
michael@0 | 1133 | for (int i = numBreaks-1; i >= 0; i--) { |
michael@0 | 1134 | foundBreaks.push(charPositions[t_boundary[i]] + rangeStart, status); |
michael@0 | 1135 | } |
michael@0 | 1136 | |
michael@0 | 1137 | utext_close(&normalizedText); |
michael@0 | 1138 | return numBreaks; |
michael@0 | 1139 | } |
michael@0 | 1140 | #endif |
michael@0 | 1141 | |
michael@0 | 1142 | U_NAMESPACE_END |
michael@0 | 1143 | |
michael@0 | 1144 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |
michael@0 | 1145 |