intl/icu/source/i18n/bocsu.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /*
michael@0 2 *******************************************************************************
michael@0 3 * Copyright (C) 2001-2011, International Business Machines
michael@0 4 * Corporation and others. All Rights Reserved.
michael@0 5 *******************************************************************************
michael@0 6 * file name: bocsu.c
michael@0 7 * encoding: US-ASCII
michael@0 8 * tab size: 8 (not used)
michael@0 9 * indentation:4
michael@0 10 *
michael@0 11 * Author: Markus W. Scherer
michael@0 12 *
michael@0 13 * Modification history:
michael@0 14 * 05/18/2001 weiv Made into separate module
michael@0 15 */
michael@0 16
michael@0 17 #ifndef BOCSU_H
michael@0 18 #define BOCSU_H
michael@0 19
michael@0 20 #include "unicode/utypes.h"
michael@0 21
michael@0 22 #if !UCONFIG_NO_COLLATION
michael@0 23
michael@0 24 U_NAMESPACE_BEGIN
michael@0 25
michael@0 26 class ByteSink;
michael@0 27
michael@0 28 U_NAMESPACE_END
michael@0 29
michael@0 30 /*
michael@0 31 * "BOCSU"
michael@0 32 * Binary Ordered Compression Scheme for Unicode
michael@0 33 *
michael@0 34 * Specific application:
michael@0 35 *
michael@0 36 * Encode a Unicode string for the identical level of a sort key.
michael@0 37 * Restrictions:
michael@0 38 * - byte stream (unsigned 8-bit bytes)
michael@0 39 * - lexical order of the identical-level run must be
michael@0 40 * the same as code point order for the string
michael@0 41 * - avoid byte values 0, 1, 2
michael@0 42 *
michael@0 43 * Method: Slope Detection
michael@0 44 * Remember the previous code point (initial 0).
michael@0 45 * For each cp in the string, encode the difference to the previous one.
michael@0 46 *
michael@0 47 * With a compact encoding of differences, this yields good results for
michael@0 48 * small scripts and UTF-like results otherwise.
michael@0 49 *
michael@0 50 * Encoding of differences:
michael@0 51 * - Similar to a UTF, encoding the length of the byte sequence in the lead bytes.
michael@0 52 * - Does not need to be friendly for decoding or random access
michael@0 53 * (trail byte values may overlap with lead/single byte values).
michael@0 54 * - The signedness must be encoded as the most significant part.
michael@0 55 *
michael@0 56 * We encode differences with few bytes if their absolute values are small.
michael@0 57 * For correct ordering, we must treat the entire value range -10ffff..+10ffff
michael@0 58 * in ascending order, which forbids encoding the sign and the absolute value separately.
michael@0 59 * Instead, we split the lead byte range in the middle and encode non-negative values
michael@0 60 * going up and negative values going down.
michael@0 61 *
michael@0 62 * For very small absolute values, the difference is added to a middle byte value
michael@0 63 * for single-byte encoded differences.
michael@0 64 * For somewhat larger absolute values, the difference is divided by the number
michael@0 65 * of byte values available, the modulo is used for one trail byte, and the remainder
michael@0 66 * is added to a lead byte avoiding the single-byte range.
michael@0 67 * For large absolute values, the difference is similarly encoded in three bytes.
michael@0 68 *
michael@0 69 * This encoding does not use byte values 0, 1, 2, but uses all other byte values
michael@0 70 * for lead/single bytes so that the middle range of single bytes is as large
michael@0 71 * as possible.
michael@0 72 * Note that the lead byte ranges overlap some, but that the sequences as a whole
michael@0 73 * are well ordered. I.e., even if the lead byte is the same for sequences of different
michael@0 74 * lengths, the trail bytes establish correct order.
michael@0 75 * It would be possible to encode slightly larger ranges for each length (>1) by
michael@0 76 * subtracting the lower bound of the range. However, that would also slow down the
michael@0 77 * calculation.
michael@0 78 *
michael@0 79 * For the actual string encoding, an optimization moves the previous code point value
michael@0 80 * to the middle of its Unicode script block to minimize the differences in
michael@0 81 * same-script text runs.
michael@0 82 */
michael@0 83
michael@0 84 /* Do not use byte values 0, 1, 2 because they are separators in sort keys. */
michael@0 85 #define SLOPE_MIN 3
michael@0 86 #define SLOPE_MAX 0xff
michael@0 87 #define SLOPE_MIDDLE 0x81
michael@0 88
michael@0 89 #define SLOPE_TAIL_COUNT (SLOPE_MAX-SLOPE_MIN+1)
michael@0 90
michael@0 91 #define SLOPE_MAX_BYTES 4
michael@0 92
michael@0 93 /*
michael@0 94 * Number of lead bytes:
michael@0 95 * 1 middle byte for 0
michael@0 96 * 2*80=160 single bytes for !=0
michael@0 97 * 2*42=84 for double-byte values
michael@0 98 * 2*3=6 for 3-byte values
michael@0 99 * 2*1=2 for 4-byte values
michael@0 100 *
michael@0 101 * The sum must be <=SLOPE_TAIL_COUNT.
michael@0 102 *
michael@0 103 * Why these numbers?
michael@0 104 * - There should be >=128 single-byte values to cover 128-blocks
michael@0 105 * with small scripts.
michael@0 106 * - There should be >=20902 single/double-byte values to cover Unihan.
michael@0 107 * - It helps CJK Extension B some if there are 3-byte values that cover
michael@0 108 * the distance between them and Unihan.
michael@0 109 * This also helps to jump among distant places in the BMP.
michael@0 110 * - Four-byte values are necessary to cover the rest of Unicode.
michael@0 111 *
michael@0 112 * Symmetrical lead byte counts are for convenience.
michael@0 113 * With an equal distribution of even and odd differences there is also
michael@0 114 * no advantage to asymmetrical lead byte counts.
michael@0 115 */
michael@0 116 #define SLOPE_SINGLE 80
michael@0 117 #define SLOPE_LEAD_2 42
michael@0 118 #define SLOPE_LEAD_3 3
michael@0 119 #define SLOPE_LEAD_4 1
michael@0 120
michael@0 121 /* The difference value range for single-byters. */
michael@0 122 #define SLOPE_REACH_POS_1 SLOPE_SINGLE
michael@0 123 #define SLOPE_REACH_NEG_1 (-SLOPE_SINGLE)
michael@0 124
michael@0 125 /* The difference value range for double-byters. */
michael@0 126 #define SLOPE_REACH_POS_2 (SLOPE_LEAD_2*SLOPE_TAIL_COUNT+(SLOPE_LEAD_2-1))
michael@0 127 #define SLOPE_REACH_NEG_2 (-SLOPE_REACH_POS_2-1)
michael@0 128
michael@0 129 /* The difference value range for 3-byters. */
michael@0 130 #define SLOPE_REACH_POS_3 (SLOPE_LEAD_3*SLOPE_TAIL_COUNT*SLOPE_TAIL_COUNT+(SLOPE_LEAD_3-1)*SLOPE_TAIL_COUNT+(SLOPE_TAIL_COUNT-1))
michael@0 131 #define SLOPE_REACH_NEG_3 (-SLOPE_REACH_POS_3-1)
michael@0 132
michael@0 133 /* The lead byte start values. */
michael@0 134 #define SLOPE_START_POS_2 (SLOPE_MIDDLE+SLOPE_SINGLE+1)
michael@0 135 #define SLOPE_START_POS_3 (SLOPE_START_POS_2+SLOPE_LEAD_2)
michael@0 136
michael@0 137 #define SLOPE_START_NEG_2 (SLOPE_MIDDLE+SLOPE_REACH_NEG_1)
michael@0 138 #define SLOPE_START_NEG_3 (SLOPE_START_NEG_2-SLOPE_LEAD_2)
michael@0 139
michael@0 140 /*
michael@0 141 * Integer division and modulo with negative numerators
michael@0 142 * yields negative modulo results and quotients that are one more than
michael@0 143 * what we need here.
michael@0 144 */
michael@0 145 #define NEGDIVMOD(n, d, m) { \
michael@0 146 (m)=(n)%(d); \
michael@0 147 (n)/=(d); \
michael@0 148 if((m)<0) { \
michael@0 149 --(n); \
michael@0 150 (m)+=(d); \
michael@0 151 } \
michael@0 152 }
michael@0 153
michael@0 154 U_CFUNC void
michael@0 155 u_writeIdenticalLevelRun(const UChar *s, int32_t length, icu::ByteSink &sink);
michael@0 156
michael@0 157 U_CFUNC int32_t
michael@0 158 u_writeIdenticalLevelRunTwoChars(UChar32 first, UChar32 second, uint8_t *p);
michael@0 159
michael@0 160 U_CFUNC uint8_t *
michael@0 161 u_writeDiff(int32_t diff, uint8_t *p);
michael@0 162
michael@0 163 #endif /* #if !UCONFIG_NO_COLLATION */
michael@0 164
michael@0 165 #endif

mercurial