Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
michael@0 | 2 | * vim: set ts=8 sts=4 et sw=4 tw=99: |
michael@0 | 3 | * |
michael@0 | 4 | * Copyright (C) 2009 Apple Inc. All rights reserved. |
michael@0 | 5 | * |
michael@0 | 6 | * Redistribution and use in source and binary forms, with or without |
michael@0 | 7 | * modification, are permitted provided that the following conditions |
michael@0 | 8 | * are met: |
michael@0 | 9 | * 1. Redistributions of source code must retain the above copyright |
michael@0 | 10 | * notice, this list of conditions and the following disclaimer. |
michael@0 | 11 | * 2. Redistributions in binary form must reproduce the above copyright |
michael@0 | 12 | * notice, this list of conditions and the following disclaimer in the |
michael@0 | 13 | * documentation and/or other materials provided with the distribution. |
michael@0 | 14 | * |
michael@0 | 15 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
michael@0 | 16 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
michael@0 | 17 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
michael@0 | 18 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
michael@0 | 19 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
michael@0 | 20 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
michael@0 | 21 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
michael@0 | 22 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
michael@0 | 23 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
michael@0 | 24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
michael@0 | 25 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
michael@0 | 26 | */ |
michael@0 | 27 | |
michael@0 | 28 | #include "yarr/YarrJIT.h" |
michael@0 | 29 | |
michael@0 | 30 | #include "assembler/assembler/LinkBuffer.h" |
michael@0 | 31 | #include "yarr/Yarr.h" |
michael@0 | 32 | #include "yarr/YarrCanonicalizeUCS2.h" |
michael@0 | 33 | |
michael@0 | 34 | #if ENABLE_YARR_JIT |
michael@0 | 35 | |
michael@0 | 36 | using namespace WTF; |
michael@0 | 37 | |
michael@0 | 38 | namespace JSC { namespace Yarr { |
michael@0 | 39 | |
michael@0 | 40 | template<YarrJITCompileMode compileMode> |
michael@0 | 41 | class YarrGenerator : private MacroAssembler { |
michael@0 | 42 | friend void jitCompile(JSGlobalData*, YarrCodeBlock& jitObject, const String& pattern, unsigned& numSubpatterns, const char*& error, bool ignoreCase, bool multiline); |
michael@0 | 43 | |
michael@0 | 44 | #if WTF_CPU_ARM |
michael@0 | 45 | static const RegisterID input = ARMRegisters::r0; |
michael@0 | 46 | static const RegisterID index = ARMRegisters::r1; |
michael@0 | 47 | static const RegisterID length = ARMRegisters::r2; |
michael@0 | 48 | static const RegisterID output = ARMRegisters::r4; |
michael@0 | 49 | |
michael@0 | 50 | static const RegisterID regT0 = ARMRegisters::r5; |
michael@0 | 51 | static const RegisterID regT1 = ARMRegisters::r6; |
michael@0 | 52 | |
michael@0 | 53 | static const RegisterID returnRegister = ARMRegisters::r0; |
michael@0 | 54 | static const RegisterID returnRegister2 = ARMRegisters::r1; |
michael@0 | 55 | #elif WTF_CPU_MIPS |
michael@0 | 56 | static const RegisterID input = MIPSRegisters::a0; |
michael@0 | 57 | static const RegisterID index = MIPSRegisters::a1; |
michael@0 | 58 | static const RegisterID length = MIPSRegisters::a2; |
michael@0 | 59 | static const RegisterID output = MIPSRegisters::a3; |
michael@0 | 60 | |
michael@0 | 61 | static const RegisterID regT0 = MIPSRegisters::t4; |
michael@0 | 62 | static const RegisterID regT1 = MIPSRegisters::t5; |
michael@0 | 63 | |
michael@0 | 64 | static const RegisterID returnRegister = MIPSRegisters::v0; |
michael@0 | 65 | static const RegisterID returnRegister2 = MIPSRegisters::v1; |
michael@0 | 66 | #elif WTF_CPU_SH4 |
michael@0 | 67 | static const RegisterID input = SH4Registers::r4; |
michael@0 | 68 | static const RegisterID index = SH4Registers::r5; |
michael@0 | 69 | static const RegisterID length = SH4Registers::r6; |
michael@0 | 70 | static const RegisterID output = SH4Registers::r7; |
michael@0 | 71 | |
michael@0 | 72 | static const RegisterID regT0 = SH4Registers::r0; |
michael@0 | 73 | static const RegisterID regT1 = SH4Registers::r1; |
michael@0 | 74 | |
michael@0 | 75 | static const RegisterID returnRegister = SH4Registers::r0; |
michael@0 | 76 | static const RegisterID returnRegister2 = SH4Registers::r1; |
michael@0 | 77 | #elif WTF_CPU_SPARC |
michael@0 | 78 | static const RegisterID input = SparcRegisters::i0; |
michael@0 | 79 | static const RegisterID index = SparcRegisters::i1; |
michael@0 | 80 | static const RegisterID length = SparcRegisters::i2; |
michael@0 | 81 | static const RegisterID output = SparcRegisters::i3; |
michael@0 | 82 | |
michael@0 | 83 | static const RegisterID regT0 = SparcRegisters::i4; |
michael@0 | 84 | static const RegisterID regT1 = SparcRegisters::i5; |
michael@0 | 85 | |
michael@0 | 86 | static const RegisterID returnRegister = SparcRegisters::i0; |
michael@0 | 87 | #elif WTF_CPU_X86 |
michael@0 | 88 | static const RegisterID input = X86Registers::eax; |
michael@0 | 89 | static const RegisterID index = X86Registers::edx; |
michael@0 | 90 | static const RegisterID length = X86Registers::ecx; |
michael@0 | 91 | static const RegisterID output = X86Registers::edi; |
michael@0 | 92 | |
michael@0 | 93 | static const RegisterID regT0 = X86Registers::ebx; |
michael@0 | 94 | static const RegisterID regT1 = X86Registers::esi; |
michael@0 | 95 | |
michael@0 | 96 | static const RegisterID returnRegister = X86Registers::eax; |
michael@0 | 97 | static const RegisterID returnRegister2 = X86Registers::edx; |
michael@0 | 98 | #elif WTF_CPU_X86_64 |
michael@0 | 99 | # if WTF_PLATFORM_WIN |
michael@0 | 100 | static const RegisterID input = X86Registers::ecx; |
michael@0 | 101 | static const RegisterID index = X86Registers::edx; |
michael@0 | 102 | static const RegisterID length = X86Registers::r8; |
michael@0 | 103 | static const RegisterID output = X86Registers::r9; |
michael@0 | 104 | # else |
michael@0 | 105 | static const RegisterID input = X86Registers::edi; |
michael@0 | 106 | static const RegisterID index = X86Registers::esi; |
michael@0 | 107 | static const RegisterID length = X86Registers::edx; |
michael@0 | 108 | static const RegisterID output = X86Registers::ecx; |
michael@0 | 109 | # endif |
michael@0 | 110 | |
michael@0 | 111 | static const RegisterID regT0 = X86Registers::eax; |
michael@0 | 112 | static const RegisterID regT1 = X86Registers::ebx; |
michael@0 | 113 | |
michael@0 | 114 | static const RegisterID returnRegister = X86Registers::eax; |
michael@0 | 115 | |
michael@0 | 116 | # if !WTF_PLATFORM_WIN |
michael@0 | 117 | // no way to use int128_t as return value on Win64 ABI |
michael@0 | 118 | static const RegisterID returnRegister2 = X86Registers::edx; |
michael@0 | 119 | # endif |
michael@0 | 120 | #endif |
michael@0 | 121 | |
michael@0 | 122 | void optimizeAlternative(PatternAlternative* alternative) |
michael@0 | 123 | { |
michael@0 | 124 | if (!alternative->m_terms.size()) |
michael@0 | 125 | return; |
michael@0 | 126 | |
michael@0 | 127 | for (unsigned i = 0; i < alternative->m_terms.size() - 1; ++i) { |
michael@0 | 128 | PatternTerm& term = alternative->m_terms[i]; |
michael@0 | 129 | PatternTerm& nextTerm = alternative->m_terms[i + 1]; |
michael@0 | 130 | |
michael@0 | 131 | if ((term.type == PatternTerm::TypeCharacterClass) |
michael@0 | 132 | && (term.quantityType == QuantifierFixedCount) |
michael@0 | 133 | && (nextTerm.type == PatternTerm::TypePatternCharacter) |
michael@0 | 134 | && (nextTerm.quantityType == QuantifierFixedCount)) { |
michael@0 | 135 | PatternTerm termCopy = term; |
michael@0 | 136 | alternative->m_terms[i] = nextTerm; |
michael@0 | 137 | alternative->m_terms[i + 1] = termCopy; |
michael@0 | 138 | } |
michael@0 | 139 | } |
michael@0 | 140 | } |
michael@0 | 141 | |
michael@0 | 142 | void matchCharacterClassRange(RegisterID character, JumpList& failures, JumpList& matchDest, const CharacterRange* ranges, unsigned count, unsigned* matchIndex, const UChar* matches, unsigned matchCount) |
michael@0 | 143 | { |
michael@0 | 144 | do { |
michael@0 | 145 | // pick which range we're going to generate |
michael@0 | 146 | int which = count >> 1; |
michael@0 | 147 | char lo = ranges[which].begin; |
michael@0 | 148 | char hi = ranges[which].end; |
michael@0 | 149 | |
michael@0 | 150 | // check if there are any ranges or matches below lo. If not, just jl to failure - |
michael@0 | 151 | // if there is anything else to check, check that first, if it falls through jmp to failure. |
michael@0 | 152 | if ((*matchIndex < matchCount) && (matches[*matchIndex] < lo)) { |
michael@0 | 153 | Jump loOrAbove = branch32(GreaterThanOrEqual, character, Imm32((unsigned short)lo)); |
michael@0 | 154 | |
michael@0 | 155 | // generate code for all ranges before this one |
michael@0 | 156 | if (which) |
michael@0 | 157 | matchCharacterClassRange(character, failures, matchDest, ranges, which, matchIndex, matches, matchCount); |
michael@0 | 158 | |
michael@0 | 159 | while ((*matchIndex < matchCount) && (matches[*matchIndex] < lo)) { |
michael@0 | 160 | matchDest.append(branch32(Equal, character, Imm32((unsigned short)matches[*matchIndex]))); |
michael@0 | 161 | ++*matchIndex; |
michael@0 | 162 | } |
michael@0 | 163 | failures.append(jump()); |
michael@0 | 164 | |
michael@0 | 165 | loOrAbove.link(this); |
michael@0 | 166 | } else if (which) { |
michael@0 | 167 | Jump loOrAbove = branch32(GreaterThanOrEqual, character, Imm32((unsigned short)lo)); |
michael@0 | 168 | |
michael@0 | 169 | matchCharacterClassRange(character, failures, matchDest, ranges, which, matchIndex, matches, matchCount); |
michael@0 | 170 | failures.append(jump()); |
michael@0 | 171 | |
michael@0 | 172 | loOrAbove.link(this); |
michael@0 | 173 | } else |
michael@0 | 174 | failures.append(branch32(LessThan, character, Imm32((unsigned short)lo))); |
michael@0 | 175 | |
michael@0 | 176 | while ((*matchIndex < matchCount) && (matches[*matchIndex] <= hi)) |
michael@0 | 177 | ++*matchIndex; |
michael@0 | 178 | |
michael@0 | 179 | matchDest.append(branch32(LessThanOrEqual, character, Imm32((unsigned short)hi))); |
michael@0 | 180 | // fall through to here, the value is above hi. |
michael@0 | 181 | |
michael@0 | 182 | // shuffle along & loop around if there are any more matches to handle. |
michael@0 | 183 | unsigned next = which + 1; |
michael@0 | 184 | ranges += next; |
michael@0 | 185 | count -= next; |
michael@0 | 186 | } while (count); |
michael@0 | 187 | } |
michael@0 | 188 | |
michael@0 | 189 | void matchCharacterClass(RegisterID character, JumpList& matchDest, const CharacterClass* charClass) |
michael@0 | 190 | { |
michael@0 | 191 | if (charClass->m_table) { |
michael@0 | 192 | ExtendedAddress tableEntry(character, reinterpret_cast<intptr_t>(charClass->m_table)); |
michael@0 | 193 | matchDest.append(branchTest8(charClass->m_tableInverted ? Zero : NonZero, tableEntry)); |
michael@0 | 194 | return; |
michael@0 | 195 | } |
michael@0 | 196 | Jump unicodeFail; |
michael@0 | 197 | if (charClass->m_matchesUnicode.size() || charClass->m_rangesUnicode.size()) { |
michael@0 | 198 | Jump isAscii = branch32(LessThanOrEqual, character, TrustedImm32(0x7f)); |
michael@0 | 199 | |
michael@0 | 200 | if (charClass->m_matchesUnicode.size()) { |
michael@0 | 201 | for (unsigned i = 0; i < charClass->m_matchesUnicode.size(); ++i) { |
michael@0 | 202 | UChar ch = charClass->m_matchesUnicode[i]; |
michael@0 | 203 | matchDest.append(branch32(Equal, character, Imm32(ch))); |
michael@0 | 204 | } |
michael@0 | 205 | } |
michael@0 | 206 | |
michael@0 | 207 | if (charClass->m_rangesUnicode.size()) { |
michael@0 | 208 | for (unsigned i = 0; i < charClass->m_rangesUnicode.size(); ++i) { |
michael@0 | 209 | UChar lo = charClass->m_rangesUnicode[i].begin; |
michael@0 | 210 | UChar hi = charClass->m_rangesUnicode[i].end; |
michael@0 | 211 | |
michael@0 | 212 | Jump below = branch32(LessThan, character, Imm32(lo)); |
michael@0 | 213 | matchDest.append(branch32(LessThanOrEqual, character, Imm32(hi))); |
michael@0 | 214 | below.link(this); |
michael@0 | 215 | } |
michael@0 | 216 | } |
michael@0 | 217 | |
michael@0 | 218 | unicodeFail = jump(); |
michael@0 | 219 | isAscii.link(this); |
michael@0 | 220 | } |
michael@0 | 221 | |
michael@0 | 222 | if (charClass->m_ranges.size()) { |
michael@0 | 223 | unsigned matchIndex = 0; |
michael@0 | 224 | JumpList failures; |
michael@0 | 225 | matchCharacterClassRange(character, failures, matchDest, charClass->m_ranges.begin(), charClass->m_ranges.size(), &matchIndex, charClass->m_matches.begin(), charClass->m_matches.size()); |
michael@0 | 226 | while (matchIndex < charClass->m_matches.size()) |
michael@0 | 227 | matchDest.append(branch32(Equal, character, Imm32((unsigned short)charClass->m_matches[matchIndex++]))); |
michael@0 | 228 | |
michael@0 | 229 | failures.link(this); |
michael@0 | 230 | } else if (charClass->m_matches.size()) { |
michael@0 | 231 | // optimization: gather 'a','A' etc back together, can mask & test once. |
michael@0 | 232 | Vector<char> matchesAZaz; |
michael@0 | 233 | |
michael@0 | 234 | for (unsigned i = 0; i < charClass->m_matches.size(); ++i) { |
michael@0 | 235 | char ch = charClass->m_matches[i]; |
michael@0 | 236 | if (m_pattern.m_ignoreCase) { |
michael@0 | 237 | if (isASCIILower(ch)) { |
michael@0 | 238 | matchesAZaz.append(ch); |
michael@0 | 239 | continue; |
michael@0 | 240 | } |
michael@0 | 241 | if (isASCIIUpper(ch)) |
michael@0 | 242 | continue; |
michael@0 | 243 | } |
michael@0 | 244 | matchDest.append(branch32(Equal, character, Imm32((unsigned short)ch))); |
michael@0 | 245 | } |
michael@0 | 246 | |
michael@0 | 247 | if (unsigned countAZaz = matchesAZaz.size()) { |
michael@0 | 248 | or32(TrustedImm32(32), character); |
michael@0 | 249 | for (unsigned i = 0; i < countAZaz; ++i) |
michael@0 | 250 | matchDest.append(branch32(Equal, character, TrustedImm32(matchesAZaz[i]))); |
michael@0 | 251 | } |
michael@0 | 252 | } |
michael@0 | 253 | |
michael@0 | 254 | if (charClass->m_matchesUnicode.size() || charClass->m_rangesUnicode.size()) |
michael@0 | 255 | unicodeFail.link(this); |
michael@0 | 256 | } |
michael@0 | 257 | |
michael@0 | 258 | // Jumps if input not available; will have (incorrectly) incremented already! |
michael@0 | 259 | Jump jumpIfNoAvailableInput(unsigned countToCheck = 0) |
michael@0 | 260 | { |
michael@0 | 261 | if (countToCheck) |
michael@0 | 262 | add32(Imm32(countToCheck), index); |
michael@0 | 263 | return branch32(Above, index, length); |
michael@0 | 264 | } |
michael@0 | 265 | |
michael@0 | 266 | Jump jumpIfAvailableInput(unsigned countToCheck) |
michael@0 | 267 | { |
michael@0 | 268 | add32(Imm32(countToCheck), index); |
michael@0 | 269 | return branch32(BelowOrEqual, index, length); |
michael@0 | 270 | } |
michael@0 | 271 | |
michael@0 | 272 | Jump checkInput() |
michael@0 | 273 | { |
michael@0 | 274 | return branch32(BelowOrEqual, index, length); |
michael@0 | 275 | } |
michael@0 | 276 | |
michael@0 | 277 | Jump atEndOfInput() |
michael@0 | 278 | { |
michael@0 | 279 | return branch32(Equal, index, length); |
michael@0 | 280 | } |
michael@0 | 281 | |
michael@0 | 282 | Jump notAtEndOfInput() |
michael@0 | 283 | { |
michael@0 | 284 | return branch32(NotEqual, index, length); |
michael@0 | 285 | } |
michael@0 | 286 | |
michael@0 | 287 | Jump jumpIfCharNotEquals(UChar ch, int inputPosition, RegisterID character) |
michael@0 | 288 | { |
michael@0 | 289 | readCharacter(inputPosition, character); |
michael@0 | 290 | |
michael@0 | 291 | // For case-insesitive compares, non-ascii characters that have different |
michael@0 | 292 | // upper & lower case representations are converted to a character class. |
michael@0 | 293 | ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(ch) || isCanonicallyUnique(ch)); |
michael@0 | 294 | if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) { |
michael@0 | 295 | or32(TrustedImm32(0x20), character); |
michael@0 | 296 | ch |= 0x20; |
michael@0 | 297 | } |
michael@0 | 298 | |
michael@0 | 299 | return branch32(NotEqual, character, Imm32(ch)); |
michael@0 | 300 | } |
michael@0 | 301 | |
michael@0 | 302 | void readCharacter(int inputPosition, RegisterID reg) |
michael@0 | 303 | { |
michael@0 | 304 | if (m_charSize == Char8) |
michael@0 | 305 | load8(BaseIndex(input, index, TimesOne, inputPosition * sizeof(char)), reg); |
michael@0 | 306 | else |
michael@0 | 307 | load16(BaseIndex(input, index, TimesTwo, inputPosition * sizeof(UChar)), reg); |
michael@0 | 308 | } |
michael@0 | 309 | |
michael@0 | 310 | void storeToFrame(RegisterID reg, unsigned frameLocation) |
michael@0 | 311 | { |
michael@0 | 312 | poke(reg, frameLocation); |
michael@0 | 313 | } |
michael@0 | 314 | |
michael@0 | 315 | void storeToFrame(TrustedImm32 imm, unsigned frameLocation) |
michael@0 | 316 | { |
michael@0 | 317 | poke(imm, frameLocation); |
michael@0 | 318 | } |
michael@0 | 319 | |
michael@0 | 320 | DataLabelPtr storeToFrameWithPatch(unsigned frameLocation) |
michael@0 | 321 | { |
michael@0 | 322 | return storePtrWithPatch(TrustedImmPtr(0), Address(stackPointerRegister, frameLocation * sizeof(void*))); |
michael@0 | 323 | } |
michael@0 | 324 | |
michael@0 | 325 | void loadFromFrame(unsigned frameLocation, RegisterID reg) |
michael@0 | 326 | { |
michael@0 | 327 | peek(reg, frameLocation); |
michael@0 | 328 | } |
michael@0 | 329 | |
michael@0 | 330 | void loadFromFrameAndJump(unsigned frameLocation) |
michael@0 | 331 | { |
michael@0 | 332 | jump(Address(stackPointerRegister, frameLocation * sizeof(void*))); |
michael@0 | 333 | } |
michael@0 | 334 | |
michael@0 | 335 | void initCallFrame() |
michael@0 | 336 | { |
michael@0 | 337 | unsigned callFrameSize = m_pattern.m_body->m_callFrameSize; |
michael@0 | 338 | if (callFrameSize) |
michael@0 | 339 | subPtr(Imm32(callFrameSize * sizeof(void*)), stackPointerRegister); |
michael@0 | 340 | } |
michael@0 | 341 | void removeCallFrame() |
michael@0 | 342 | { |
michael@0 | 343 | unsigned callFrameSize = m_pattern.m_body->m_callFrameSize; |
michael@0 | 344 | if (callFrameSize) |
michael@0 | 345 | addPtr(Imm32(callFrameSize * sizeof(void*)), stackPointerRegister); |
michael@0 | 346 | } |
michael@0 | 347 | |
michael@0 | 348 | // Used to record subpatters, should only be called if compileMode is IncludeSubpatterns. |
michael@0 | 349 | void setSubpatternStart(RegisterID reg, unsigned subpattern) |
michael@0 | 350 | { |
michael@0 | 351 | ASSERT(subpattern); |
michael@0 | 352 | // FIXME: should be able to ASSERT(compileMode == IncludeSubpatterns), but then this function is conditionally NORETURN. :-( |
michael@0 | 353 | store32(reg, Address(output, (subpattern << 1) * sizeof(int))); |
michael@0 | 354 | } |
michael@0 | 355 | void setSubpatternEnd(RegisterID reg, unsigned subpattern) |
michael@0 | 356 | { |
michael@0 | 357 | ASSERT(subpattern); |
michael@0 | 358 | // FIXME: should be able to ASSERT(compileMode == IncludeSubpatterns), but then this function is conditionally NORETURN. :-( |
michael@0 | 359 | store32(reg, Address(output, ((subpattern << 1) + 1) * sizeof(int))); |
michael@0 | 360 | } |
michael@0 | 361 | void clearSubpatternStart(unsigned subpattern) |
michael@0 | 362 | { |
michael@0 | 363 | ASSERT(subpattern); |
michael@0 | 364 | // FIXME: should be able to ASSERT(compileMode == IncludeSubpatterns), but then this function is conditionally NORETURN. :-( |
michael@0 | 365 | store32(TrustedImm32(-1), Address(output, (subpattern << 1) * sizeof(int))); |
michael@0 | 366 | } |
michael@0 | 367 | |
michael@0 | 368 | // We use one of three different strategies to track the start of the current match, |
michael@0 | 369 | // while matching. |
michael@0 | 370 | // 1) If the pattern has a fixed size, do nothing! - we calculate the value lazily |
michael@0 | 371 | // at the end of matching. This is irrespective of compileMode, and in this case |
michael@0 | 372 | // these methods should never be called. |
michael@0 | 373 | // 2) If we're compiling IncludeSubpatterns, 'output' contains a pointer to an output |
michael@0 | 374 | // vector, store the match start in the output vector. |
michael@0 | 375 | // 3) If we're compiling MatchOnly, 'output' is unused, store the match start directly |
michael@0 | 376 | // in this register. |
michael@0 | 377 | void setMatchStart(RegisterID reg) |
michael@0 | 378 | { |
michael@0 | 379 | ASSERT(!m_pattern.m_body->m_hasFixedSize); |
michael@0 | 380 | if (compileMode == IncludeSubpatterns) |
michael@0 | 381 | store32(reg, output); |
michael@0 | 382 | else |
michael@0 | 383 | move(reg, output); |
michael@0 | 384 | } |
michael@0 | 385 | void getMatchStart(RegisterID reg) |
michael@0 | 386 | { |
michael@0 | 387 | ASSERT(!m_pattern.m_body->m_hasFixedSize); |
michael@0 | 388 | if (compileMode == IncludeSubpatterns) |
michael@0 | 389 | load32(output, reg); |
michael@0 | 390 | else |
michael@0 | 391 | move(output, reg); |
michael@0 | 392 | } |
michael@0 | 393 | |
michael@0 | 394 | enum YarrOpCode { |
michael@0 | 395 | // These nodes wrap body alternatives - those in the main disjunction, |
michael@0 | 396 | // rather than subpatterns or assertions. These are chained together in |
michael@0 | 397 | // a doubly linked list, with a 'begin' node for the first alternative, |
michael@0 | 398 | // a 'next' node for each subsequent alternative, and an 'end' node at |
michael@0 | 399 | // the end. In the case of repeating alternatives, the 'end' node also |
michael@0 | 400 | // has a reference back to 'begin'. |
michael@0 | 401 | OpBodyAlternativeBegin, |
michael@0 | 402 | OpBodyAlternativeNext, |
michael@0 | 403 | OpBodyAlternativeEnd, |
michael@0 | 404 | // Similar to the body alternatives, but used for subpatterns with two |
michael@0 | 405 | // or more alternatives. |
michael@0 | 406 | OpNestedAlternativeBegin, |
michael@0 | 407 | OpNestedAlternativeNext, |
michael@0 | 408 | OpNestedAlternativeEnd, |
michael@0 | 409 | // Used for alternatives in subpatterns where there is only a single |
michael@0 | 410 | // alternative (backtrackingis easier in these cases), or for alternatives |
michael@0 | 411 | // which never need to be backtracked (those in parenthetical assertions, |
michael@0 | 412 | // terminal subpatterns). |
michael@0 | 413 | OpSimpleNestedAlternativeBegin, |
michael@0 | 414 | OpSimpleNestedAlternativeNext, |
michael@0 | 415 | OpSimpleNestedAlternativeEnd, |
michael@0 | 416 | // Used to wrap 'Once' subpattern matches (quantityCount == 1). |
michael@0 | 417 | OpParenthesesSubpatternOnceBegin, |
michael@0 | 418 | OpParenthesesSubpatternOnceEnd, |
michael@0 | 419 | // Used to wrap 'Terminal' subpattern matches (at the end of the regexp). |
michael@0 | 420 | OpParenthesesSubpatternTerminalBegin, |
michael@0 | 421 | OpParenthesesSubpatternTerminalEnd, |
michael@0 | 422 | // Used to wrap parenthetical assertions. |
michael@0 | 423 | OpParentheticalAssertionBegin, |
michael@0 | 424 | OpParentheticalAssertionEnd, |
michael@0 | 425 | // Wraps all simple terms (pattern characters, character classes). |
michael@0 | 426 | OpTerm, |
michael@0 | 427 | // Where an expression contains only 'once through' body alternatives |
michael@0 | 428 | // and no repeating ones, this op is used to return match failure. |
michael@0 | 429 | OpMatchFailed |
michael@0 | 430 | }; |
michael@0 | 431 | |
michael@0 | 432 | // This structure is used to hold the compiled opcode information, |
michael@0 | 433 | // including reference back to the original PatternTerm/PatternAlternatives, |
michael@0 | 434 | // and JIT compilation data structures. |
michael@0 | 435 | struct YarrOp { |
michael@0 | 436 | explicit YarrOp(PatternTerm* term) |
michael@0 | 437 | : m_op(OpTerm) |
michael@0 | 438 | , m_term(term) |
michael@0 | 439 | , m_isDeadCode(false) |
michael@0 | 440 | { |
michael@0 | 441 | } |
michael@0 | 442 | |
michael@0 | 443 | explicit YarrOp(YarrOpCode op) |
michael@0 | 444 | : m_op(op) |
michael@0 | 445 | , m_isDeadCode(false) |
michael@0 | 446 | { |
michael@0 | 447 | } |
michael@0 | 448 | |
michael@0 | 449 | // The operation, as a YarrOpCode, and also a reference to the PatternTerm. |
michael@0 | 450 | YarrOpCode m_op; |
michael@0 | 451 | PatternTerm* m_term; |
michael@0 | 452 | |
michael@0 | 453 | // For alternatives, this holds the PatternAlternative and doubly linked |
michael@0 | 454 | // references to this alternative's siblings. In the case of the |
michael@0 | 455 | // OpBodyAlternativeEnd node at the end of a section of repeating nodes, |
michael@0 | 456 | // m_nextOp will reference the OpBodyAlternativeBegin node of the first |
michael@0 | 457 | // repeating alternative. |
michael@0 | 458 | PatternAlternative* m_alternative; |
michael@0 | 459 | size_t m_previousOp; |
michael@0 | 460 | size_t m_nextOp; |
michael@0 | 461 | |
michael@0 | 462 | // Used to record a set of Jumps out of the generated code, typically |
michael@0 | 463 | // used for jumps out to backtracking code, and a single reentry back |
michael@0 | 464 | // into the code for a node (likely where a backtrack will trigger |
michael@0 | 465 | // rematching). |
michael@0 | 466 | Label m_reentry; |
michael@0 | 467 | JumpList m_jumps; |
michael@0 | 468 | |
michael@0 | 469 | // Used for backtracking when the prior alternative did not consume any |
michael@0 | 470 | // characters but matched. |
michael@0 | 471 | Jump m_zeroLengthMatch; |
michael@0 | 472 | |
michael@0 | 473 | // This flag is used to null out the second pattern character, when |
michael@0 | 474 | // two are fused to match a pair together. |
michael@0 | 475 | bool m_isDeadCode; |
michael@0 | 476 | |
michael@0 | 477 | // Currently used in the case of some of the more complex management of |
michael@0 | 478 | // 'm_checked', to cache the offset used in this alternative, to avoid |
michael@0 | 479 | // recalculating it. |
michael@0 | 480 | int m_checkAdjust; |
michael@0 | 481 | |
michael@0 | 482 | // Used by OpNestedAlternativeNext/End to hold the pointer to the |
michael@0 | 483 | // value that will be pushed into the pattern's frame to return to, |
michael@0 | 484 | // upon backtracking back into the disjunction. |
michael@0 | 485 | DataLabelPtr m_returnAddress; |
michael@0 | 486 | }; |
michael@0 | 487 | |
michael@0 | 488 | // BacktrackingState |
michael@0 | 489 | // This class encapsulates information about the state of code generation |
michael@0 | 490 | // whilst generating the code for backtracking, when a term fails to match. |
michael@0 | 491 | // Upon entry to code generation of the backtracking code for a given node, |
michael@0 | 492 | // the Backtracking state will hold references to all control flow sources |
michael@0 | 493 | // that are outputs in need of further backtracking from the prior node |
michael@0 | 494 | // generated (which is the subsequent operation in the regular expression, |
michael@0 | 495 | // and in the m_ops Vector, since we generated backtracking backwards). |
michael@0 | 496 | // These references to control flow take the form of: |
michael@0 | 497 | // - A jump list of jumps, to be linked to code that will backtrack them |
michael@0 | 498 | // further. |
michael@0 | 499 | // - A set of DataLabelPtr values, to be populated with values to be |
michael@0 | 500 | // treated effectively as return addresses backtracking into complex |
michael@0 | 501 | // subpatterns. |
michael@0 | 502 | // - A flag indicating that the current sequence of generated code up to |
michael@0 | 503 | // this point requires backtracking. |
michael@0 | 504 | class BacktrackingState { |
michael@0 | 505 | public: |
michael@0 | 506 | BacktrackingState() |
michael@0 | 507 | : m_pendingFallthrough(false) |
michael@0 | 508 | { |
michael@0 | 509 | } |
michael@0 | 510 | |
michael@0 | 511 | // Add a jump or jumps, a return address, or set the flag indicating |
michael@0 | 512 | // that the current 'fallthrough' control flow requires backtracking. |
michael@0 | 513 | void append(const Jump& jump) |
michael@0 | 514 | { |
michael@0 | 515 | m_laterFailures.append(jump); |
michael@0 | 516 | } |
michael@0 | 517 | void append(JumpList& jumpList) |
michael@0 | 518 | { |
michael@0 | 519 | m_laterFailures.append(jumpList); |
michael@0 | 520 | } |
michael@0 | 521 | void append(const DataLabelPtr& returnAddress) |
michael@0 | 522 | { |
michael@0 | 523 | m_pendingReturns.append(returnAddress); |
michael@0 | 524 | } |
michael@0 | 525 | void fallthrough() |
michael@0 | 526 | { |
michael@0 | 527 | ASSERT(!m_pendingFallthrough); |
michael@0 | 528 | m_pendingFallthrough = true; |
michael@0 | 529 | } |
michael@0 | 530 | |
michael@0 | 531 | // These methods clear the backtracking state, either linking to the |
michael@0 | 532 | // current location, a provided label, or copying the backtracking out |
michael@0 | 533 | // to a JumpList. All actions may require code generation to take place, |
michael@0 | 534 | // and as such are passed a pointer to the assembler. |
michael@0 | 535 | void link(MacroAssembler* assembler) |
michael@0 | 536 | { |
michael@0 | 537 | if (m_pendingReturns.size()) { |
michael@0 | 538 | Label here(assembler); |
michael@0 | 539 | for (unsigned i = 0; i < m_pendingReturns.size(); ++i) |
michael@0 | 540 | m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here)); |
michael@0 | 541 | m_pendingReturns.clear(); |
michael@0 | 542 | } |
michael@0 | 543 | m_laterFailures.link(assembler); |
michael@0 | 544 | m_laterFailures.clear(); |
michael@0 | 545 | m_pendingFallthrough = false; |
michael@0 | 546 | } |
michael@0 | 547 | void linkTo(Label label, MacroAssembler* assembler) |
michael@0 | 548 | { |
michael@0 | 549 | if (m_pendingReturns.size()) { |
michael@0 | 550 | for (unsigned i = 0; i < m_pendingReturns.size(); ++i) |
michael@0 | 551 | m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], label)); |
michael@0 | 552 | m_pendingReturns.clear(); |
michael@0 | 553 | } |
michael@0 | 554 | if (m_pendingFallthrough) |
michael@0 | 555 | assembler->jump(label); |
michael@0 | 556 | m_laterFailures.linkTo(label, assembler); |
michael@0 | 557 | m_laterFailures.clear(); |
michael@0 | 558 | m_pendingFallthrough = false; |
michael@0 | 559 | } |
michael@0 | 560 | void takeBacktracksToJumpList(JumpList& jumpList, MacroAssembler* assembler) |
michael@0 | 561 | { |
michael@0 | 562 | if (m_pendingReturns.size()) { |
michael@0 | 563 | Label here(assembler); |
michael@0 | 564 | for (unsigned i = 0; i < m_pendingReturns.size(); ++i) |
michael@0 | 565 | m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here)); |
michael@0 | 566 | m_pendingReturns.clear(); |
michael@0 | 567 | m_pendingFallthrough = true; |
michael@0 | 568 | } |
michael@0 | 569 | if (m_pendingFallthrough) |
michael@0 | 570 | jumpList.append(assembler->jump()); |
michael@0 | 571 | jumpList.append(m_laterFailures); |
michael@0 | 572 | m_laterFailures.clear(); |
michael@0 | 573 | m_pendingFallthrough = false; |
michael@0 | 574 | } |
michael@0 | 575 | |
michael@0 | 576 | bool isEmpty() |
michael@0 | 577 | { |
michael@0 | 578 | return m_laterFailures.empty() && m_pendingReturns.isEmpty() && !m_pendingFallthrough; |
michael@0 | 579 | } |
michael@0 | 580 | |
michael@0 | 581 | // Called at the end of code generation to link all return addresses. |
michael@0 | 582 | void linkDataLabels(LinkBuffer& linkBuffer) |
michael@0 | 583 | { |
michael@0 | 584 | ASSERT(isEmpty()); |
michael@0 | 585 | for (unsigned i = 0; i < m_backtrackRecords.size(); ++i) |
michael@0 | 586 | linkBuffer.patch(m_backtrackRecords[i].m_dataLabel, linkBuffer.locationOf(m_backtrackRecords[i].m_backtrackLocation)); |
michael@0 | 587 | } |
michael@0 | 588 | |
michael@0 | 589 | private: |
michael@0 | 590 | struct ReturnAddressRecord { |
michael@0 | 591 | ReturnAddressRecord(DataLabelPtr dataLabel, Label backtrackLocation) |
michael@0 | 592 | : m_dataLabel(dataLabel) |
michael@0 | 593 | , m_backtrackLocation(backtrackLocation) |
michael@0 | 594 | { |
michael@0 | 595 | } |
michael@0 | 596 | |
michael@0 | 597 | DataLabelPtr m_dataLabel; |
michael@0 | 598 | Label m_backtrackLocation; |
michael@0 | 599 | }; |
michael@0 | 600 | |
michael@0 | 601 | JumpList m_laterFailures; |
michael@0 | 602 | bool m_pendingFallthrough; |
michael@0 | 603 | Vector<DataLabelPtr, 4> m_pendingReturns; |
michael@0 | 604 | Vector<ReturnAddressRecord, 4> m_backtrackRecords; |
michael@0 | 605 | }; |
michael@0 | 606 | |
michael@0 | 607 | // Generation methods: |
michael@0 | 608 | // =================== |
michael@0 | 609 | |
michael@0 | 610 | // This method provides a default implementation of backtracking common |
michael@0 | 611 | // to many terms; terms commonly jump out of the forwards matching path |
michael@0 | 612 | // on any failed conditions, and add these jumps to the m_jumps list. If |
michael@0 | 613 | // no special handling is required we can often just backtrack to m_jumps. |
michael@0 | 614 | bool backtrackTermDefault(size_t opIndex) |
michael@0 | 615 | { |
michael@0 | 616 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 617 | m_backtrackingState.append(op.m_jumps); |
michael@0 | 618 | return true; |
michael@0 | 619 | } |
michael@0 | 620 | |
michael@0 | 621 | bool generateAssertionBOL(size_t opIndex) |
michael@0 | 622 | { |
michael@0 | 623 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 624 | PatternTerm* term = op.m_term; |
michael@0 | 625 | |
michael@0 | 626 | if (m_pattern.m_multiline) { |
michael@0 | 627 | const RegisterID character = regT0; |
michael@0 | 628 | |
michael@0 | 629 | JumpList matchDest; |
michael@0 | 630 | if (!term->inputPosition) |
michael@0 | 631 | matchDest.append(branch32(Equal, index, Imm32(m_checked))); |
michael@0 | 632 | |
michael@0 | 633 | readCharacter((term->inputPosition - m_checked) - 1, character); |
michael@0 | 634 | matchCharacterClass(character, matchDest, m_pattern.newlineCharacterClass()); |
michael@0 | 635 | op.m_jumps.append(jump()); |
michael@0 | 636 | |
michael@0 | 637 | matchDest.link(this); |
michael@0 | 638 | } else { |
michael@0 | 639 | // Erk, really should poison out these alternatives early. :-/ |
michael@0 | 640 | if (term->inputPosition) |
michael@0 | 641 | op.m_jumps.append(jump()); |
michael@0 | 642 | else |
michael@0 | 643 | op.m_jumps.append(branch32(NotEqual, index, Imm32(m_checked))); |
michael@0 | 644 | } |
michael@0 | 645 | return true; |
michael@0 | 646 | } |
michael@0 | 647 | bool backtrackAssertionBOL(size_t opIndex) |
michael@0 | 648 | { |
michael@0 | 649 | return backtrackTermDefault(opIndex); |
michael@0 | 650 | } |
michael@0 | 651 | |
michael@0 | 652 | bool generateAssertionEOL(size_t opIndex) |
michael@0 | 653 | { |
michael@0 | 654 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 655 | PatternTerm* term = op.m_term; |
michael@0 | 656 | |
michael@0 | 657 | if (m_pattern.m_multiline) { |
michael@0 | 658 | const RegisterID character = regT0; |
michael@0 | 659 | |
michael@0 | 660 | JumpList matchDest; |
michael@0 | 661 | if (term->inputPosition == m_checked) |
michael@0 | 662 | matchDest.append(atEndOfInput()); |
michael@0 | 663 | |
michael@0 | 664 | readCharacter(term->inputPosition - m_checked, character); |
michael@0 | 665 | matchCharacterClass(character, matchDest, m_pattern.newlineCharacterClass()); |
michael@0 | 666 | op.m_jumps.append(jump()); |
michael@0 | 667 | |
michael@0 | 668 | matchDest.link(this); |
michael@0 | 669 | } else { |
michael@0 | 670 | if (term->inputPosition == m_checked) |
michael@0 | 671 | op.m_jumps.append(notAtEndOfInput()); |
michael@0 | 672 | // Erk, really should poison out these alternatives early. :-/ |
michael@0 | 673 | else |
michael@0 | 674 | op.m_jumps.append(jump()); |
michael@0 | 675 | } |
michael@0 | 676 | return true; |
michael@0 | 677 | } |
michael@0 | 678 | bool backtrackAssertionEOL(size_t opIndex) |
michael@0 | 679 | { |
michael@0 | 680 | return backtrackTermDefault(opIndex); |
michael@0 | 681 | } |
michael@0 | 682 | |
michael@0 | 683 | // Also falls though on nextIsNotWordChar. |
michael@0 | 684 | void matchAssertionWordchar(size_t opIndex, JumpList& nextIsWordChar, JumpList& nextIsNotWordChar) |
michael@0 | 685 | { |
michael@0 | 686 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 687 | PatternTerm* term = op.m_term; |
michael@0 | 688 | |
michael@0 | 689 | const RegisterID character = regT0; |
michael@0 | 690 | |
michael@0 | 691 | if (term->inputPosition == m_checked) |
michael@0 | 692 | nextIsNotWordChar.append(atEndOfInput()); |
michael@0 | 693 | |
michael@0 | 694 | readCharacter((term->inputPosition - m_checked), character); |
michael@0 | 695 | matchCharacterClass(character, nextIsWordChar, m_pattern.wordcharCharacterClass()); |
michael@0 | 696 | } |
michael@0 | 697 | |
michael@0 | 698 | bool generateAssertionWordBoundary(size_t opIndex) |
michael@0 | 699 | { |
michael@0 | 700 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 701 | PatternTerm* term = op.m_term; |
michael@0 | 702 | |
michael@0 | 703 | const RegisterID character = regT0; |
michael@0 | 704 | |
michael@0 | 705 | Jump atBegin; |
michael@0 | 706 | JumpList matchDest; |
michael@0 | 707 | if (!term->inputPosition) |
michael@0 | 708 | atBegin = branch32(Equal, index, Imm32(m_checked)); |
michael@0 | 709 | readCharacter((term->inputPosition - m_checked) - 1, character); |
michael@0 | 710 | matchCharacterClass(character, matchDest, m_pattern.wordcharCharacterClass()); |
michael@0 | 711 | if (!term->inputPosition) |
michael@0 | 712 | atBegin.link(this); |
michael@0 | 713 | |
michael@0 | 714 | // We fall through to here if the last character was not a wordchar. |
michael@0 | 715 | JumpList nonWordCharThenWordChar; |
michael@0 | 716 | JumpList nonWordCharThenNonWordChar; |
michael@0 | 717 | if (term->invert()) { |
michael@0 | 718 | matchAssertionWordchar(opIndex, nonWordCharThenNonWordChar, nonWordCharThenWordChar); |
michael@0 | 719 | nonWordCharThenWordChar.append(jump()); |
michael@0 | 720 | } else { |
michael@0 | 721 | matchAssertionWordchar(opIndex, nonWordCharThenWordChar, nonWordCharThenNonWordChar); |
michael@0 | 722 | nonWordCharThenNonWordChar.append(jump()); |
michael@0 | 723 | } |
michael@0 | 724 | op.m_jumps.append(nonWordCharThenNonWordChar); |
michael@0 | 725 | |
michael@0 | 726 | // We jump here if the last character was a wordchar. |
michael@0 | 727 | matchDest.link(this); |
michael@0 | 728 | JumpList wordCharThenWordChar; |
michael@0 | 729 | JumpList wordCharThenNonWordChar; |
michael@0 | 730 | if (term->invert()) { |
michael@0 | 731 | matchAssertionWordchar(opIndex, wordCharThenNonWordChar, wordCharThenWordChar); |
michael@0 | 732 | wordCharThenWordChar.append(jump()); |
michael@0 | 733 | } else { |
michael@0 | 734 | matchAssertionWordchar(opIndex, wordCharThenWordChar, wordCharThenNonWordChar); |
michael@0 | 735 | // This can fall-though! |
michael@0 | 736 | } |
michael@0 | 737 | |
michael@0 | 738 | op.m_jumps.append(wordCharThenWordChar); |
michael@0 | 739 | |
michael@0 | 740 | nonWordCharThenWordChar.link(this); |
michael@0 | 741 | wordCharThenNonWordChar.link(this); |
michael@0 | 742 | return true; |
michael@0 | 743 | } |
michael@0 | 744 | bool backtrackAssertionWordBoundary(size_t opIndex) |
michael@0 | 745 | { |
michael@0 | 746 | return backtrackTermDefault(opIndex); |
michael@0 | 747 | } |
michael@0 | 748 | |
michael@0 | 749 | bool generatePatternCharacterOnce(size_t opIndex) |
michael@0 | 750 | { |
michael@0 | 751 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 752 | |
michael@0 | 753 | if (op.m_isDeadCode) |
michael@0 | 754 | return true; |
michael@0 | 755 | |
michael@0 | 756 | // m_ops always ends with a OpBodyAlternativeEnd or OpMatchFailed |
michael@0 | 757 | // node, so there must always be at least one more node. |
michael@0 | 758 | ASSERT(opIndex + 1 < m_ops.size()); |
michael@0 | 759 | YarrOp* nextOp = &m_ops[opIndex + 1]; |
michael@0 | 760 | |
michael@0 | 761 | PatternTerm* term = op.m_term; |
michael@0 | 762 | UChar ch = term->patternCharacter; |
michael@0 | 763 | |
michael@0 | 764 | if ((ch > 0xff) && (m_charSize == Char8)) { |
michael@0 | 765 | // Have a 16 bit pattern character and an 8 bit string - short circuit |
michael@0 | 766 | op.m_jumps.append(jump()); |
michael@0 | 767 | return true; |
michael@0 | 768 | } |
michael@0 | 769 | |
michael@0 | 770 | const RegisterID character = regT0; |
michael@0 | 771 | int maxCharactersAtOnce = m_charSize == Char8 ? 4 : 2; |
michael@0 | 772 | unsigned ignoreCaseMask = 0; |
michael@0 | 773 | #if CPU(BIG_ENDIAN) |
michael@0 | 774 | int allCharacters = ch << (m_charSize == Char8 ? 24 : 16); |
michael@0 | 775 | #else |
michael@0 | 776 | int allCharacters = ch; |
michael@0 | 777 | #endif |
michael@0 | 778 | int numberCharacters; |
michael@0 | 779 | int startTermPosition = term->inputPosition; |
michael@0 | 780 | |
michael@0 | 781 | // For case-insesitive compares, non-ascii characters that have different |
michael@0 | 782 | // upper & lower case representations are converted to a character class. |
michael@0 | 783 | ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(ch) || isCanonicallyUnique(ch)); |
michael@0 | 784 | |
michael@0 | 785 | if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) |
michael@0 | 786 | #if CPU(BIG_ENDIAN) |
michael@0 | 787 | ignoreCaseMask |= 32 << (m_charSize == Char8 ? 24 : 16); |
michael@0 | 788 | #else |
michael@0 | 789 | ignoreCaseMask |= 32; |
michael@0 | 790 | #endif |
michael@0 | 791 | |
michael@0 | 792 | for (numberCharacters = 1; numberCharacters < maxCharactersAtOnce && nextOp->m_op == OpTerm; ++numberCharacters, nextOp = &m_ops[opIndex + numberCharacters]) { |
michael@0 | 793 | PatternTerm* nextTerm = nextOp->m_term; |
michael@0 | 794 | |
michael@0 | 795 | if (nextTerm->type != PatternTerm::TypePatternCharacter |
michael@0 | 796 | || nextTerm->quantityType != QuantifierFixedCount |
michael@0 | 797 | || nextTerm->quantityCount != 1 |
michael@0 | 798 | || nextTerm->inputPosition != (startTermPosition + numberCharacters)) |
michael@0 | 799 | break; |
michael@0 | 800 | |
michael@0 | 801 | nextOp->m_isDeadCode = true; |
michael@0 | 802 | |
michael@0 | 803 | #if CPU(BIG_ENDIAN) |
michael@0 | 804 | int shiftAmount = (m_charSize == Char8 ? 24 : 16) - ((m_charSize == Char8 ? 8 : 16) * numberCharacters); |
michael@0 | 805 | #else |
michael@0 | 806 | int shiftAmount = (m_charSize == Char8 ? 8 : 16) * numberCharacters; |
michael@0 | 807 | #endif |
michael@0 | 808 | |
michael@0 | 809 | UChar currentCharacter = nextTerm->patternCharacter; |
michael@0 | 810 | |
michael@0 | 811 | if ((currentCharacter > 0xff) && (m_charSize == Char8)) { |
michael@0 | 812 | // Have a 16 bit pattern character and an 8 bit string - short circuit |
michael@0 | 813 | op.m_jumps.append(jump()); |
michael@0 | 814 | return true; |
michael@0 | 815 | } |
michael@0 | 816 | |
michael@0 | 817 | // For case-insesitive compares, non-ascii characters that have different |
michael@0 | 818 | // upper & lower case representations are converted to a character class. |
michael@0 | 819 | ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(currentCharacter) || isCanonicallyUnique(currentCharacter)); |
michael@0 | 820 | |
michael@0 | 821 | allCharacters |= (currentCharacter << shiftAmount); |
michael@0 | 822 | |
michael@0 | 823 | if ((m_pattern.m_ignoreCase) && (isASCIIAlpha(currentCharacter))) |
michael@0 | 824 | ignoreCaseMask |= 32 << shiftAmount; |
michael@0 | 825 | } |
michael@0 | 826 | |
michael@0 | 827 | if (m_charSize == Char8) { |
michael@0 | 828 | switch (numberCharacters) { |
michael@0 | 829 | case 1: |
michael@0 | 830 | op.m_jumps.append(jumpIfCharNotEquals(ch, startTermPosition - m_checked, character)); |
michael@0 | 831 | return true; |
michael@0 | 832 | case 2: { |
michael@0 | 833 | BaseIndex address(input, index, TimesOne, (startTermPosition - m_checked) * sizeof(LChar)); |
michael@0 | 834 | load16Unaligned(address, character); |
michael@0 | 835 | break; |
michael@0 | 836 | } |
michael@0 | 837 | case 3: { |
michael@0 | 838 | BaseIndex highAddress(input, index, TimesOne, (startTermPosition - m_checked) * sizeof(LChar)); |
michael@0 | 839 | load16Unaligned(highAddress, character); |
michael@0 | 840 | if (ignoreCaseMask) |
michael@0 | 841 | or32(Imm32(ignoreCaseMask), character); |
michael@0 | 842 | op.m_jumps.append(branch32(NotEqual, character, Imm32((allCharacters & 0xffff) | ignoreCaseMask))); |
michael@0 | 843 | op.m_jumps.append(jumpIfCharNotEquals(allCharacters >> 16, startTermPosition + 2 - m_checked, character)); |
michael@0 | 844 | return true; |
michael@0 | 845 | } |
michael@0 | 846 | case 4: { |
michael@0 | 847 | BaseIndex address(input, index, TimesOne, (startTermPosition - m_checked) * sizeof(LChar)); |
michael@0 | 848 | load32WithUnalignedHalfWords(address, character); |
michael@0 | 849 | break; |
michael@0 | 850 | } |
michael@0 | 851 | } |
michael@0 | 852 | } else { |
michael@0 | 853 | switch (numberCharacters) { |
michael@0 | 854 | case 1: |
michael@0 | 855 | op.m_jumps.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked, character)); |
michael@0 | 856 | return true; |
michael@0 | 857 | case 2: |
michael@0 | 858 | BaseIndex address(input, index, TimesTwo, (term->inputPosition - m_checked) * sizeof(UChar)); |
michael@0 | 859 | load32WithUnalignedHalfWords(address, character); |
michael@0 | 860 | break; |
michael@0 | 861 | } |
michael@0 | 862 | } |
michael@0 | 863 | |
michael@0 | 864 | if (ignoreCaseMask) |
michael@0 | 865 | or32(Imm32(ignoreCaseMask), character); |
michael@0 | 866 | op.m_jumps.append(branch32(NotEqual, character, Imm32(allCharacters | ignoreCaseMask))); |
michael@0 | 867 | return true; |
michael@0 | 868 | } |
michael@0 | 869 | bool backtrackPatternCharacterOnce(size_t opIndex) |
michael@0 | 870 | { |
michael@0 | 871 | return backtrackTermDefault(opIndex); |
michael@0 | 872 | } |
michael@0 | 873 | |
michael@0 | 874 | bool generatePatternCharacterFixed(size_t opIndex) |
michael@0 | 875 | { |
michael@0 | 876 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 877 | PatternTerm* term = op.m_term; |
michael@0 | 878 | UChar ch = term->patternCharacter; |
michael@0 | 879 | |
michael@0 | 880 | const RegisterID character = regT0; |
michael@0 | 881 | const RegisterID countRegister = regT1; |
michael@0 | 882 | |
michael@0 | 883 | move(index, countRegister); |
michael@0 | 884 | if (term->quantityCount.hasOverflowed()) |
michael@0 | 885 | return false; |
michael@0 | 886 | sub32(Imm32(term->quantityCount.unsafeGet()), countRegister); |
michael@0 | 887 | |
michael@0 | 888 | Label loop(this); |
michael@0 | 889 | int offset; |
michael@0 | 890 | if ((Checked<int>(term->inputPosition - m_checked + Checked<int64_t>(term->quantityCount)) * static_cast<int>(m_charSize == Char8 ? sizeof(char) : sizeof(UChar))).safeGet(offset)) |
michael@0 | 891 | return false; |
michael@0 | 892 | BaseIndex address(input, countRegister, m_charScale, offset); |
michael@0 | 893 | |
michael@0 | 894 | if (m_charSize == Char8) |
michael@0 | 895 | load8(address, character); |
michael@0 | 896 | else |
michael@0 | 897 | load16(address, character); |
michael@0 | 898 | |
michael@0 | 899 | // For case-insesitive compares, non-ascii characters that have different |
michael@0 | 900 | // upper & lower case representations are converted to a character class. |
michael@0 | 901 | ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(ch) || isCanonicallyUnique(ch)); |
michael@0 | 902 | if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) { |
michael@0 | 903 | or32(TrustedImm32(0x20), character); |
michael@0 | 904 | ch |= 0x20; |
michael@0 | 905 | } |
michael@0 | 906 | |
michael@0 | 907 | op.m_jumps.append(branch32(NotEqual, character, Imm32(ch))); |
michael@0 | 908 | add32(TrustedImm32(1), countRegister); |
michael@0 | 909 | branch32(NotEqual, countRegister, index).linkTo(loop, this); |
michael@0 | 910 | |
michael@0 | 911 | return true; |
michael@0 | 912 | } |
michael@0 | 913 | bool backtrackPatternCharacterFixed(size_t opIndex) |
michael@0 | 914 | { |
michael@0 | 915 | return backtrackTermDefault(opIndex); |
michael@0 | 916 | } |
michael@0 | 917 | |
michael@0 | 918 | bool generatePatternCharacterGreedy(size_t opIndex) |
michael@0 | 919 | { |
michael@0 | 920 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 921 | PatternTerm* term = op.m_term; |
michael@0 | 922 | UChar ch = term->patternCharacter; |
michael@0 | 923 | |
michael@0 | 924 | const RegisterID character = regT0; |
michael@0 | 925 | const RegisterID countRegister = regT1; |
michael@0 | 926 | |
michael@0 | 927 | move(TrustedImm32(0), countRegister); |
michael@0 | 928 | |
michael@0 | 929 | // Unless have a 16 bit pattern character and an 8 bit string - short circuit |
michael@0 | 930 | if (!((ch > 0xff) && (m_charSize == Char8))) { |
michael@0 | 931 | JumpList failures; |
michael@0 | 932 | Label loop(this); |
michael@0 | 933 | failures.append(atEndOfInput()); |
michael@0 | 934 | failures.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked, character)); |
michael@0 | 935 | |
michael@0 | 936 | add32(TrustedImm32(1), countRegister); |
michael@0 | 937 | add32(TrustedImm32(1), index); |
michael@0 | 938 | if (term->quantityCount == quantifyInfinite) { |
michael@0 | 939 | jump(loop); |
michael@0 | 940 | } else { |
michael@0 | 941 | if (term->quantityCount.hasOverflowed()) |
michael@0 | 942 | return false; |
michael@0 | 943 | branch32(NotEqual, countRegister, Imm32(term->quantityCount.unsafeGet())).linkTo(loop, this); |
michael@0 | 944 | } |
michael@0 | 945 | |
michael@0 | 946 | failures.link(this); |
michael@0 | 947 | } |
michael@0 | 948 | op.m_reentry = label(); |
michael@0 | 949 | |
michael@0 | 950 | storeToFrame(countRegister, term->frameLocation); |
michael@0 | 951 | return true; |
michael@0 | 952 | } |
michael@0 | 953 | bool backtrackPatternCharacterGreedy(size_t opIndex) |
michael@0 | 954 | { |
michael@0 | 955 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 956 | PatternTerm* term = op.m_term; |
michael@0 | 957 | |
michael@0 | 958 | const RegisterID countRegister = regT1; |
michael@0 | 959 | |
michael@0 | 960 | m_backtrackingState.link(this); |
michael@0 | 961 | |
michael@0 | 962 | loadFromFrame(term->frameLocation, countRegister); |
michael@0 | 963 | m_backtrackingState.append(branchTest32(Zero, countRegister)); |
michael@0 | 964 | sub32(TrustedImm32(1), countRegister); |
michael@0 | 965 | sub32(TrustedImm32(1), index); |
michael@0 | 966 | jump(op.m_reentry); |
michael@0 | 967 | |
michael@0 | 968 | return true; |
michael@0 | 969 | } |
michael@0 | 970 | |
michael@0 | 971 | bool generatePatternCharacterNonGreedy(size_t opIndex) |
michael@0 | 972 | { |
michael@0 | 973 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 974 | PatternTerm* term = op.m_term; |
michael@0 | 975 | |
michael@0 | 976 | const RegisterID countRegister = regT1; |
michael@0 | 977 | |
michael@0 | 978 | move(TrustedImm32(0), countRegister); |
michael@0 | 979 | op.m_reentry = label(); |
michael@0 | 980 | storeToFrame(countRegister, term->frameLocation); |
michael@0 | 981 | return true; |
michael@0 | 982 | } |
michael@0 | 983 | bool backtrackPatternCharacterNonGreedy(size_t opIndex) |
michael@0 | 984 | { |
michael@0 | 985 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 986 | PatternTerm* term = op.m_term; |
michael@0 | 987 | UChar ch = term->patternCharacter; |
michael@0 | 988 | |
michael@0 | 989 | const RegisterID character = regT0; |
michael@0 | 990 | const RegisterID countRegister = regT1; |
michael@0 | 991 | |
michael@0 | 992 | m_backtrackingState.link(this); |
michael@0 | 993 | |
michael@0 | 994 | loadFromFrame(term->frameLocation, countRegister); |
michael@0 | 995 | |
michael@0 | 996 | // Unless have a 16 bit pattern character and an 8 bit string - short circuit |
michael@0 | 997 | if (!((ch > 0xff) && (m_charSize == Char8))) { |
michael@0 | 998 | JumpList nonGreedyFailures; |
michael@0 | 999 | nonGreedyFailures.append(atEndOfInput()); |
michael@0 | 1000 | if (term->quantityCount != quantifyInfinite) { |
michael@0 | 1001 | if (term->quantityCount.hasOverflowed()) |
michael@0 | 1002 | return false; |
michael@0 | 1003 | nonGreedyFailures.append(branch32(Equal, countRegister, Imm32(term->quantityCount.unsafeGet()))); |
michael@0 | 1004 | } |
michael@0 | 1005 | nonGreedyFailures.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked, character)); |
michael@0 | 1006 | |
michael@0 | 1007 | add32(TrustedImm32(1), countRegister); |
michael@0 | 1008 | add32(TrustedImm32(1), index); |
michael@0 | 1009 | |
michael@0 | 1010 | jump(op.m_reentry); |
michael@0 | 1011 | nonGreedyFailures.link(this); |
michael@0 | 1012 | } |
michael@0 | 1013 | |
michael@0 | 1014 | sub32(countRegister, index); |
michael@0 | 1015 | m_backtrackingState.fallthrough(); |
michael@0 | 1016 | |
michael@0 | 1017 | return true; |
michael@0 | 1018 | } |
michael@0 | 1019 | |
michael@0 | 1020 | bool generateCharacterClassOnce(size_t opIndex) |
michael@0 | 1021 | { |
michael@0 | 1022 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 1023 | PatternTerm* term = op.m_term; |
michael@0 | 1024 | |
michael@0 | 1025 | const RegisterID character = regT0; |
michael@0 | 1026 | |
michael@0 | 1027 | JumpList matchDest; |
michael@0 | 1028 | readCharacter(term->inputPosition - m_checked, character); |
michael@0 | 1029 | matchCharacterClass(character, matchDest, term->characterClass); |
michael@0 | 1030 | |
michael@0 | 1031 | if (term->invert()) |
michael@0 | 1032 | op.m_jumps.append(matchDest); |
michael@0 | 1033 | else { |
michael@0 | 1034 | op.m_jumps.append(jump()); |
michael@0 | 1035 | matchDest.link(this); |
michael@0 | 1036 | } |
michael@0 | 1037 | return true; |
michael@0 | 1038 | } |
michael@0 | 1039 | bool backtrackCharacterClassOnce(size_t opIndex) |
michael@0 | 1040 | { |
michael@0 | 1041 | return backtrackTermDefault(opIndex); |
michael@0 | 1042 | } |
michael@0 | 1043 | |
michael@0 | 1044 | bool generateCharacterClassFixed(size_t opIndex) |
michael@0 | 1045 | { |
michael@0 | 1046 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 1047 | PatternTerm* term = op.m_term; |
michael@0 | 1048 | |
michael@0 | 1049 | const RegisterID character = regT0; |
michael@0 | 1050 | const RegisterID countRegister = regT1; |
michael@0 | 1051 | |
michael@0 | 1052 | move(index, countRegister); |
michael@0 | 1053 | if (term->quantityCount.hasOverflowed()) |
michael@0 | 1054 | return false; |
michael@0 | 1055 | sub32(Imm32(term->quantityCount.unsafeGet()), countRegister); |
michael@0 | 1056 | |
michael@0 | 1057 | Label loop(this); |
michael@0 | 1058 | JumpList matchDest; |
michael@0 | 1059 | |
michael@0 | 1060 | int offset; |
michael@0 | 1061 | Checked<int64_t> checkedOffset(term->inputPosition - m_checked + Checked<int64_t>(term->quantityCount)); |
michael@0 | 1062 | |
michael@0 | 1063 | if (m_charSize == Char8) { |
michael@0 | 1064 | if ((Checked<int>(checkedOffset) * static_cast<int>(sizeof(char))).safeGet(offset)) |
michael@0 | 1065 | return false; |
michael@0 | 1066 | load8(BaseIndex(input, countRegister, TimesOne, offset), character); |
michael@0 | 1067 | } else { |
michael@0 | 1068 | if ((Checked<int>(checkedOffset) * static_cast<int>(sizeof(UChar))).safeGet(offset)) |
michael@0 | 1069 | return false; |
michael@0 | 1070 | load16(BaseIndex(input, countRegister, TimesTwo, offset), character); |
michael@0 | 1071 | } |
michael@0 | 1072 | matchCharacterClass(character, matchDest, term->characterClass); |
michael@0 | 1073 | |
michael@0 | 1074 | if (term->invert()) |
michael@0 | 1075 | op.m_jumps.append(matchDest); |
michael@0 | 1076 | else { |
michael@0 | 1077 | op.m_jumps.append(jump()); |
michael@0 | 1078 | matchDest.link(this); |
michael@0 | 1079 | } |
michael@0 | 1080 | |
michael@0 | 1081 | add32(TrustedImm32(1), countRegister); |
michael@0 | 1082 | branch32(NotEqual, countRegister, index).linkTo(loop, this); |
michael@0 | 1083 | return true; |
michael@0 | 1084 | } |
michael@0 | 1085 | bool backtrackCharacterClassFixed(size_t opIndex) |
michael@0 | 1086 | { |
michael@0 | 1087 | return backtrackTermDefault(opIndex); |
michael@0 | 1088 | } |
michael@0 | 1089 | |
michael@0 | 1090 | bool generateCharacterClassGreedy(size_t opIndex) |
michael@0 | 1091 | { |
michael@0 | 1092 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 1093 | PatternTerm* term = op.m_term; |
michael@0 | 1094 | |
michael@0 | 1095 | const RegisterID character = regT0; |
michael@0 | 1096 | const RegisterID countRegister = regT1; |
michael@0 | 1097 | |
michael@0 | 1098 | move(TrustedImm32(0), countRegister); |
michael@0 | 1099 | |
michael@0 | 1100 | JumpList failures; |
michael@0 | 1101 | Label loop(this); |
michael@0 | 1102 | failures.append(atEndOfInput()); |
michael@0 | 1103 | |
michael@0 | 1104 | if (term->invert()) { |
michael@0 | 1105 | readCharacter(term->inputPosition - m_checked, character); |
michael@0 | 1106 | matchCharacterClass(character, failures, term->characterClass); |
michael@0 | 1107 | } else { |
michael@0 | 1108 | JumpList matchDest; |
michael@0 | 1109 | readCharacter(term->inputPosition - m_checked, character); |
michael@0 | 1110 | matchCharacterClass(character, matchDest, term->characterClass); |
michael@0 | 1111 | failures.append(jump()); |
michael@0 | 1112 | matchDest.link(this); |
michael@0 | 1113 | } |
michael@0 | 1114 | |
michael@0 | 1115 | add32(TrustedImm32(1), countRegister); |
michael@0 | 1116 | add32(TrustedImm32(1), index); |
michael@0 | 1117 | if (term->quantityCount != quantifyInfinite) { |
michael@0 | 1118 | unsigned quantityCount; |
michael@0 | 1119 | if (term->quantityCount.safeGet(quantityCount)) |
michael@0 | 1120 | return false; |
michael@0 | 1121 | branch32(NotEqual, countRegister, Imm32(quantityCount)).linkTo(loop, this); |
michael@0 | 1122 | failures.append(jump()); |
michael@0 | 1123 | } else |
michael@0 | 1124 | jump(loop); |
michael@0 | 1125 | |
michael@0 | 1126 | failures.link(this); |
michael@0 | 1127 | op.m_reentry = label(); |
michael@0 | 1128 | |
michael@0 | 1129 | storeToFrame(countRegister, term->frameLocation); |
michael@0 | 1130 | return true; |
michael@0 | 1131 | } |
michael@0 | 1132 | bool backtrackCharacterClassGreedy(size_t opIndex) |
michael@0 | 1133 | { |
michael@0 | 1134 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 1135 | PatternTerm* term = op.m_term; |
michael@0 | 1136 | |
michael@0 | 1137 | const RegisterID countRegister = regT1; |
michael@0 | 1138 | |
michael@0 | 1139 | m_backtrackingState.link(this); |
michael@0 | 1140 | |
michael@0 | 1141 | loadFromFrame(term->frameLocation, countRegister); |
michael@0 | 1142 | m_backtrackingState.append(branchTest32(Zero, countRegister)); |
michael@0 | 1143 | sub32(TrustedImm32(1), countRegister); |
michael@0 | 1144 | sub32(TrustedImm32(1), index); |
michael@0 | 1145 | jump(op.m_reentry); |
michael@0 | 1146 | |
michael@0 | 1147 | return true; |
michael@0 | 1148 | } |
michael@0 | 1149 | |
michael@0 | 1150 | bool generateCharacterClassNonGreedy(size_t opIndex) |
michael@0 | 1151 | { |
michael@0 | 1152 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 1153 | PatternTerm* term = op.m_term; |
michael@0 | 1154 | |
michael@0 | 1155 | const RegisterID countRegister = regT1; |
michael@0 | 1156 | |
michael@0 | 1157 | move(TrustedImm32(0), countRegister); |
michael@0 | 1158 | op.m_reentry = label(); |
michael@0 | 1159 | storeToFrame(countRegister, term->frameLocation); |
michael@0 | 1160 | return true; |
michael@0 | 1161 | } |
michael@0 | 1162 | bool backtrackCharacterClassNonGreedy(size_t opIndex) |
michael@0 | 1163 | { |
michael@0 | 1164 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 1165 | PatternTerm* term = op.m_term; |
michael@0 | 1166 | |
michael@0 | 1167 | const RegisterID character = regT0; |
michael@0 | 1168 | const RegisterID countRegister = regT1; |
michael@0 | 1169 | |
michael@0 | 1170 | JumpList nonGreedyFailures; |
michael@0 | 1171 | |
michael@0 | 1172 | m_backtrackingState.link(this); |
michael@0 | 1173 | |
michael@0 | 1174 | loadFromFrame(term->frameLocation, countRegister); |
michael@0 | 1175 | |
michael@0 | 1176 | nonGreedyFailures.append(atEndOfInput()); |
michael@0 | 1177 | if (term->quantityCount.hasOverflowed()) |
michael@0 | 1178 | return false; |
michael@0 | 1179 | nonGreedyFailures.append(branch32(Equal, countRegister, Imm32(term->quantityCount.unsafeGet()))); |
michael@0 | 1180 | |
michael@0 | 1181 | JumpList matchDest; |
michael@0 | 1182 | readCharacter(term->inputPosition - m_checked, character); |
michael@0 | 1183 | matchCharacterClass(character, matchDest, term->characterClass); |
michael@0 | 1184 | |
michael@0 | 1185 | if (term->invert()) |
michael@0 | 1186 | nonGreedyFailures.append(matchDest); |
michael@0 | 1187 | else { |
michael@0 | 1188 | nonGreedyFailures.append(jump()); |
michael@0 | 1189 | matchDest.link(this); |
michael@0 | 1190 | } |
michael@0 | 1191 | |
michael@0 | 1192 | add32(TrustedImm32(1), countRegister); |
michael@0 | 1193 | add32(TrustedImm32(1), index); |
michael@0 | 1194 | |
michael@0 | 1195 | jump(op.m_reentry); |
michael@0 | 1196 | |
michael@0 | 1197 | nonGreedyFailures.link(this); |
michael@0 | 1198 | sub32(countRegister, index); |
michael@0 | 1199 | m_backtrackingState.fallthrough(); |
michael@0 | 1200 | |
michael@0 | 1201 | return true; |
michael@0 | 1202 | } |
michael@0 | 1203 | |
michael@0 | 1204 | bool generateDotStarEnclosure(size_t opIndex) |
michael@0 | 1205 | { |
michael@0 | 1206 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 1207 | PatternTerm* term = op.m_term; |
michael@0 | 1208 | |
michael@0 | 1209 | const RegisterID character = regT0; |
michael@0 | 1210 | const RegisterID matchPos = regT1; |
michael@0 | 1211 | |
michael@0 | 1212 | JumpList foundBeginningNewLine; |
michael@0 | 1213 | JumpList saveStartIndex; |
michael@0 | 1214 | JumpList foundEndingNewLine; |
michael@0 | 1215 | |
michael@0 | 1216 | ASSERT(!m_pattern.m_body->m_hasFixedSize); |
michael@0 | 1217 | getMatchStart(matchPos); |
michael@0 | 1218 | |
michael@0 | 1219 | saveStartIndex.append(branchTest32(Zero, matchPos)); |
michael@0 | 1220 | Label findBOLLoop(this); |
michael@0 | 1221 | sub32(TrustedImm32(1), matchPos); |
michael@0 | 1222 | if (m_charSize == Char8) |
michael@0 | 1223 | load8(BaseIndex(input, matchPos, TimesOne, 0), character); |
michael@0 | 1224 | else |
michael@0 | 1225 | load16(BaseIndex(input, matchPos, TimesTwo, 0), character); |
michael@0 | 1226 | matchCharacterClass(character, foundBeginningNewLine, m_pattern.newlineCharacterClass()); |
michael@0 | 1227 | branchTest32(NonZero, matchPos).linkTo(findBOLLoop, this); |
michael@0 | 1228 | saveStartIndex.append(jump()); |
michael@0 | 1229 | |
michael@0 | 1230 | foundBeginningNewLine.link(this); |
michael@0 | 1231 | add32(TrustedImm32(1), matchPos); // Advance past newline |
michael@0 | 1232 | saveStartIndex.link(this); |
michael@0 | 1233 | |
michael@0 | 1234 | if (!m_pattern.m_multiline && term->anchors.bolAnchor) |
michael@0 | 1235 | op.m_jumps.append(branchTest32(NonZero, matchPos)); |
michael@0 | 1236 | |
michael@0 | 1237 | ASSERT(!m_pattern.m_body->m_hasFixedSize); |
michael@0 | 1238 | setMatchStart(matchPos); |
michael@0 | 1239 | |
michael@0 | 1240 | move(index, matchPos); |
michael@0 | 1241 | |
michael@0 | 1242 | Label findEOLLoop(this); |
michael@0 | 1243 | foundEndingNewLine.append(branch32(Equal, matchPos, length)); |
michael@0 | 1244 | if (m_charSize == Char8) |
michael@0 | 1245 | load8(BaseIndex(input, matchPos, TimesOne, 0), character); |
michael@0 | 1246 | else |
michael@0 | 1247 | load16(BaseIndex(input, matchPos, TimesTwo, 0), character); |
michael@0 | 1248 | matchCharacterClass(character, foundEndingNewLine, m_pattern.newlineCharacterClass()); |
michael@0 | 1249 | add32(TrustedImm32(1), matchPos); |
michael@0 | 1250 | jump(findEOLLoop); |
michael@0 | 1251 | |
michael@0 | 1252 | foundEndingNewLine.link(this); |
michael@0 | 1253 | |
michael@0 | 1254 | if (!m_pattern.m_multiline && term->anchors.eolAnchor) |
michael@0 | 1255 | op.m_jumps.append(branch32(NotEqual, matchPos, length)); |
michael@0 | 1256 | |
michael@0 | 1257 | move(matchPos, index); |
michael@0 | 1258 | return true; |
michael@0 | 1259 | } |
michael@0 | 1260 | |
michael@0 | 1261 | bool backtrackDotStarEnclosure(size_t opIndex) |
michael@0 | 1262 | { |
michael@0 | 1263 | return backtrackTermDefault(opIndex); |
michael@0 | 1264 | } |
michael@0 | 1265 | |
michael@0 | 1266 | // Code generation/backtracking for simple terms |
michael@0 | 1267 | // (pattern characters, character classes, and assertions). |
michael@0 | 1268 | // These methods farm out work to the set of functions above. |
michael@0 | 1269 | bool generateTerm(size_t opIndex) |
michael@0 | 1270 | { |
michael@0 | 1271 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 1272 | PatternTerm* term = op.m_term; |
michael@0 | 1273 | |
michael@0 | 1274 | switch (term->type) { |
michael@0 | 1275 | case PatternTerm::TypePatternCharacter: |
michael@0 | 1276 | switch (term->quantityType) { |
michael@0 | 1277 | case QuantifierFixedCount: |
michael@0 | 1278 | if (term->quantityCount == 1) |
michael@0 | 1279 | return generatePatternCharacterOnce(opIndex); |
michael@0 | 1280 | else |
michael@0 | 1281 | return generatePatternCharacterFixed(opIndex); |
michael@0 | 1282 | break; |
michael@0 | 1283 | case QuantifierGreedy: |
michael@0 | 1284 | return generatePatternCharacterGreedy(opIndex); |
michael@0 | 1285 | case QuantifierNonGreedy: |
michael@0 | 1286 | return generatePatternCharacterNonGreedy(opIndex); |
michael@0 | 1287 | } |
michael@0 | 1288 | break; |
michael@0 | 1289 | |
michael@0 | 1290 | case PatternTerm::TypeCharacterClass: |
michael@0 | 1291 | switch (term->quantityType) { |
michael@0 | 1292 | case QuantifierFixedCount: |
michael@0 | 1293 | if (term->quantityCount == 1) |
michael@0 | 1294 | return generateCharacterClassOnce(opIndex); |
michael@0 | 1295 | else |
michael@0 | 1296 | return generateCharacterClassFixed(opIndex); |
michael@0 | 1297 | break; |
michael@0 | 1298 | case QuantifierGreedy: |
michael@0 | 1299 | return generateCharacterClassGreedy(opIndex); |
michael@0 | 1300 | case QuantifierNonGreedy: |
michael@0 | 1301 | return generateCharacterClassNonGreedy(opIndex); |
michael@0 | 1302 | } |
michael@0 | 1303 | break; |
michael@0 | 1304 | |
michael@0 | 1305 | case PatternTerm::TypeAssertionBOL: |
michael@0 | 1306 | return generateAssertionBOL(opIndex); |
michael@0 | 1307 | |
michael@0 | 1308 | case PatternTerm::TypeAssertionEOL: |
michael@0 | 1309 | return generateAssertionEOL(opIndex); |
michael@0 | 1310 | |
michael@0 | 1311 | case PatternTerm::TypeAssertionWordBoundary: |
michael@0 | 1312 | return generateAssertionWordBoundary(opIndex); |
michael@0 | 1313 | |
michael@0 | 1314 | case PatternTerm::TypeForwardReference: |
michael@0 | 1315 | return true; |
michael@0 | 1316 | |
michael@0 | 1317 | case PatternTerm::TypeParenthesesSubpattern: |
michael@0 | 1318 | case PatternTerm::TypeParentheticalAssertion: |
michael@0 | 1319 | ASSERT_NOT_REACHED(); |
michael@0 | 1320 | return false; |
michael@0 | 1321 | case PatternTerm::TypeBackReference: |
michael@0 | 1322 | return false; |
michael@0 | 1323 | case PatternTerm::TypeDotStarEnclosure: |
michael@0 | 1324 | return generateDotStarEnclosure(opIndex); |
michael@0 | 1325 | } |
michael@0 | 1326 | |
michael@0 | 1327 | return false; |
michael@0 | 1328 | } |
michael@0 | 1329 | bool backtrackTerm(size_t opIndex) |
michael@0 | 1330 | { |
michael@0 | 1331 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 1332 | PatternTerm* term = op.m_term; |
michael@0 | 1333 | |
michael@0 | 1334 | switch (term->type) { |
michael@0 | 1335 | case PatternTerm::TypePatternCharacter: |
michael@0 | 1336 | switch (term->quantityType) { |
michael@0 | 1337 | case QuantifierFixedCount: |
michael@0 | 1338 | if (term->quantityCount == 1) |
michael@0 | 1339 | return backtrackPatternCharacterOnce(opIndex); |
michael@0 | 1340 | else |
michael@0 | 1341 | return backtrackPatternCharacterFixed(opIndex); |
michael@0 | 1342 | case QuantifierGreedy: |
michael@0 | 1343 | return backtrackPatternCharacterGreedy(opIndex); |
michael@0 | 1344 | case QuantifierNonGreedy: |
michael@0 | 1345 | return backtrackPatternCharacterNonGreedy(opIndex); |
michael@0 | 1346 | } |
michael@0 | 1347 | break; |
michael@0 | 1348 | |
michael@0 | 1349 | case PatternTerm::TypeCharacterClass: |
michael@0 | 1350 | switch (term->quantityType) { |
michael@0 | 1351 | case QuantifierFixedCount: |
michael@0 | 1352 | if (term->quantityCount == 1) |
michael@0 | 1353 | return backtrackCharacterClassOnce(opIndex); |
michael@0 | 1354 | else |
michael@0 | 1355 | return backtrackCharacterClassFixed(opIndex); |
michael@0 | 1356 | case QuantifierGreedy: |
michael@0 | 1357 | return backtrackCharacterClassGreedy(opIndex); |
michael@0 | 1358 | case QuantifierNonGreedy: |
michael@0 | 1359 | return backtrackCharacterClassNonGreedy(opIndex); |
michael@0 | 1360 | } |
michael@0 | 1361 | break; |
michael@0 | 1362 | |
michael@0 | 1363 | case PatternTerm::TypeAssertionBOL: |
michael@0 | 1364 | return backtrackAssertionBOL(opIndex); |
michael@0 | 1365 | |
michael@0 | 1366 | case PatternTerm::TypeAssertionEOL: |
michael@0 | 1367 | return backtrackAssertionEOL(opIndex); |
michael@0 | 1368 | |
michael@0 | 1369 | case PatternTerm::TypeAssertionWordBoundary: |
michael@0 | 1370 | return backtrackAssertionWordBoundary(opIndex); |
michael@0 | 1371 | |
michael@0 | 1372 | case PatternTerm::TypeForwardReference: |
michael@0 | 1373 | return true; |
michael@0 | 1374 | |
michael@0 | 1375 | case PatternTerm::TypeParenthesesSubpattern: |
michael@0 | 1376 | case PatternTerm::TypeParentheticalAssertion: |
michael@0 | 1377 | ASSERT_NOT_REACHED(); |
michael@0 | 1378 | return false; |
michael@0 | 1379 | |
michael@0 | 1380 | case PatternTerm::TypeDotStarEnclosure: |
michael@0 | 1381 | return backtrackDotStarEnclosure(opIndex); |
michael@0 | 1382 | |
michael@0 | 1383 | case PatternTerm::TypeBackReference: |
michael@0 | 1384 | return false; |
michael@0 | 1385 | } |
michael@0 | 1386 | return true; |
michael@0 | 1387 | } |
michael@0 | 1388 | |
michael@0 | 1389 | bool generate() |
michael@0 | 1390 | { |
michael@0 | 1391 | // Forwards generate the matching code. |
michael@0 | 1392 | ASSERT(m_ops.size()); |
michael@0 | 1393 | size_t opIndex = 0; |
michael@0 | 1394 | |
michael@0 | 1395 | do { |
michael@0 | 1396 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 1397 | switch (op.m_op) { |
michael@0 | 1398 | |
michael@0 | 1399 | case OpTerm: |
michael@0 | 1400 | if (!generateTerm(opIndex)) |
michael@0 | 1401 | return false; |
michael@0 | 1402 | break; |
michael@0 | 1403 | |
michael@0 | 1404 | // OpBodyAlternativeBegin/Next/End |
michael@0 | 1405 | // |
michael@0 | 1406 | // These nodes wrap the set of alternatives in the body of the regular expression. |
michael@0 | 1407 | // There may be either one or two chains of OpBodyAlternative nodes, one representing |
michael@0 | 1408 | // the 'once through' sequence of alternatives (if any exist), and one representing |
michael@0 | 1409 | // the repeating alternatives (again, if any exist). |
michael@0 | 1410 | // |
michael@0 | 1411 | // Upon normal entry to the Begin alternative, we will check that input is available. |
michael@0 | 1412 | // Reentry to the Begin alternative will take place after the check has taken place, |
michael@0 | 1413 | // and will assume that the input position has already been progressed as appropriate. |
michael@0 | 1414 | // |
michael@0 | 1415 | // Entry to subsequent Next/End alternatives occurs when the prior alternative has |
michael@0 | 1416 | // successfully completed a match - return a success state from JIT code. |
michael@0 | 1417 | // |
michael@0 | 1418 | // Next alternatives allow for reentry optimized to suit backtracking from its |
michael@0 | 1419 | // preceding alternative. It expects the input position to still be set to a position |
michael@0 | 1420 | // appropriate to its predecessor, and it will only perform an input check if the |
michael@0 | 1421 | // predecessor had a minimum size less than its own. |
michael@0 | 1422 | // |
michael@0 | 1423 | // In the case 'once through' expressions, the End node will also have a reentry |
michael@0 | 1424 | // point to jump to when the last alternative fails. Again, this expects the input |
michael@0 | 1425 | // position to still reflect that expected by the prior alternative. |
michael@0 | 1426 | case OpBodyAlternativeBegin: { |
michael@0 | 1427 | PatternAlternative* alternative = op.m_alternative; |
michael@0 | 1428 | |
michael@0 | 1429 | // Upon entry at the head of the set of alternatives, check if input is available |
michael@0 | 1430 | // to run the first alternative. (This progresses the input position). |
michael@0 | 1431 | op.m_jumps.append(jumpIfNoAvailableInput(alternative->m_minimumSize)); |
michael@0 | 1432 | // We will reenter after the check, and assume the input position to have been |
michael@0 | 1433 | // set as appropriate to this alternative. |
michael@0 | 1434 | op.m_reentry = label(); |
michael@0 | 1435 | |
michael@0 | 1436 | if (alternative->m_minimumSize > INT_MAX) |
michael@0 | 1437 | return false; |
michael@0 | 1438 | m_checked = alternative->m_minimumSize; |
michael@0 | 1439 | break; |
michael@0 | 1440 | } |
michael@0 | 1441 | case OpBodyAlternativeNext: |
michael@0 | 1442 | case OpBodyAlternativeEnd: { |
michael@0 | 1443 | PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative; |
michael@0 | 1444 | PatternAlternative* alternative = op.m_alternative; |
michael@0 | 1445 | |
michael@0 | 1446 | // If we get here, the prior alternative matched - return success. |
michael@0 | 1447 | |
michael@0 | 1448 | // Adjust the stack pointer to remove the pattern's frame. |
michael@0 | 1449 | #if !WTF_CPU_SPARC |
michael@0 | 1450 | removeCallFrame(); |
michael@0 | 1451 | #endif |
michael@0 | 1452 | |
michael@0 | 1453 | // Load appropriate values into the return register and the first output |
michael@0 | 1454 | // slot, and return. In the case of pattern with a fixed size, we will |
michael@0 | 1455 | // not have yet set the value in the first |
michael@0 | 1456 | ASSERT(index != returnRegister); |
michael@0 | 1457 | if (m_pattern.m_body->m_hasFixedSize) { |
michael@0 | 1458 | move(index, returnRegister); |
michael@0 | 1459 | if (priorAlternative->m_minimumSize) |
michael@0 | 1460 | sub32(Imm32(priorAlternative->m_minimumSize), returnRegister); |
michael@0 | 1461 | if (compileMode == IncludeSubpatterns) |
michael@0 | 1462 | store32(returnRegister, output); |
michael@0 | 1463 | } else |
michael@0 | 1464 | getMatchStart(returnRegister); |
michael@0 | 1465 | if (compileMode == IncludeSubpatterns) |
michael@0 | 1466 | store32(index, Address(output, 4)); |
michael@0 | 1467 | #if WTF_CPU_X86_64 |
michael@0 | 1468 | // upper 32bit to 0 |
michael@0 | 1469 | move32(returnRegister, returnRegister); |
michael@0 | 1470 | lshiftPtr(Imm32(32), index); |
michael@0 | 1471 | orPtr(index, returnRegister); |
michael@0 | 1472 | #else |
michael@0 | 1473 | move(index, returnRegister2); |
michael@0 | 1474 | #endif |
michael@0 | 1475 | |
michael@0 | 1476 | generateReturn(); |
michael@0 | 1477 | |
michael@0 | 1478 | // This is the divide between the tail of the prior alternative, above, and |
michael@0 | 1479 | // the head of the subsequent alternative, below. |
michael@0 | 1480 | |
michael@0 | 1481 | if (op.m_op == OpBodyAlternativeNext) { |
michael@0 | 1482 | // This is the reentry point for the Next alternative. We expect any code |
michael@0 | 1483 | // that jumps here to do so with the input position matching that of the |
michael@0 | 1484 | // PRIOR alteranative, and we will only check input availability if we |
michael@0 | 1485 | // need to progress it forwards. |
michael@0 | 1486 | op.m_reentry = label(); |
michael@0 | 1487 | if (alternative->m_minimumSize > priorAlternative->m_minimumSize) { |
michael@0 | 1488 | add32(Imm32(alternative->m_minimumSize - priorAlternative->m_minimumSize), index); |
michael@0 | 1489 | op.m_jumps.append(jumpIfNoAvailableInput()); |
michael@0 | 1490 | } else if (priorAlternative->m_minimumSize > alternative->m_minimumSize) |
michael@0 | 1491 | sub32(Imm32(priorAlternative->m_minimumSize - alternative->m_minimumSize), index); |
michael@0 | 1492 | } else if (op.m_nextOp == notFound) { |
michael@0 | 1493 | // This is the reentry point for the End of 'once through' alternatives, |
michael@0 | 1494 | // jumped to when the last alternative fails to match. |
michael@0 | 1495 | op.m_reentry = label(); |
michael@0 | 1496 | sub32(Imm32(priorAlternative->m_minimumSize), index); |
michael@0 | 1497 | } |
michael@0 | 1498 | |
michael@0 | 1499 | if (op.m_op == OpBodyAlternativeNext) |
michael@0 | 1500 | m_checked += alternative->m_minimumSize; |
michael@0 | 1501 | m_checked -= priorAlternative->m_minimumSize; |
michael@0 | 1502 | break; |
michael@0 | 1503 | } |
michael@0 | 1504 | |
michael@0 | 1505 | // OpSimpleNestedAlternativeBegin/Next/End |
michael@0 | 1506 | // OpNestedAlternativeBegin/Next/End |
michael@0 | 1507 | // |
michael@0 | 1508 | // These nodes are used to handle sets of alternatives that are nested within |
michael@0 | 1509 | // subpatterns and parenthetical assertions. The 'simple' forms are used where |
michael@0 | 1510 | // we do not need to be able to backtrack back into any alternative other than |
michael@0 | 1511 | // the last, the normal forms allow backtracking into any alternative. |
michael@0 | 1512 | // |
michael@0 | 1513 | // Each Begin/Next node is responsible for planting an input check to ensure |
michael@0 | 1514 | // sufficient input is available on entry. Next nodes additionally need to |
michael@0 | 1515 | // jump to the end - Next nodes use the End node's m_jumps list to hold this |
michael@0 | 1516 | // set of jumps. |
michael@0 | 1517 | // |
michael@0 | 1518 | // In the non-simple forms, successful alternative matches must store a |
michael@0 | 1519 | // 'return address' using a DataLabelPtr, used to store the address to jump |
michael@0 | 1520 | // to when backtracking, to get to the code for the appropriate alternative. |
michael@0 | 1521 | case OpSimpleNestedAlternativeBegin: |
michael@0 | 1522 | case OpNestedAlternativeBegin: { |
michael@0 | 1523 | PatternTerm* term = op.m_term; |
michael@0 | 1524 | PatternAlternative* alternative = op.m_alternative; |
michael@0 | 1525 | PatternDisjunction* disjunction = term->parentheses.disjunction; |
michael@0 | 1526 | |
michael@0 | 1527 | // Calculate how much input we need to check for, and if non-zero check. |
michael@0 | 1528 | op.m_checkAdjust = alternative->m_minimumSize; |
michael@0 | 1529 | if ((term->quantityType == QuantifierFixedCount) && (term->type != PatternTerm::TypeParentheticalAssertion)) |
michael@0 | 1530 | op.m_checkAdjust -= disjunction->m_minimumSize; |
michael@0 | 1531 | if (op.m_checkAdjust) |
michael@0 | 1532 | op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust)); |
michael@0 | 1533 | |
michael@0 | 1534 | m_checked += op.m_checkAdjust; |
michael@0 | 1535 | break; |
michael@0 | 1536 | } |
michael@0 | 1537 | case OpSimpleNestedAlternativeNext: |
michael@0 | 1538 | case OpNestedAlternativeNext: { |
michael@0 | 1539 | PatternTerm* term = op.m_term; |
michael@0 | 1540 | PatternAlternative* alternative = op.m_alternative; |
michael@0 | 1541 | PatternDisjunction* disjunction = term->parentheses.disjunction; |
michael@0 | 1542 | |
michael@0 | 1543 | // In the non-simple case, store a 'return address' so we can backtrack correctly. |
michael@0 | 1544 | if (op.m_op == OpNestedAlternativeNext) { |
michael@0 | 1545 | unsigned parenthesesFrameLocation = term->frameLocation; |
michael@0 | 1546 | unsigned alternativeFrameLocation = parenthesesFrameLocation; |
michael@0 | 1547 | if (term->quantityType != QuantifierFixedCount) |
michael@0 | 1548 | alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce; |
michael@0 | 1549 | op.m_returnAddress = storeToFrameWithPatch(alternativeFrameLocation); |
michael@0 | 1550 | } |
michael@0 | 1551 | |
michael@0 | 1552 | if (term->quantityType != QuantifierFixedCount && !m_ops[op.m_previousOp].m_alternative->m_minimumSize) { |
michael@0 | 1553 | // If the previous alternative matched without consuming characters then |
michael@0 | 1554 | // backtrack to try to match while consumming some input. |
michael@0 | 1555 | op.m_zeroLengthMatch = branch32(Equal, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*))); |
michael@0 | 1556 | } |
michael@0 | 1557 | |
michael@0 | 1558 | // If we reach here then the last alternative has matched - jump to the |
michael@0 | 1559 | // End node, to skip over any further alternatives. |
michael@0 | 1560 | // |
michael@0 | 1561 | // FIXME: this is logically O(N^2) (though N can be expected to be very |
michael@0 | 1562 | // small). We could avoid this either by adding an extra jump to the JIT |
michael@0 | 1563 | // data structures, or by making backtracking code that jumps to Next |
michael@0 | 1564 | // alternatives are responsible for checking that input is available (if |
michael@0 | 1565 | // we didn't need to plant the input checks, then m_jumps would be free). |
michael@0 | 1566 | YarrOp* endOp = &m_ops[op.m_nextOp]; |
michael@0 | 1567 | while (endOp->m_nextOp != notFound) { |
michael@0 | 1568 | ASSERT(endOp->m_op == OpSimpleNestedAlternativeNext || endOp->m_op == OpNestedAlternativeNext); |
michael@0 | 1569 | endOp = &m_ops[endOp->m_nextOp]; |
michael@0 | 1570 | } |
michael@0 | 1571 | ASSERT(endOp->m_op == OpSimpleNestedAlternativeEnd || endOp->m_op == OpNestedAlternativeEnd); |
michael@0 | 1572 | endOp->m_jumps.append(jump()); |
michael@0 | 1573 | |
michael@0 | 1574 | // This is the entry point for the next alternative. |
michael@0 | 1575 | op.m_reentry = label(); |
michael@0 | 1576 | |
michael@0 | 1577 | // Calculate how much input we need to check for, and if non-zero check. |
michael@0 | 1578 | op.m_checkAdjust = alternative->m_minimumSize; |
michael@0 | 1579 | if ((term->quantityType == QuantifierFixedCount) && (term->type != PatternTerm::TypeParentheticalAssertion)) |
michael@0 | 1580 | op.m_checkAdjust -= disjunction->m_minimumSize; |
michael@0 | 1581 | if (op.m_checkAdjust) |
michael@0 | 1582 | op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust)); |
michael@0 | 1583 | |
michael@0 | 1584 | YarrOp& lastOp = m_ops[op.m_previousOp]; |
michael@0 | 1585 | m_checked -= lastOp.m_checkAdjust; |
michael@0 | 1586 | m_checked += op.m_checkAdjust; |
michael@0 | 1587 | break; |
michael@0 | 1588 | } |
michael@0 | 1589 | case OpSimpleNestedAlternativeEnd: |
michael@0 | 1590 | case OpNestedAlternativeEnd: { |
michael@0 | 1591 | PatternTerm* term = op.m_term; |
michael@0 | 1592 | |
michael@0 | 1593 | // In the non-simple case, store a 'return address' so we can backtrack correctly. |
michael@0 | 1594 | if (op.m_op == OpNestedAlternativeEnd) { |
michael@0 | 1595 | unsigned parenthesesFrameLocation = term->frameLocation; |
michael@0 | 1596 | unsigned alternativeFrameLocation = parenthesesFrameLocation; |
michael@0 | 1597 | if (term->quantityType != QuantifierFixedCount) |
michael@0 | 1598 | alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce; |
michael@0 | 1599 | op.m_returnAddress = storeToFrameWithPatch(alternativeFrameLocation); |
michael@0 | 1600 | } |
michael@0 | 1601 | |
michael@0 | 1602 | if (term->quantityType != QuantifierFixedCount && !m_ops[op.m_previousOp].m_alternative->m_minimumSize) { |
michael@0 | 1603 | // If the previous alternative matched without consuming characters then |
michael@0 | 1604 | // backtrack to try to match while consumming some input. |
michael@0 | 1605 | op.m_zeroLengthMatch = branch32(Equal, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*))); |
michael@0 | 1606 | } |
michael@0 | 1607 | |
michael@0 | 1608 | // If this set of alternatives contains more than one alternative, |
michael@0 | 1609 | // then the Next nodes will have planted jumps to the End, and added |
michael@0 | 1610 | // them to this node's m_jumps list. |
michael@0 | 1611 | op.m_jumps.link(this); |
michael@0 | 1612 | op.m_jumps.clear(); |
michael@0 | 1613 | |
michael@0 | 1614 | YarrOp& lastOp = m_ops[op.m_previousOp]; |
michael@0 | 1615 | m_checked -= lastOp.m_checkAdjust; |
michael@0 | 1616 | break; |
michael@0 | 1617 | } |
michael@0 | 1618 | |
michael@0 | 1619 | // OpParenthesesSubpatternOnceBegin/End |
michael@0 | 1620 | // |
michael@0 | 1621 | // These nodes support (optionally) capturing subpatterns, that have a |
michael@0 | 1622 | // quantity count of 1 (this covers fixed once, and ?/?? quantifiers). |
michael@0 | 1623 | case OpParenthesesSubpatternOnceBegin: { |
michael@0 | 1624 | PatternTerm* term = op.m_term; |
michael@0 | 1625 | unsigned parenthesesFrameLocation = term->frameLocation; |
michael@0 | 1626 | const RegisterID indexTemporary = regT0; |
michael@0 | 1627 | ASSERT(term->quantityCount == 1); |
michael@0 | 1628 | |
michael@0 | 1629 | // Upon entry to a Greedy quantified set of parenthese store the index. |
michael@0 | 1630 | // We'll use this for two purposes: |
michael@0 | 1631 | // - To indicate which iteration we are on of mathing the remainder of |
michael@0 | 1632 | // the expression after the parentheses - the first, including the |
michael@0 | 1633 | // match within the parentheses, or the second having skipped over them. |
michael@0 | 1634 | // - To check for empty matches, which must be rejected. |
michael@0 | 1635 | // |
michael@0 | 1636 | // At the head of a NonGreedy set of parentheses we'll immediately set the |
michael@0 | 1637 | // value on the stack to -1 (indicating a match skipping the subpattern), |
michael@0 | 1638 | // and plant a jump to the end. We'll also plant a label to backtrack to |
michael@0 | 1639 | // to reenter the subpattern later, with a store to set up index on the |
michael@0 | 1640 | // second iteration. |
michael@0 | 1641 | // |
michael@0 | 1642 | // FIXME: for capturing parens, could use the index in the capture array? |
michael@0 | 1643 | if (term->quantityType == QuantifierGreedy) |
michael@0 | 1644 | storeToFrame(index, parenthesesFrameLocation); |
michael@0 | 1645 | else if (term->quantityType == QuantifierNonGreedy) { |
michael@0 | 1646 | storeToFrame(TrustedImm32(-1), parenthesesFrameLocation); |
michael@0 | 1647 | op.m_jumps.append(jump()); |
michael@0 | 1648 | op.m_reentry = label(); |
michael@0 | 1649 | storeToFrame(index, parenthesesFrameLocation); |
michael@0 | 1650 | } |
michael@0 | 1651 | |
michael@0 | 1652 | // If the parenthese are capturing, store the starting index value to the |
michael@0 | 1653 | // captures array, offsetting as necessary. |
michael@0 | 1654 | // |
michael@0 | 1655 | // FIXME: could avoid offsetting this value in JIT code, apply |
michael@0 | 1656 | // offsets only afterwards, at the point the results array is |
michael@0 | 1657 | // being accessed. |
michael@0 | 1658 | if (term->capture() && compileMode == IncludeSubpatterns) { |
michael@0 | 1659 | int inputOffset = term->inputPosition - m_checked; |
michael@0 | 1660 | if (term->quantityType == QuantifierFixedCount) |
michael@0 | 1661 | inputOffset -= term->parentheses.disjunction->m_minimumSize; |
michael@0 | 1662 | if (inputOffset) { |
michael@0 | 1663 | move(index, indexTemporary); |
michael@0 | 1664 | add32(Imm32(inputOffset), indexTemporary); |
michael@0 | 1665 | setSubpatternStart(indexTemporary, term->parentheses.subpatternId); |
michael@0 | 1666 | } else |
michael@0 | 1667 | setSubpatternStart(index, term->parentheses.subpatternId); |
michael@0 | 1668 | } |
michael@0 | 1669 | break; |
michael@0 | 1670 | } |
michael@0 | 1671 | case OpParenthesesSubpatternOnceEnd: { |
michael@0 | 1672 | PatternTerm* term = op.m_term; |
michael@0 | 1673 | const RegisterID indexTemporary = regT0; |
michael@0 | 1674 | ASSERT(term->quantityCount == 1); |
michael@0 | 1675 | |
michael@0 | 1676 | #ifndef NDEBUG |
michael@0 | 1677 | // Runtime ASSERT to make sure that the nested alternative handled the |
michael@0 | 1678 | // "no input consumed" check. |
michael@0 | 1679 | if (term->quantityType != QuantifierFixedCount && !term->parentheses.disjunction->m_minimumSize) { |
michael@0 | 1680 | Jump pastBreakpoint; |
michael@0 | 1681 | pastBreakpoint = branch32(NotEqual, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*))); |
michael@0 | 1682 | breakpoint(); |
michael@0 | 1683 | pastBreakpoint.link(this); |
michael@0 | 1684 | } |
michael@0 | 1685 | #endif |
michael@0 | 1686 | |
michael@0 | 1687 | // If the parenthese are capturing, store the ending index value to the |
michael@0 | 1688 | // captures array, offsetting as necessary. |
michael@0 | 1689 | // |
michael@0 | 1690 | // FIXME: could avoid offsetting this value in JIT code, apply |
michael@0 | 1691 | // offsets only afterwards, at the point the results array is |
michael@0 | 1692 | // being accessed. |
michael@0 | 1693 | if (term->capture() && compileMode == IncludeSubpatterns) { |
michael@0 | 1694 | int inputOffset = term->inputPosition - m_checked; |
michael@0 | 1695 | if (inputOffset) { |
michael@0 | 1696 | move(index, indexTemporary); |
michael@0 | 1697 | add32(Imm32(inputOffset), indexTemporary); |
michael@0 | 1698 | setSubpatternEnd(indexTemporary, term->parentheses.subpatternId); |
michael@0 | 1699 | } else |
michael@0 | 1700 | setSubpatternEnd(index, term->parentheses.subpatternId); |
michael@0 | 1701 | } |
michael@0 | 1702 | |
michael@0 | 1703 | // If the parentheses are quantified Greedy then add a label to jump back |
michael@0 | 1704 | // to if get a failed match from after the parentheses. For NonGreedy |
michael@0 | 1705 | // parentheses, link the jump from before the subpattern to here. |
michael@0 | 1706 | if (term->quantityType == QuantifierGreedy) |
michael@0 | 1707 | op.m_reentry = label(); |
michael@0 | 1708 | else if (term->quantityType == QuantifierNonGreedy) { |
michael@0 | 1709 | YarrOp& beginOp = m_ops[op.m_previousOp]; |
michael@0 | 1710 | beginOp.m_jumps.link(this); |
michael@0 | 1711 | } |
michael@0 | 1712 | break; |
michael@0 | 1713 | } |
michael@0 | 1714 | |
michael@0 | 1715 | // OpParenthesesSubpatternTerminalBegin/End |
michael@0 | 1716 | case OpParenthesesSubpatternTerminalBegin: { |
michael@0 | 1717 | PatternTerm* term = op.m_term; |
michael@0 | 1718 | ASSERT(term->quantityType == QuantifierGreedy); |
michael@0 | 1719 | ASSERT(term->quantityCount == quantifyInfinite); |
michael@0 | 1720 | ASSERT(!term->capture()); |
michael@0 | 1721 | |
michael@0 | 1722 | // Upon entry set a label to loop back to. |
michael@0 | 1723 | op.m_reentry = label(); |
michael@0 | 1724 | |
michael@0 | 1725 | // Store the start index of the current match; we need to reject zero |
michael@0 | 1726 | // length matches. |
michael@0 | 1727 | storeToFrame(index, term->frameLocation); |
michael@0 | 1728 | break; |
michael@0 | 1729 | } |
michael@0 | 1730 | case OpParenthesesSubpatternTerminalEnd: { |
michael@0 | 1731 | YarrOp& beginOp = m_ops[op.m_previousOp]; |
michael@0 | 1732 | #ifndef NDEBUG |
michael@0 | 1733 | PatternTerm* term = op.m_term; |
michael@0 | 1734 | |
michael@0 | 1735 | // Runtime ASSERT to make sure that the nested alternative handled the |
michael@0 | 1736 | // "no input consumed" check. |
michael@0 | 1737 | Jump pastBreakpoint; |
michael@0 | 1738 | pastBreakpoint = branch32(NotEqual, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*))); |
michael@0 | 1739 | breakpoint(); |
michael@0 | 1740 | pastBreakpoint.link(this); |
michael@0 | 1741 | #endif |
michael@0 | 1742 | |
michael@0 | 1743 | // We know that the match is non-zero, we can accept it and |
michael@0 | 1744 | // loop back up to the head of the subpattern. |
michael@0 | 1745 | jump(beginOp.m_reentry); |
michael@0 | 1746 | |
michael@0 | 1747 | // This is the entry point to jump to when we stop matching - we will |
michael@0 | 1748 | // do so once the subpattern cannot match any more. |
michael@0 | 1749 | op.m_reentry = label(); |
michael@0 | 1750 | break; |
michael@0 | 1751 | } |
michael@0 | 1752 | |
michael@0 | 1753 | // OpParentheticalAssertionBegin/End |
michael@0 | 1754 | case OpParentheticalAssertionBegin: { |
michael@0 | 1755 | PatternTerm* term = op.m_term; |
michael@0 | 1756 | |
michael@0 | 1757 | // Store the current index - assertions should not update index, so |
michael@0 | 1758 | // we will need to restore it upon a successful match. |
michael@0 | 1759 | unsigned parenthesesFrameLocation = term->frameLocation; |
michael@0 | 1760 | storeToFrame(index, parenthesesFrameLocation); |
michael@0 | 1761 | |
michael@0 | 1762 | // Check |
michael@0 | 1763 | op.m_checkAdjust = m_checked - term->inputPosition; |
michael@0 | 1764 | if (op.m_checkAdjust) |
michael@0 | 1765 | sub32(Imm32(op.m_checkAdjust), index); |
michael@0 | 1766 | |
michael@0 | 1767 | m_checked -= op.m_checkAdjust; |
michael@0 | 1768 | break; |
michael@0 | 1769 | } |
michael@0 | 1770 | case OpParentheticalAssertionEnd: { |
michael@0 | 1771 | PatternTerm* term = op.m_term; |
michael@0 | 1772 | |
michael@0 | 1773 | // Restore the input index value. |
michael@0 | 1774 | unsigned parenthesesFrameLocation = term->frameLocation; |
michael@0 | 1775 | loadFromFrame(parenthesesFrameLocation, index); |
michael@0 | 1776 | |
michael@0 | 1777 | // If inverted, a successful match of the assertion must be treated |
michael@0 | 1778 | // as a failure, so jump to backtracking. |
michael@0 | 1779 | if (term->invert()) { |
michael@0 | 1780 | op.m_jumps.append(jump()); |
michael@0 | 1781 | op.m_reentry = label(); |
michael@0 | 1782 | } |
michael@0 | 1783 | |
michael@0 | 1784 | YarrOp& lastOp = m_ops[op.m_previousOp]; |
michael@0 | 1785 | m_checked += lastOp.m_checkAdjust; |
michael@0 | 1786 | break; |
michael@0 | 1787 | } |
michael@0 | 1788 | |
michael@0 | 1789 | case OpMatchFailed: |
michael@0 | 1790 | #if !WTF_CPU_SPARC |
michael@0 | 1791 | removeCallFrame(); |
michael@0 | 1792 | #endif |
michael@0 | 1793 | #if WTF_CPU_X86_64 |
michael@0 | 1794 | move(TrustedImm32(int(WTF::notFound)), returnRegister); |
michael@0 | 1795 | #else |
michael@0 | 1796 | move(TrustedImmPtr((void*)WTF::notFound), returnRegister); |
michael@0 | 1797 | move(TrustedImm32(0), returnRegister2); |
michael@0 | 1798 | #endif |
michael@0 | 1799 | generateReturn(); |
michael@0 | 1800 | break; |
michael@0 | 1801 | } |
michael@0 | 1802 | |
michael@0 | 1803 | ++opIndex; |
michael@0 | 1804 | } while (opIndex < m_ops.size()); |
michael@0 | 1805 | |
michael@0 | 1806 | return true; |
michael@0 | 1807 | } |
michael@0 | 1808 | |
michael@0 | 1809 | bool backtrack() |
michael@0 | 1810 | { |
michael@0 | 1811 | // Backwards generate the backtracking code. |
michael@0 | 1812 | size_t opIndex = m_ops.size(); |
michael@0 | 1813 | ASSERT(opIndex); |
michael@0 | 1814 | |
michael@0 | 1815 | do { |
michael@0 | 1816 | --opIndex; |
michael@0 | 1817 | YarrOp& op = m_ops[opIndex]; |
michael@0 | 1818 | switch (op.m_op) { |
michael@0 | 1819 | |
michael@0 | 1820 | case OpTerm: |
michael@0 | 1821 | if (!backtrackTerm(opIndex)) |
michael@0 | 1822 | return false; |
michael@0 | 1823 | break; |
michael@0 | 1824 | |
michael@0 | 1825 | // OpBodyAlternativeBegin/Next/End |
michael@0 | 1826 | // |
michael@0 | 1827 | // For each Begin/Next node representing an alternative, we need to decide what to do |
michael@0 | 1828 | // in two circumstances: |
michael@0 | 1829 | // - If we backtrack back into this node, from within the alternative. |
michael@0 | 1830 | // - If the input check at the head of the alternative fails (if this exists). |
michael@0 | 1831 | // |
michael@0 | 1832 | // We treat these two cases differently since in the former case we have slightly |
michael@0 | 1833 | // more information - since we are backtracking out of a prior alternative we know |
michael@0 | 1834 | // that at least enough input was available to run it. For example, given the regular |
michael@0 | 1835 | // expression /a|b/, if we backtrack out of the first alternative (a failed pattern |
michael@0 | 1836 | // character match of 'a'), then we need not perform an additional input availability |
michael@0 | 1837 | // check before running the second alternative. |
michael@0 | 1838 | // |
michael@0 | 1839 | // Backtracking required differs for the last alternative, which in the case of the |
michael@0 | 1840 | // repeating set of alternatives must loop. The code generated for the last alternative |
michael@0 | 1841 | // will also be used to handle all input check failures from any prior alternatives - |
michael@0 | 1842 | // these require similar functionality, in seeking the next available alternative for |
michael@0 | 1843 | // which there is sufficient input. |
michael@0 | 1844 | // |
michael@0 | 1845 | // Since backtracking of all other alternatives simply requires us to link backtracks |
michael@0 | 1846 | // to the reentry point for the subsequent alternative, we will only be generating any |
michael@0 | 1847 | // code when backtracking the last alternative. |
michael@0 | 1848 | case OpBodyAlternativeBegin: |
michael@0 | 1849 | case OpBodyAlternativeNext: { |
michael@0 | 1850 | PatternAlternative* alternative = op.m_alternative; |
michael@0 | 1851 | |
michael@0 | 1852 | if (op.m_op == OpBodyAlternativeNext) { |
michael@0 | 1853 | PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative; |
michael@0 | 1854 | m_checked += priorAlternative->m_minimumSize; |
michael@0 | 1855 | } |
michael@0 | 1856 | m_checked -= alternative->m_minimumSize; |
michael@0 | 1857 | |
michael@0 | 1858 | // Is this the last alternative? If not, then if we backtrack to this point we just |
michael@0 | 1859 | // need to jump to try to match the next alternative. |
michael@0 | 1860 | if (m_ops[op.m_nextOp].m_op != OpBodyAlternativeEnd) { |
michael@0 | 1861 | m_backtrackingState.linkTo(m_ops[op.m_nextOp].m_reentry, this); |
michael@0 | 1862 | break; |
michael@0 | 1863 | } |
michael@0 | 1864 | YarrOp& endOp = m_ops[op.m_nextOp]; |
michael@0 | 1865 | |
michael@0 | 1866 | YarrOp* beginOp = &op; |
michael@0 | 1867 | while (beginOp->m_op != OpBodyAlternativeBegin) { |
michael@0 | 1868 | ASSERT(beginOp->m_op == OpBodyAlternativeNext); |
michael@0 | 1869 | beginOp = &m_ops[beginOp->m_previousOp]; |
michael@0 | 1870 | } |
michael@0 | 1871 | |
michael@0 | 1872 | bool onceThrough = endOp.m_nextOp == notFound; |
michael@0 | 1873 | |
michael@0 | 1874 | // First, generate code to handle cases where we backtrack out of an attempted match |
michael@0 | 1875 | // of the last alternative. If this is a 'once through' set of alternatives then we |
michael@0 | 1876 | // have nothing to do - link this straight through to the End. |
michael@0 | 1877 | if (onceThrough) |
michael@0 | 1878 | m_backtrackingState.linkTo(endOp.m_reentry, this); |
michael@0 | 1879 | else { |
michael@0 | 1880 | // If we don't need to move the input poistion, and the pattern has a fixed size |
michael@0 | 1881 | // (in which case we omit the store of the start index until the pattern has matched) |
michael@0 | 1882 | // then we can just link the backtrack out of the last alternative straight to the |
michael@0 | 1883 | // head of the first alternative. |
michael@0 | 1884 | if (m_pattern.m_body->m_hasFixedSize |
michael@0 | 1885 | && (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize) |
michael@0 | 1886 | && (alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize == 1)) |
michael@0 | 1887 | m_backtrackingState.linkTo(beginOp->m_reentry, this); |
michael@0 | 1888 | else { |
michael@0 | 1889 | // We need to generate a trampoline of code to execute before looping back |
michael@0 | 1890 | // around to the first alternative. |
michael@0 | 1891 | m_backtrackingState.link(this); |
michael@0 | 1892 | |
michael@0 | 1893 | // If the pattern size is not fixed, then store the start index, for use if we match. |
michael@0 | 1894 | if (!m_pattern.m_body->m_hasFixedSize) { |
michael@0 | 1895 | if (alternative->m_minimumSize == 1) |
michael@0 | 1896 | setMatchStart(index); |
michael@0 | 1897 | else { |
michael@0 | 1898 | move(index, regT0); |
michael@0 | 1899 | if (alternative->m_minimumSize) |
michael@0 | 1900 | sub32(Imm32(alternative->m_minimumSize - 1), regT0); |
michael@0 | 1901 | else |
michael@0 | 1902 | add32(TrustedImm32(1), regT0); |
michael@0 | 1903 | setMatchStart(regT0); |
michael@0 | 1904 | } |
michael@0 | 1905 | } |
michael@0 | 1906 | |
michael@0 | 1907 | // Generate code to loop. Check whether the last alternative is longer than the |
michael@0 | 1908 | // first (e.g. /a|xy/ or /a|xyz/). |
michael@0 | 1909 | if (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize) { |
michael@0 | 1910 | // We want to loop, and increment input position. If the delta is 1, it is |
michael@0 | 1911 | // already correctly incremented, if more than one then decrement as appropriate. |
michael@0 | 1912 | unsigned delta = alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize; |
michael@0 | 1913 | ASSERT(delta); |
michael@0 | 1914 | if (delta != 1) |
michael@0 | 1915 | sub32(Imm32(delta - 1), index); |
michael@0 | 1916 | jump(beginOp->m_reentry); |
michael@0 | 1917 | } else { |
michael@0 | 1918 | // If the first alternative has minimum size 0xFFFFFFFFu, then there cannot |
michael@0 | 1919 | // be sufficent input available to handle this, so just fall through. |
michael@0 | 1920 | unsigned delta = beginOp->m_alternative->m_minimumSize - alternative->m_minimumSize; |
michael@0 | 1921 | if (delta != 0xFFFFFFFFu) { |
michael@0 | 1922 | // We need to check input because we are incrementing the input. |
michael@0 | 1923 | add32(Imm32(delta + 1), index); |
michael@0 | 1924 | checkInput().linkTo(beginOp->m_reentry, this); |
michael@0 | 1925 | } |
michael@0 | 1926 | } |
michael@0 | 1927 | } |
michael@0 | 1928 | } |
michael@0 | 1929 | |
michael@0 | 1930 | // We can reach this point in the code in two ways: |
michael@0 | 1931 | // - Fallthrough from the code above (a repeating alternative backtracked out of its |
michael@0 | 1932 | // last alternative, and did not have sufficent input to run the first). |
michael@0 | 1933 | // - We will loop back up to the following label when a releating alternative loops, |
michael@0 | 1934 | // following a failed input check. |
michael@0 | 1935 | // |
michael@0 | 1936 | // Either way, we have just failed the input check for the first alternative. |
michael@0 | 1937 | Label firstInputCheckFailed(this); |
michael@0 | 1938 | |
michael@0 | 1939 | // Generate code to handle input check failures from alternatives except the last. |
michael@0 | 1940 | // prevOp is the alternative we're handling a bail out from (initially Begin), and |
michael@0 | 1941 | // nextOp is the alternative we will be attempting to reenter into. |
michael@0 | 1942 | // |
michael@0 | 1943 | // We will link input check failures from the forwards matching path back to the code |
michael@0 | 1944 | // that can handle them. |
michael@0 | 1945 | YarrOp* prevOp = beginOp; |
michael@0 | 1946 | YarrOp* nextOp = &m_ops[beginOp->m_nextOp]; |
michael@0 | 1947 | while (nextOp->m_op != OpBodyAlternativeEnd) { |
michael@0 | 1948 | prevOp->m_jumps.link(this); |
michael@0 | 1949 | |
michael@0 | 1950 | // We only get here if an input check fails, it is only worth checking again |
michael@0 | 1951 | // if the next alternative has a minimum size less than the last. |
michael@0 | 1952 | if (prevOp->m_alternative->m_minimumSize > nextOp->m_alternative->m_minimumSize) { |
michael@0 | 1953 | // FIXME: if we added an extra label to YarrOp, we could avoid needing to |
michael@0 | 1954 | // subtract delta back out, and reduce this code. Should performance test |
michael@0 | 1955 | // the benefit of this. |
michael@0 | 1956 | unsigned delta = prevOp->m_alternative->m_minimumSize - nextOp->m_alternative->m_minimumSize; |
michael@0 | 1957 | sub32(Imm32(delta), index); |
michael@0 | 1958 | Jump fail = jumpIfNoAvailableInput(); |
michael@0 | 1959 | add32(Imm32(delta), index); |
michael@0 | 1960 | jump(nextOp->m_reentry); |
michael@0 | 1961 | fail.link(this); |
michael@0 | 1962 | } else if (prevOp->m_alternative->m_minimumSize < nextOp->m_alternative->m_minimumSize) |
michael@0 | 1963 | add32(Imm32(nextOp->m_alternative->m_minimumSize - prevOp->m_alternative->m_minimumSize), index); |
michael@0 | 1964 | prevOp = nextOp; |
michael@0 | 1965 | nextOp = &m_ops[nextOp->m_nextOp]; |
michael@0 | 1966 | } |
michael@0 | 1967 | |
michael@0 | 1968 | // We fall through to here if there is insufficient input to run the last alternative. |
michael@0 | 1969 | |
michael@0 | 1970 | // If there is insufficient input to run the last alternative, then for 'once through' |
michael@0 | 1971 | // alternatives we are done - just jump back up into the forwards matching path at the End. |
michael@0 | 1972 | if (onceThrough) { |
michael@0 | 1973 | op.m_jumps.linkTo(endOp.m_reentry, this); |
michael@0 | 1974 | jump(endOp.m_reentry); |
michael@0 | 1975 | break; |
michael@0 | 1976 | } |
michael@0 | 1977 | |
michael@0 | 1978 | // For repeating alternatives, link any input check failure from the last alternative to |
michael@0 | 1979 | // this point. |
michael@0 | 1980 | op.m_jumps.link(this); |
michael@0 | 1981 | |
michael@0 | 1982 | bool needsToUpdateMatchStart = !m_pattern.m_body->m_hasFixedSize; |
michael@0 | 1983 | |
michael@0 | 1984 | // Check for cases where input position is already incremented by 1 for the last |
michael@0 | 1985 | // alternative (this is particularly useful where the minimum size of the body |
michael@0 | 1986 | // disjunction is 0, e.g. /a*|b/). |
michael@0 | 1987 | if (needsToUpdateMatchStart && alternative->m_minimumSize == 1) { |
michael@0 | 1988 | // index is already incremented by 1, so just store it now! |
michael@0 | 1989 | setMatchStart(index); |
michael@0 | 1990 | needsToUpdateMatchStart = false; |
michael@0 | 1991 | } |
michael@0 | 1992 | |
michael@0 | 1993 | // Check whether there is sufficient input to loop. Increment the input position by |
michael@0 | 1994 | // one, and check. Also add in the minimum disjunction size before checking - there |
michael@0 | 1995 | // is no point in looping if we're just going to fail all the input checks around |
michael@0 | 1996 | // the next iteration. |
michael@0 | 1997 | ASSERT(alternative->m_minimumSize >= m_pattern.m_body->m_minimumSize); |
michael@0 | 1998 | if (alternative->m_minimumSize == m_pattern.m_body->m_minimumSize) { |
michael@0 | 1999 | // If the last alternative had the same minimum size as the disjunction, |
michael@0 | 2000 | // just simply increment input pos by 1, no adjustment based on minimum size. |
michael@0 | 2001 | add32(TrustedImm32(1), index); |
michael@0 | 2002 | } else { |
michael@0 | 2003 | // If the minumum for the last alternative was one greater than than that |
michael@0 | 2004 | // for the disjunction, we're already progressed by 1, nothing to do! |
michael@0 | 2005 | unsigned delta = (alternative->m_minimumSize - m_pattern.m_body->m_minimumSize) - 1; |
michael@0 | 2006 | if (delta) |
michael@0 | 2007 | sub32(Imm32(delta), index); |
michael@0 | 2008 | } |
michael@0 | 2009 | Jump matchFailed = jumpIfNoAvailableInput(); |
michael@0 | 2010 | |
michael@0 | 2011 | if (needsToUpdateMatchStart) { |
michael@0 | 2012 | if (!m_pattern.m_body->m_minimumSize) |
michael@0 | 2013 | setMatchStart(index); |
michael@0 | 2014 | else { |
michael@0 | 2015 | move(index, regT0); |
michael@0 | 2016 | sub32(Imm32(m_pattern.m_body->m_minimumSize), regT0); |
michael@0 | 2017 | setMatchStart(regT0); |
michael@0 | 2018 | } |
michael@0 | 2019 | } |
michael@0 | 2020 | |
michael@0 | 2021 | // Calculate how much more input the first alternative requires than the minimum |
michael@0 | 2022 | // for the body as a whole. If no more is needed then we dont need an additional |
michael@0 | 2023 | // input check here - jump straight back up to the start of the first alternative. |
michael@0 | 2024 | if (beginOp->m_alternative->m_minimumSize == m_pattern.m_body->m_minimumSize) |
michael@0 | 2025 | jump(beginOp->m_reentry); |
michael@0 | 2026 | else { |
michael@0 | 2027 | if (beginOp->m_alternative->m_minimumSize > m_pattern.m_body->m_minimumSize) |
michael@0 | 2028 | add32(Imm32(beginOp->m_alternative->m_minimumSize - m_pattern.m_body->m_minimumSize), index); |
michael@0 | 2029 | else |
michael@0 | 2030 | sub32(Imm32(m_pattern.m_body->m_minimumSize - beginOp->m_alternative->m_minimumSize), index); |
michael@0 | 2031 | checkInput().linkTo(beginOp->m_reentry, this); |
michael@0 | 2032 | jump(firstInputCheckFailed); |
michael@0 | 2033 | } |
michael@0 | 2034 | |
michael@0 | 2035 | // We jump to here if we iterate to the point that there is insufficient input to |
michael@0 | 2036 | // run any matches, and need to return a failure state from JIT code. |
michael@0 | 2037 | matchFailed.link(this); |
michael@0 | 2038 | |
michael@0 | 2039 | #if !WTF_CPU_SPARC |
michael@0 | 2040 | removeCallFrame(); |
michael@0 | 2041 | #endif |
michael@0 | 2042 | #if WTF_CPU_X86_64 |
michael@0 | 2043 | move(TrustedImm32(int(WTF::notFound)), returnRegister); |
michael@0 | 2044 | #else |
michael@0 | 2045 | move(TrustedImmPtr((void*)WTF::notFound), returnRegister); |
michael@0 | 2046 | move(TrustedImm32(0), returnRegister2); |
michael@0 | 2047 | #endif |
michael@0 | 2048 | generateReturn(); |
michael@0 | 2049 | break; |
michael@0 | 2050 | } |
michael@0 | 2051 | case OpBodyAlternativeEnd: { |
michael@0 | 2052 | // We should never backtrack back into a body disjunction. |
michael@0 | 2053 | ASSERT(m_backtrackingState.isEmpty()); |
michael@0 | 2054 | |
michael@0 | 2055 | PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative; |
michael@0 | 2056 | m_checked += priorAlternative->m_minimumSize; |
michael@0 | 2057 | break; |
michael@0 | 2058 | } |
michael@0 | 2059 | |
michael@0 | 2060 | // OpSimpleNestedAlternativeBegin/Next/End |
michael@0 | 2061 | // OpNestedAlternativeBegin/Next/End |
michael@0 | 2062 | // |
michael@0 | 2063 | // Generate code for when we backtrack back out of an alternative into |
michael@0 | 2064 | // a Begin or Next node, or when the entry input count check fails. If |
michael@0 | 2065 | // there are more alternatives we need to jump to the next alternative, |
michael@0 | 2066 | // if not we backtrack back out of the current set of parentheses. |
michael@0 | 2067 | // |
michael@0 | 2068 | // In the case of non-simple nested assertions we need to also link the |
michael@0 | 2069 | // 'return address' appropriately to backtrack back out into the correct |
michael@0 | 2070 | // alternative. |
michael@0 | 2071 | case OpSimpleNestedAlternativeBegin: |
michael@0 | 2072 | case OpSimpleNestedAlternativeNext: |
michael@0 | 2073 | case OpNestedAlternativeBegin: |
michael@0 | 2074 | case OpNestedAlternativeNext: { |
michael@0 | 2075 | YarrOp& nextOp = m_ops[op.m_nextOp]; |
michael@0 | 2076 | bool isBegin = op.m_previousOp == notFound; |
michael@0 | 2077 | bool isLastAlternative = nextOp.m_nextOp == notFound; |
michael@0 | 2078 | ASSERT(isBegin == (op.m_op == OpSimpleNestedAlternativeBegin || op.m_op == OpNestedAlternativeBegin)); |
michael@0 | 2079 | ASSERT(isLastAlternative == (nextOp.m_op == OpSimpleNestedAlternativeEnd || nextOp.m_op == OpNestedAlternativeEnd)); |
michael@0 | 2080 | |
michael@0 | 2081 | // Treat an input check failure the same as a failed match. |
michael@0 | 2082 | m_backtrackingState.append(op.m_jumps); |
michael@0 | 2083 | |
michael@0 | 2084 | // Set the backtracks to jump to the appropriate place. We may need |
michael@0 | 2085 | // to link the backtracks in one of three different way depending on |
michael@0 | 2086 | // the type of alternative we are dealing with: |
michael@0 | 2087 | // - A single alternative, with no simplings. |
michael@0 | 2088 | // - The last alternative of a set of two or more. |
michael@0 | 2089 | // - An alternative other than the last of a set of two or more. |
michael@0 | 2090 | // |
michael@0 | 2091 | // In the case of a single alternative on its own, we don't need to |
michael@0 | 2092 | // jump anywhere - if the alternative fails to match we can just |
michael@0 | 2093 | // continue to backtrack out of the parentheses without jumping. |
michael@0 | 2094 | // |
michael@0 | 2095 | // In the case of the last alternative in a set of more than one, we |
michael@0 | 2096 | // need to jump to return back out to the beginning. We'll do so by |
michael@0 | 2097 | // adding a jump to the End node's m_jumps list, and linking this |
michael@0 | 2098 | // when we come to generate the Begin node. For alternatives other |
michael@0 | 2099 | // than the last, we need to jump to the next alternative. |
michael@0 | 2100 | // |
michael@0 | 2101 | // If the alternative had adjusted the input position we must link |
michael@0 | 2102 | // backtracking to here, correct, and then jump on. If not we can |
michael@0 | 2103 | // link the backtracks directly to their destination. |
michael@0 | 2104 | if (op.m_checkAdjust) { |
michael@0 | 2105 | // Handle the cases where we need to link the backtracks here. |
michael@0 | 2106 | m_backtrackingState.link(this); |
michael@0 | 2107 | sub32(Imm32(op.m_checkAdjust), index); |
michael@0 | 2108 | if (!isLastAlternative) { |
michael@0 | 2109 | // An alternative that is not the last should jump to its successor. |
michael@0 | 2110 | jump(nextOp.m_reentry); |
michael@0 | 2111 | } else if (!isBegin) { |
michael@0 | 2112 | // The last of more than one alternatives must jump back to the beginning. |
michael@0 | 2113 | nextOp.m_jumps.append(jump()); |
michael@0 | 2114 | } else { |
michael@0 | 2115 | // A single alternative on its own can fall through. |
michael@0 | 2116 | m_backtrackingState.fallthrough(); |
michael@0 | 2117 | } |
michael@0 | 2118 | } else { |
michael@0 | 2119 | // Handle the cases where we can link the backtracks directly to their destinations. |
michael@0 | 2120 | if (!isLastAlternative) { |
michael@0 | 2121 | // An alternative that is not the last should jump to its successor. |
michael@0 | 2122 | m_backtrackingState.linkTo(nextOp.m_reentry, this); |
michael@0 | 2123 | } else if (!isBegin) { |
michael@0 | 2124 | // The last of more than one alternatives must jump back to the beginning. |
michael@0 | 2125 | m_backtrackingState.takeBacktracksToJumpList(nextOp.m_jumps, this); |
michael@0 | 2126 | } |
michael@0 | 2127 | // In the case of a single alternative on its own do nothing - it can fall through. |
michael@0 | 2128 | } |
michael@0 | 2129 | |
michael@0 | 2130 | // If there is a backtrack jump from a zero length match link it here. |
michael@0 | 2131 | if (op.m_zeroLengthMatch.isSet()) |
michael@0 | 2132 | m_backtrackingState.append(op.m_zeroLengthMatch); |
michael@0 | 2133 | |
michael@0 | 2134 | // At this point we've handled the backtracking back into this node. |
michael@0 | 2135 | // Now link any backtracks that need to jump to here. |
michael@0 | 2136 | |
michael@0 | 2137 | // For non-simple alternatives, link the alternative's 'return address' |
michael@0 | 2138 | // so that we backtrack back out into the previous alternative. |
michael@0 | 2139 | if (op.m_op == OpNestedAlternativeNext) |
michael@0 | 2140 | m_backtrackingState.append(op.m_returnAddress); |
michael@0 | 2141 | |
michael@0 | 2142 | // If there is more than one alternative, then the last alternative will |
michael@0 | 2143 | // have planted a jump to be linked to the end. This jump was added to the |
michael@0 | 2144 | // End node's m_jumps list. If we are back at the beginning, link it here. |
michael@0 | 2145 | if (isBegin) { |
michael@0 | 2146 | YarrOp* endOp = &m_ops[op.m_nextOp]; |
michael@0 | 2147 | while (endOp->m_nextOp != notFound) { |
michael@0 | 2148 | ASSERT(endOp->m_op == OpSimpleNestedAlternativeNext || endOp->m_op == OpNestedAlternativeNext); |
michael@0 | 2149 | endOp = &m_ops[endOp->m_nextOp]; |
michael@0 | 2150 | } |
michael@0 | 2151 | ASSERT(endOp->m_op == OpSimpleNestedAlternativeEnd || endOp->m_op == OpNestedAlternativeEnd); |
michael@0 | 2152 | m_backtrackingState.append(endOp->m_jumps); |
michael@0 | 2153 | } |
michael@0 | 2154 | |
michael@0 | 2155 | if (!isBegin) { |
michael@0 | 2156 | YarrOp& lastOp = m_ops[op.m_previousOp]; |
michael@0 | 2157 | m_checked += lastOp.m_checkAdjust; |
michael@0 | 2158 | } |
michael@0 | 2159 | m_checked -= op.m_checkAdjust; |
michael@0 | 2160 | break; |
michael@0 | 2161 | } |
michael@0 | 2162 | case OpSimpleNestedAlternativeEnd: |
michael@0 | 2163 | case OpNestedAlternativeEnd: { |
michael@0 | 2164 | PatternTerm* term = op.m_term; |
michael@0 | 2165 | |
michael@0 | 2166 | // If there is a backtrack jump from a zero length match link it here. |
michael@0 | 2167 | if (op.m_zeroLengthMatch.isSet()) |
michael@0 | 2168 | m_backtrackingState.append(op.m_zeroLengthMatch); |
michael@0 | 2169 | |
michael@0 | 2170 | // If we backtrack into the end of a simple subpattern do nothing; |
michael@0 | 2171 | // just continue through into the last alternative. If we backtrack |
michael@0 | 2172 | // into the end of a non-simple set of alterntives we need to jump |
michael@0 | 2173 | // to the backtracking return address set up during generation. |
michael@0 | 2174 | if (op.m_op == OpNestedAlternativeEnd) { |
michael@0 | 2175 | m_backtrackingState.link(this); |
michael@0 | 2176 | |
michael@0 | 2177 | // Plant a jump to the return address. |
michael@0 | 2178 | unsigned parenthesesFrameLocation = term->frameLocation; |
michael@0 | 2179 | unsigned alternativeFrameLocation = parenthesesFrameLocation; |
michael@0 | 2180 | if (term->quantityType != QuantifierFixedCount) |
michael@0 | 2181 | alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce; |
michael@0 | 2182 | loadFromFrameAndJump(alternativeFrameLocation); |
michael@0 | 2183 | |
michael@0 | 2184 | // Link the DataLabelPtr associated with the end of the last |
michael@0 | 2185 | // alternative to this point. |
michael@0 | 2186 | m_backtrackingState.append(op.m_returnAddress); |
michael@0 | 2187 | } |
michael@0 | 2188 | |
michael@0 | 2189 | YarrOp& lastOp = m_ops[op.m_previousOp]; |
michael@0 | 2190 | m_checked += lastOp.m_checkAdjust; |
michael@0 | 2191 | break; |
michael@0 | 2192 | } |
michael@0 | 2193 | |
michael@0 | 2194 | // OpParenthesesSubpatternOnceBegin/End |
michael@0 | 2195 | // |
michael@0 | 2196 | // When we are backtracking back out of a capturing subpattern we need |
michael@0 | 2197 | // to clear the start index in the matches output array, to record that |
michael@0 | 2198 | // this subpattern has not been captured. |
michael@0 | 2199 | // |
michael@0 | 2200 | // When backtracking back out of a Greedy quantified subpattern we need |
michael@0 | 2201 | // to catch this, and try running the remainder of the alternative after |
michael@0 | 2202 | // the subpattern again, skipping the parentheses. |
michael@0 | 2203 | // |
michael@0 | 2204 | // Upon backtracking back into a quantified set of parentheses we need to |
michael@0 | 2205 | // check whether we were currently skipping the subpattern. If not, we |
michael@0 | 2206 | // can backtrack into them, if we were we need to either backtrack back |
michael@0 | 2207 | // out of the start of the parentheses, or jump back to the forwards |
michael@0 | 2208 | // matching start, depending of whether the match is Greedy or NonGreedy. |
michael@0 | 2209 | case OpParenthesesSubpatternOnceBegin: { |
michael@0 | 2210 | PatternTerm* term = op.m_term; |
michael@0 | 2211 | ASSERT(term->quantityCount == 1); |
michael@0 | 2212 | |
michael@0 | 2213 | // We only need to backtrack to thispoint if capturing or greedy. |
michael@0 | 2214 | if ((term->capture() && compileMode == IncludeSubpatterns) || term->quantityType == QuantifierGreedy) { |
michael@0 | 2215 | m_backtrackingState.link(this); |
michael@0 | 2216 | |
michael@0 | 2217 | // If capturing, clear the capture (we only need to reset start). |
michael@0 | 2218 | if (term->capture() && compileMode == IncludeSubpatterns) |
michael@0 | 2219 | clearSubpatternStart(term->parentheses.subpatternId); |
michael@0 | 2220 | |
michael@0 | 2221 | // If Greedy, jump to the end. |
michael@0 | 2222 | if (term->quantityType == QuantifierGreedy) { |
michael@0 | 2223 | // Clear the flag in the stackframe indicating we ran through the subpattern. |
michael@0 | 2224 | unsigned parenthesesFrameLocation = term->frameLocation; |
michael@0 | 2225 | storeToFrame(TrustedImm32(-1), parenthesesFrameLocation); |
michael@0 | 2226 | // Jump to after the parentheses, skipping the subpattern. |
michael@0 | 2227 | jump(m_ops[op.m_nextOp].m_reentry); |
michael@0 | 2228 | // A backtrack from after the parentheses, when skipping the subpattern, |
michael@0 | 2229 | // will jump back to here. |
michael@0 | 2230 | op.m_jumps.link(this); |
michael@0 | 2231 | } |
michael@0 | 2232 | |
michael@0 | 2233 | m_backtrackingState.fallthrough(); |
michael@0 | 2234 | } |
michael@0 | 2235 | break; |
michael@0 | 2236 | } |
michael@0 | 2237 | case OpParenthesesSubpatternOnceEnd: { |
michael@0 | 2238 | PatternTerm* term = op.m_term; |
michael@0 | 2239 | |
michael@0 | 2240 | if (term->quantityType != QuantifierFixedCount) { |
michael@0 | 2241 | m_backtrackingState.link(this); |
michael@0 | 2242 | |
michael@0 | 2243 | // Check whether we should backtrack back into the parentheses, or if we |
michael@0 | 2244 | // are currently in a state where we had skipped over the subpattern |
michael@0 | 2245 | // (in which case the flag value on the stack will be -1). |
michael@0 | 2246 | unsigned parenthesesFrameLocation = term->frameLocation; |
michael@0 | 2247 | Jump hadSkipped = branch32(Equal, Address(stackPointerRegister, parenthesesFrameLocation * sizeof(void*)), TrustedImm32(-1)); |
michael@0 | 2248 | |
michael@0 | 2249 | if (term->quantityType == QuantifierGreedy) { |
michael@0 | 2250 | // For Greedy parentheses, we skip after having already tried going |
michael@0 | 2251 | // through the subpattern, so if we get here we're done. |
michael@0 | 2252 | YarrOp& beginOp = m_ops[op.m_previousOp]; |
michael@0 | 2253 | beginOp.m_jumps.append(hadSkipped); |
michael@0 | 2254 | } else { |
michael@0 | 2255 | // For NonGreedy parentheses, we try skipping the subpattern first, |
michael@0 | 2256 | // so if we get here we need to try running through the subpattern |
michael@0 | 2257 | // next. Jump back to the start of the parentheses in the forwards |
michael@0 | 2258 | // matching path. |
michael@0 | 2259 | ASSERT(term->quantityType == QuantifierNonGreedy); |
michael@0 | 2260 | YarrOp& beginOp = m_ops[op.m_previousOp]; |
michael@0 | 2261 | hadSkipped.linkTo(beginOp.m_reentry, this); |
michael@0 | 2262 | } |
michael@0 | 2263 | |
michael@0 | 2264 | m_backtrackingState.fallthrough(); |
michael@0 | 2265 | } |
michael@0 | 2266 | |
michael@0 | 2267 | m_backtrackingState.append(op.m_jumps); |
michael@0 | 2268 | break; |
michael@0 | 2269 | } |
michael@0 | 2270 | |
michael@0 | 2271 | // OpParenthesesSubpatternTerminalBegin/End |
michael@0 | 2272 | // |
michael@0 | 2273 | // Terminal subpatterns will always match - there is nothing after them to |
michael@0 | 2274 | // force a backtrack, and they have a minimum count of 0, and as such will |
michael@0 | 2275 | // always produce an acceptable result. |
michael@0 | 2276 | case OpParenthesesSubpatternTerminalBegin: { |
michael@0 | 2277 | // We will backtrack to this point once the subpattern cannot match any |
michael@0 | 2278 | // more. Since no match is accepted as a successful match (we are Greedy |
michael@0 | 2279 | // quantified with a minimum of zero) jump back to the forwards matching |
michael@0 | 2280 | // path at the end. |
michael@0 | 2281 | YarrOp& endOp = m_ops[op.m_nextOp]; |
michael@0 | 2282 | m_backtrackingState.linkTo(endOp.m_reentry, this); |
michael@0 | 2283 | break; |
michael@0 | 2284 | } |
michael@0 | 2285 | case OpParenthesesSubpatternTerminalEnd: |
michael@0 | 2286 | // We should never be backtracking to here (hence the 'terminal' in the name). |
michael@0 | 2287 | ASSERT(m_backtrackingState.isEmpty()); |
michael@0 | 2288 | m_backtrackingState.append(op.m_jumps); |
michael@0 | 2289 | break; |
michael@0 | 2290 | |
michael@0 | 2291 | // OpParentheticalAssertionBegin/End |
michael@0 | 2292 | case OpParentheticalAssertionBegin: { |
michael@0 | 2293 | PatternTerm* term = op.m_term; |
michael@0 | 2294 | YarrOp& endOp = m_ops[op.m_nextOp]; |
michael@0 | 2295 | |
michael@0 | 2296 | // We need to handle the backtracks upon backtracking back out |
michael@0 | 2297 | // of a parenthetical assertion if either we need to correct |
michael@0 | 2298 | // the input index, or the assertion was inverted. |
michael@0 | 2299 | if (op.m_checkAdjust || term->invert()) { |
michael@0 | 2300 | m_backtrackingState.link(this); |
michael@0 | 2301 | |
michael@0 | 2302 | if (op.m_checkAdjust) |
michael@0 | 2303 | add32(Imm32(op.m_checkAdjust), index); |
michael@0 | 2304 | |
michael@0 | 2305 | // In an inverted assertion failure to match the subpattern |
michael@0 | 2306 | // is treated as a successful match - jump to the end of the |
michael@0 | 2307 | // subpattern. We already have adjusted the input position |
michael@0 | 2308 | // back to that before the assertion, which is correct. |
michael@0 | 2309 | if (term->invert()) |
michael@0 | 2310 | jump(endOp.m_reentry); |
michael@0 | 2311 | |
michael@0 | 2312 | m_backtrackingState.fallthrough(); |
michael@0 | 2313 | } |
michael@0 | 2314 | |
michael@0 | 2315 | // The End node's jump list will contain any backtracks into |
michael@0 | 2316 | // the end of the assertion. Also, if inverted, we will have |
michael@0 | 2317 | // added the failure caused by a successful match to this. |
michael@0 | 2318 | m_backtrackingState.append(endOp.m_jumps); |
michael@0 | 2319 | |
michael@0 | 2320 | m_checked += op.m_checkAdjust; |
michael@0 | 2321 | break; |
michael@0 | 2322 | } |
michael@0 | 2323 | case OpParentheticalAssertionEnd: { |
michael@0 | 2324 | // FIXME: We should really be clearing any nested subpattern |
michael@0 | 2325 | // matches on bailing out from after the pattern. Firefox has |
michael@0 | 2326 | // this bug too (presumably because they use YARR!) |
michael@0 | 2327 | |
michael@0 | 2328 | // Never backtrack into an assertion; later failures bail to before the begin. |
michael@0 | 2329 | m_backtrackingState.takeBacktracksToJumpList(op.m_jumps, this); |
michael@0 | 2330 | |
michael@0 | 2331 | YarrOp& lastOp = m_ops[op.m_previousOp]; |
michael@0 | 2332 | m_checked -= lastOp.m_checkAdjust; |
michael@0 | 2333 | break; |
michael@0 | 2334 | } |
michael@0 | 2335 | |
michael@0 | 2336 | case OpMatchFailed: |
michael@0 | 2337 | break; |
michael@0 | 2338 | } |
michael@0 | 2339 | |
michael@0 | 2340 | } while (opIndex); |
michael@0 | 2341 | |
michael@0 | 2342 | return true; |
michael@0 | 2343 | } |
michael@0 | 2344 | |
michael@0 | 2345 | // Compilation methods: |
michael@0 | 2346 | // ==================== |
michael@0 | 2347 | |
michael@0 | 2348 | // opCompileParenthesesSubpattern |
michael@0 | 2349 | // Emits ops for a subpattern (set of parentheses). These consist |
michael@0 | 2350 | // of a set of alternatives wrapped in an outer set of nodes for |
michael@0 | 2351 | // the parentheses. |
michael@0 | 2352 | // Supported types of parentheses are 'Once' (quantityCount == 1) |
michael@0 | 2353 | // and 'Terminal' (non-capturing parentheses quantified as greedy |
michael@0 | 2354 | // and infinite). |
michael@0 | 2355 | // Alternatives will use the 'Simple' set of ops if either the |
michael@0 | 2356 | // subpattern is terminal (in which case we will never need to |
michael@0 | 2357 | // backtrack), or if the subpattern only contains one alternative. |
michael@0 | 2358 | void opCompileParenthesesSubpattern(PatternTerm* term) |
michael@0 | 2359 | { |
michael@0 | 2360 | YarrOpCode parenthesesBeginOpCode; |
michael@0 | 2361 | YarrOpCode parenthesesEndOpCode; |
michael@0 | 2362 | YarrOpCode alternativeBeginOpCode = OpSimpleNestedAlternativeBegin; |
michael@0 | 2363 | YarrOpCode alternativeNextOpCode = OpSimpleNestedAlternativeNext; |
michael@0 | 2364 | YarrOpCode alternativeEndOpCode = OpSimpleNestedAlternativeEnd; |
michael@0 | 2365 | |
michael@0 | 2366 | // We can currently only compile quantity 1 subpatterns that are |
michael@0 | 2367 | // not copies. We generate a copy in the case of a range quantifier, |
michael@0 | 2368 | // e.g. /(?:x){3,9}/, or /(?:x)+/ (These are effectively expanded to |
michael@0 | 2369 | // /(?:x){3,3}(?:x){0,6}/ and /(?:x)(?:x)*/ repectively). The problem |
michael@0 | 2370 | // comes where the subpattern is capturing, in which case we would |
michael@0 | 2371 | // need to restore the capture from the first subpattern upon a |
michael@0 | 2372 | // failure in the second. |
michael@0 | 2373 | if (term->quantityCount == 1 && !term->parentheses.isCopy) { |
michael@0 | 2374 | // Select the 'Once' nodes. |
michael@0 | 2375 | parenthesesBeginOpCode = OpParenthesesSubpatternOnceBegin; |
michael@0 | 2376 | parenthesesEndOpCode = OpParenthesesSubpatternOnceEnd; |
michael@0 | 2377 | |
michael@0 | 2378 | // If there is more than one alternative we cannot use the 'simple' nodes. |
michael@0 | 2379 | if (term->parentheses.disjunction->m_alternatives.size() != 1) { |
michael@0 | 2380 | alternativeBeginOpCode = OpNestedAlternativeBegin; |
michael@0 | 2381 | alternativeNextOpCode = OpNestedAlternativeNext; |
michael@0 | 2382 | alternativeEndOpCode = OpNestedAlternativeEnd; |
michael@0 | 2383 | } |
michael@0 | 2384 | } else if (term->parentheses.isTerminal) { |
michael@0 | 2385 | // Terminal groups are optimized on the assumption that matching will never |
michael@0 | 2386 | // backtrack into the terminal group. But this is false if there is more |
michael@0 | 2387 | // than one alternative and one of the alternatives can match empty. In that |
michael@0 | 2388 | // case, the empty match is counted as a failure, so we would need to backtrack. |
michael@0 | 2389 | // The backtracking code doesn't handle this case correctly, so we fall back |
michael@0 | 2390 | // to the interpreter. |
michael@0 | 2391 | Vector<PatternAlternative*>& alternatives = term->parentheses.disjunction->m_alternatives; |
michael@0 | 2392 | if (alternatives.size() != 1) { |
michael@0 | 2393 | for (unsigned i = 0; i < alternatives.size(); ++i) { |
michael@0 | 2394 | if (alternatives[i]->m_minimumSize == 0) { |
michael@0 | 2395 | m_shouldFallBack = true; |
michael@0 | 2396 | return; |
michael@0 | 2397 | } |
michael@0 | 2398 | } |
michael@0 | 2399 | } |
michael@0 | 2400 | |
michael@0 | 2401 | // Select the 'Terminal' nodes. |
michael@0 | 2402 | parenthesesBeginOpCode = OpParenthesesSubpatternTerminalBegin; |
michael@0 | 2403 | parenthesesEndOpCode = OpParenthesesSubpatternTerminalEnd; |
michael@0 | 2404 | } else { |
michael@0 | 2405 | // This subpattern is not supported by the JIT. |
michael@0 | 2406 | m_shouldFallBack = true; |
michael@0 | 2407 | return; |
michael@0 | 2408 | } |
michael@0 | 2409 | |
michael@0 | 2410 | size_t parenBegin = m_ops.size(); |
michael@0 | 2411 | m_ops.append(parenthesesBeginOpCode); |
michael@0 | 2412 | |
michael@0 | 2413 | m_ops.append(alternativeBeginOpCode); |
michael@0 | 2414 | m_ops.last().m_previousOp = notFound; |
michael@0 | 2415 | m_ops.last().m_term = term; |
michael@0 | 2416 | Vector<PatternAlternative*>& alternatives = term->parentheses.disjunction->m_alternatives; |
michael@0 | 2417 | for (unsigned i = 0; i < alternatives.size(); ++i) { |
michael@0 | 2418 | size_t lastOpIndex = m_ops.size() - 1; |
michael@0 | 2419 | |
michael@0 | 2420 | PatternAlternative* nestedAlternative = alternatives[i]; |
michael@0 | 2421 | opCompileAlternative(nestedAlternative); |
michael@0 | 2422 | |
michael@0 | 2423 | size_t thisOpIndex = m_ops.size(); |
michael@0 | 2424 | m_ops.append(YarrOp(alternativeNextOpCode)); |
michael@0 | 2425 | |
michael@0 | 2426 | YarrOp& lastOp = m_ops[lastOpIndex]; |
michael@0 | 2427 | YarrOp& thisOp = m_ops[thisOpIndex]; |
michael@0 | 2428 | |
michael@0 | 2429 | lastOp.m_alternative = nestedAlternative; |
michael@0 | 2430 | lastOp.m_nextOp = thisOpIndex; |
michael@0 | 2431 | thisOp.m_previousOp = lastOpIndex; |
michael@0 | 2432 | thisOp.m_term = term; |
michael@0 | 2433 | } |
michael@0 | 2434 | YarrOp& lastOp = m_ops.last(); |
michael@0 | 2435 | ASSERT(lastOp.m_op == alternativeNextOpCode); |
michael@0 | 2436 | lastOp.m_op = alternativeEndOpCode; |
michael@0 | 2437 | lastOp.m_alternative = 0; |
michael@0 | 2438 | lastOp.m_nextOp = notFound; |
michael@0 | 2439 | |
michael@0 | 2440 | size_t parenEnd = m_ops.size(); |
michael@0 | 2441 | m_ops.append(parenthesesEndOpCode); |
michael@0 | 2442 | |
michael@0 | 2443 | m_ops[parenBegin].m_term = term; |
michael@0 | 2444 | m_ops[parenBegin].m_previousOp = notFound; |
michael@0 | 2445 | m_ops[parenBegin].m_nextOp = parenEnd; |
michael@0 | 2446 | m_ops[parenEnd].m_term = term; |
michael@0 | 2447 | m_ops[parenEnd].m_previousOp = parenBegin; |
michael@0 | 2448 | m_ops[parenEnd].m_nextOp = notFound; |
michael@0 | 2449 | } |
michael@0 | 2450 | |
michael@0 | 2451 | // opCompileParentheticalAssertion |
michael@0 | 2452 | // Emits ops for a parenthetical assertion. These consist of an |
michael@0 | 2453 | // OpSimpleNestedAlternativeBegin/Next/End set of nodes wrapping |
michael@0 | 2454 | // the alternatives, with these wrapped by an outer pair of |
michael@0 | 2455 | // OpParentheticalAssertionBegin/End nodes. |
michael@0 | 2456 | // We can always use the OpSimpleNestedAlternative nodes in the |
michael@0 | 2457 | // case of parenthetical assertions since these only ever match |
michael@0 | 2458 | // once, and will never backtrack back into the assertion. |
michael@0 | 2459 | void opCompileParentheticalAssertion(PatternTerm* term) |
michael@0 | 2460 | { |
michael@0 | 2461 | size_t parenBegin = m_ops.size(); |
michael@0 | 2462 | m_ops.append(OpParentheticalAssertionBegin); |
michael@0 | 2463 | |
michael@0 | 2464 | m_ops.append(OpSimpleNestedAlternativeBegin); |
michael@0 | 2465 | m_ops.last().m_previousOp = notFound; |
michael@0 | 2466 | m_ops.last().m_term = term; |
michael@0 | 2467 | Vector<PatternAlternative*>& alternatives = term->parentheses.disjunction->m_alternatives; |
michael@0 | 2468 | for (unsigned i = 0; i < alternatives.size(); ++i) { |
michael@0 | 2469 | size_t lastOpIndex = m_ops.size() - 1; |
michael@0 | 2470 | |
michael@0 | 2471 | PatternAlternative* nestedAlternative = alternatives[i]; |
michael@0 | 2472 | opCompileAlternative(nestedAlternative); |
michael@0 | 2473 | |
michael@0 | 2474 | size_t thisOpIndex = m_ops.size(); |
michael@0 | 2475 | m_ops.append(YarrOp(OpSimpleNestedAlternativeNext)); |
michael@0 | 2476 | |
michael@0 | 2477 | YarrOp& lastOp = m_ops[lastOpIndex]; |
michael@0 | 2478 | YarrOp& thisOp = m_ops[thisOpIndex]; |
michael@0 | 2479 | |
michael@0 | 2480 | lastOp.m_alternative = nestedAlternative; |
michael@0 | 2481 | lastOp.m_nextOp = thisOpIndex; |
michael@0 | 2482 | thisOp.m_previousOp = lastOpIndex; |
michael@0 | 2483 | thisOp.m_term = term; |
michael@0 | 2484 | } |
michael@0 | 2485 | YarrOp& lastOp = m_ops.last(); |
michael@0 | 2486 | ASSERT(lastOp.m_op == OpSimpleNestedAlternativeNext); |
michael@0 | 2487 | lastOp.m_op = OpSimpleNestedAlternativeEnd; |
michael@0 | 2488 | lastOp.m_alternative = 0; |
michael@0 | 2489 | lastOp.m_nextOp = notFound; |
michael@0 | 2490 | |
michael@0 | 2491 | size_t parenEnd = m_ops.size(); |
michael@0 | 2492 | m_ops.append(OpParentheticalAssertionEnd); |
michael@0 | 2493 | |
michael@0 | 2494 | m_ops[parenBegin].m_term = term; |
michael@0 | 2495 | m_ops[parenBegin].m_previousOp = notFound; |
michael@0 | 2496 | m_ops[parenBegin].m_nextOp = parenEnd; |
michael@0 | 2497 | m_ops[parenEnd].m_term = term; |
michael@0 | 2498 | m_ops[parenEnd].m_previousOp = parenBegin; |
michael@0 | 2499 | m_ops[parenEnd].m_nextOp = notFound; |
michael@0 | 2500 | } |
michael@0 | 2501 | |
michael@0 | 2502 | // opCompileAlternative |
michael@0 | 2503 | // Called to emit nodes for all terms in an alternative. |
michael@0 | 2504 | void opCompileAlternative(PatternAlternative* alternative) |
michael@0 | 2505 | { |
michael@0 | 2506 | optimizeAlternative(alternative); |
michael@0 | 2507 | |
michael@0 | 2508 | for (unsigned i = 0; i < alternative->m_terms.size(); ++i) { |
michael@0 | 2509 | PatternTerm* term = &alternative->m_terms[i]; |
michael@0 | 2510 | |
michael@0 | 2511 | switch (term->type) { |
michael@0 | 2512 | case PatternTerm::TypeParenthesesSubpattern: |
michael@0 | 2513 | opCompileParenthesesSubpattern(term); |
michael@0 | 2514 | break; |
michael@0 | 2515 | |
michael@0 | 2516 | case PatternTerm::TypeParentheticalAssertion: |
michael@0 | 2517 | opCompileParentheticalAssertion(term); |
michael@0 | 2518 | break; |
michael@0 | 2519 | |
michael@0 | 2520 | default: |
michael@0 | 2521 | m_ops.append(term); |
michael@0 | 2522 | } |
michael@0 | 2523 | } |
michael@0 | 2524 | } |
michael@0 | 2525 | |
michael@0 | 2526 | // opCompileBody |
michael@0 | 2527 | // This method compiles the body disjunction of the regular expression. |
michael@0 | 2528 | // The body consists of two sets of alternatives - zero or more 'once |
michael@0 | 2529 | // through' (BOL anchored) alternatives, followed by zero or more |
michael@0 | 2530 | // repeated alternatives. |
michael@0 | 2531 | // For each of these two sets of alteratives, if not empty they will be |
michael@0 | 2532 | // wrapped in a set of OpBodyAlternativeBegin/Next/End nodes (with the |
michael@0 | 2533 | // 'begin' node referencing the first alternative, and 'next' nodes |
michael@0 | 2534 | // referencing any further alternatives. The begin/next/end nodes are |
michael@0 | 2535 | // linked together in a doubly linked list. In the case of repeating |
michael@0 | 2536 | // alternatives, the end node is also linked back to the beginning. |
michael@0 | 2537 | // If no repeating alternatives exist, then a OpMatchFailed node exists |
michael@0 | 2538 | // to return the failing result. |
michael@0 | 2539 | void opCompileBody(PatternDisjunction* disjunction) |
michael@0 | 2540 | { |
michael@0 | 2541 | Vector<PatternAlternative*>& alternatives = disjunction->m_alternatives; |
michael@0 | 2542 | size_t currentAlternativeIndex = 0; |
michael@0 | 2543 | |
michael@0 | 2544 | // Emit the 'once through' alternatives. |
michael@0 | 2545 | if (alternatives.size() && alternatives[0]->onceThrough()) { |
michael@0 | 2546 | m_ops.append(YarrOp(OpBodyAlternativeBegin)); |
michael@0 | 2547 | m_ops.last().m_previousOp = notFound; |
michael@0 | 2548 | |
michael@0 | 2549 | do { |
michael@0 | 2550 | size_t lastOpIndex = m_ops.size() - 1; |
michael@0 | 2551 | PatternAlternative* alternative = alternatives[currentAlternativeIndex]; |
michael@0 | 2552 | opCompileAlternative(alternative); |
michael@0 | 2553 | |
michael@0 | 2554 | size_t thisOpIndex = m_ops.size(); |
michael@0 | 2555 | m_ops.append(YarrOp(OpBodyAlternativeNext)); |
michael@0 | 2556 | |
michael@0 | 2557 | YarrOp& lastOp = m_ops[lastOpIndex]; |
michael@0 | 2558 | YarrOp& thisOp = m_ops[thisOpIndex]; |
michael@0 | 2559 | |
michael@0 | 2560 | lastOp.m_alternative = alternative; |
michael@0 | 2561 | lastOp.m_nextOp = thisOpIndex; |
michael@0 | 2562 | thisOp.m_previousOp = lastOpIndex; |
michael@0 | 2563 | |
michael@0 | 2564 | ++currentAlternativeIndex; |
michael@0 | 2565 | } while (currentAlternativeIndex < alternatives.size() && alternatives[currentAlternativeIndex]->onceThrough()); |
michael@0 | 2566 | |
michael@0 | 2567 | YarrOp& lastOp = m_ops.last(); |
michael@0 | 2568 | |
michael@0 | 2569 | ASSERT(lastOp.m_op == OpBodyAlternativeNext); |
michael@0 | 2570 | lastOp.m_op = OpBodyAlternativeEnd; |
michael@0 | 2571 | lastOp.m_alternative = 0; |
michael@0 | 2572 | lastOp.m_nextOp = notFound; |
michael@0 | 2573 | } |
michael@0 | 2574 | |
michael@0 | 2575 | if (currentAlternativeIndex == alternatives.size()) { |
michael@0 | 2576 | m_ops.append(YarrOp(OpMatchFailed)); |
michael@0 | 2577 | return; |
michael@0 | 2578 | } |
michael@0 | 2579 | |
michael@0 | 2580 | // Emit the repeated alternatives. |
michael@0 | 2581 | size_t repeatLoop = m_ops.size(); |
michael@0 | 2582 | m_ops.append(YarrOp(OpBodyAlternativeBegin)); |
michael@0 | 2583 | m_ops.last().m_previousOp = notFound; |
michael@0 | 2584 | do { |
michael@0 | 2585 | size_t lastOpIndex = m_ops.size() - 1; |
michael@0 | 2586 | PatternAlternative* alternative = alternatives[currentAlternativeIndex]; |
michael@0 | 2587 | ASSERT(!alternative->onceThrough()); |
michael@0 | 2588 | opCompileAlternative(alternative); |
michael@0 | 2589 | |
michael@0 | 2590 | size_t thisOpIndex = m_ops.size(); |
michael@0 | 2591 | m_ops.append(YarrOp(OpBodyAlternativeNext)); |
michael@0 | 2592 | |
michael@0 | 2593 | YarrOp& lastOp = m_ops[lastOpIndex]; |
michael@0 | 2594 | YarrOp& thisOp = m_ops[thisOpIndex]; |
michael@0 | 2595 | |
michael@0 | 2596 | lastOp.m_alternative = alternative; |
michael@0 | 2597 | lastOp.m_nextOp = thisOpIndex; |
michael@0 | 2598 | thisOp.m_previousOp = lastOpIndex; |
michael@0 | 2599 | |
michael@0 | 2600 | ++currentAlternativeIndex; |
michael@0 | 2601 | } while (currentAlternativeIndex < alternatives.size()); |
michael@0 | 2602 | YarrOp& lastOp = m_ops.last(); |
michael@0 | 2603 | ASSERT(lastOp.m_op == OpBodyAlternativeNext); |
michael@0 | 2604 | lastOp.m_op = OpBodyAlternativeEnd; |
michael@0 | 2605 | lastOp.m_alternative = 0; |
michael@0 | 2606 | lastOp.m_nextOp = repeatLoop; |
michael@0 | 2607 | } |
michael@0 | 2608 | |
michael@0 | 2609 | void generateEnter() |
michael@0 | 2610 | { |
michael@0 | 2611 | #if WTF_CPU_X86_64 |
michael@0 | 2612 | push(X86Registers::ebp); |
michael@0 | 2613 | move(stackPointerRegister, X86Registers::ebp); |
michael@0 | 2614 | push(X86Registers::ebx); |
michael@0 | 2615 | // The ABI doesn't guarantee the upper bits are zero on unsigned arguments, so clear them ourselves. |
michael@0 | 2616 | zeroExtend32ToPtr(index, index); |
michael@0 | 2617 | zeroExtend32ToPtr(length, length); |
michael@0 | 2618 | #elif WTF_CPU_X86 |
michael@0 | 2619 | push(X86Registers::ebp); |
michael@0 | 2620 | move(stackPointerRegister, X86Registers::ebp); |
michael@0 | 2621 | // TODO: do we need spill registers to fill the output pointer if there are no sub captures? |
michael@0 | 2622 | push(X86Registers::ebx); |
michael@0 | 2623 | push(X86Registers::edi); |
michael@0 | 2624 | push(X86Registers::esi); |
michael@0 | 2625 | // load output into edi (2 = saved ebp + return address). |
michael@0 | 2626 | # if WTF_COMPILER_MSVC || WTF_COMPILER_SUNCC |
michael@0 | 2627 | loadPtr(Address(X86Registers::ebp, 2 * sizeof(void*)), input); |
michael@0 | 2628 | loadPtr(Address(X86Registers::ebp, 3 * sizeof(void*)), index); |
michael@0 | 2629 | loadPtr(Address(X86Registers::ebp, 4 * sizeof(void*)), length); |
michael@0 | 2630 | if (compileMode == IncludeSubpatterns) |
michael@0 | 2631 | loadPtr(Address(X86Registers::ebp, 5 * sizeof(void*)), output); |
michael@0 | 2632 | # else |
michael@0 | 2633 | if (compileMode == IncludeSubpatterns) |
michael@0 | 2634 | loadPtr(Address(X86Registers::ebp, 2 * sizeof(void*)), output); |
michael@0 | 2635 | # endif |
michael@0 | 2636 | #elif WTF_CPU_ARM |
michael@0 | 2637 | push(ARMRegisters::r4); |
michael@0 | 2638 | push(ARMRegisters::r5); |
michael@0 | 2639 | push(ARMRegisters::r6); |
michael@0 | 2640 | # if WTF_CPU_ARM_TRADITIONAL |
michael@0 | 2641 | push(ARMRegisters::r8); // scratch register |
michael@0 | 2642 | # endif |
michael@0 | 2643 | if (compileMode == IncludeSubpatterns) |
michael@0 | 2644 | move(ARMRegisters::r3, output); |
michael@0 | 2645 | #elif WTF_CPU_SH4 |
michael@0 | 2646 | push(SH4Registers::r11); |
michael@0 | 2647 | push(SH4Registers::r13); |
michael@0 | 2648 | #elif WTF_CPU_SPARC |
michael@0 | 2649 | save(Imm32(-m_pattern.m_body->m_callFrameSize * sizeof(void*))); |
michael@0 | 2650 | #elif WTF_CPU_MIPS |
michael@0 | 2651 | // Do nothing. |
michael@0 | 2652 | #endif |
michael@0 | 2653 | } |
michael@0 | 2654 | |
michael@0 | 2655 | void generateReturn() |
michael@0 | 2656 | { |
michael@0 | 2657 | #if WTF_CPU_X86_64 |
michael@0 | 2658 | pop(X86Registers::ebx); |
michael@0 | 2659 | pop(X86Registers::ebp); |
michael@0 | 2660 | #elif WTF_CPU_X86 |
michael@0 | 2661 | pop(X86Registers::esi); |
michael@0 | 2662 | pop(X86Registers::edi); |
michael@0 | 2663 | pop(X86Registers::ebx); |
michael@0 | 2664 | pop(X86Registers::ebp); |
michael@0 | 2665 | #elif WTF_CPU_ARM |
michael@0 | 2666 | # if WTF_CPU_ARM_TRADITIONAL |
michael@0 | 2667 | pop(ARMRegisters::r8); // scratch register |
michael@0 | 2668 | # endif |
michael@0 | 2669 | pop(ARMRegisters::r6); |
michael@0 | 2670 | pop(ARMRegisters::r5); |
michael@0 | 2671 | pop(ARMRegisters::r4); |
michael@0 | 2672 | #elif WTF_CPU_SH4 |
michael@0 | 2673 | pop(SH4Registers::r13); |
michael@0 | 2674 | pop(SH4Registers::r11); |
michael@0 | 2675 | #elif WTF_CPU_SPARC |
michael@0 | 2676 | ret_and_restore(); |
michael@0 | 2677 | return; |
michael@0 | 2678 | #elif WTF_CPU_MIPS |
michael@0 | 2679 | // Do nothing |
michael@0 | 2680 | #endif |
michael@0 | 2681 | ret(); |
michael@0 | 2682 | } |
michael@0 | 2683 | |
michael@0 | 2684 | public: |
michael@0 | 2685 | YarrGenerator(YarrPattern& pattern, YarrCharSize charSize) |
michael@0 | 2686 | : m_pattern(pattern) |
michael@0 | 2687 | , m_charSize(charSize) |
michael@0 | 2688 | , m_charScale(m_charSize == Char8 ? TimesOne: TimesTwo) |
michael@0 | 2689 | , m_shouldFallBack(false) |
michael@0 | 2690 | , m_checked(0) |
michael@0 | 2691 | { |
michael@0 | 2692 | } |
michael@0 | 2693 | |
michael@0 | 2694 | void compile(JSGlobalData* globalData, YarrCodeBlock& jitObject) |
michael@0 | 2695 | { |
michael@0 | 2696 | generateEnter(); |
michael@0 | 2697 | |
michael@0 | 2698 | Jump hasInput = checkInput(); |
michael@0 | 2699 | #if WTF_CPU_X86_64 |
michael@0 | 2700 | move(TrustedImm32(int(WTF::notFound)), returnRegister); |
michael@0 | 2701 | #else |
michael@0 | 2702 | move(TrustedImmPtr((void*)WTF::notFound), returnRegister); |
michael@0 | 2703 | move(TrustedImm32(0), returnRegister2); |
michael@0 | 2704 | #endif |
michael@0 | 2705 | generateReturn(); |
michael@0 | 2706 | hasInput.link(this); |
michael@0 | 2707 | |
michael@0 | 2708 | if (compileMode == IncludeSubpatterns) { |
michael@0 | 2709 | for (unsigned i = 0; i < m_pattern.m_numSubpatterns + 1; ++i) |
michael@0 | 2710 | store32(TrustedImm32(-1), Address(output, (i << 1) * sizeof(int))); |
michael@0 | 2711 | } |
michael@0 | 2712 | |
michael@0 | 2713 | if (!m_pattern.m_body->m_hasFixedSize) |
michael@0 | 2714 | setMatchStart(index); |
michael@0 | 2715 | |
michael@0 | 2716 | initCallFrame(); |
michael@0 | 2717 | |
michael@0 | 2718 | // Compile the pattern to the internal 'YarrOp' representation. |
michael@0 | 2719 | opCompileBody(m_pattern.m_body); |
michael@0 | 2720 | |
michael@0 | 2721 | // If we encountered anything we can't handle in the JIT code |
michael@0 | 2722 | // (e.g. backreferences) then return early. |
michael@0 | 2723 | if (m_shouldFallBack) { |
michael@0 | 2724 | jitObject.setFallBack(true); |
michael@0 | 2725 | return; |
michael@0 | 2726 | } |
michael@0 | 2727 | |
michael@0 | 2728 | if (!generate() || !backtrack()) { |
michael@0 | 2729 | jitObject.setFallBack(true); |
michael@0 | 2730 | return; |
michael@0 | 2731 | } |
michael@0 | 2732 | |
michael@0 | 2733 | // Link & finalize the code. |
michael@0 | 2734 | ExecutablePool *pool; |
michael@0 | 2735 | bool ok; |
michael@0 | 2736 | LinkBuffer linkBuffer(this, globalData->regexAllocator, &pool, &ok, REGEXP_CODE); |
michael@0 | 2737 | |
michael@0 | 2738 | // Attempt to detect OOM during linkBuffer creation. |
michael@0 | 2739 | if (linkBuffer.unsafeCode() == nullptr) { |
michael@0 | 2740 | jitObject.setFallBack(true); |
michael@0 | 2741 | return; |
michael@0 | 2742 | } |
michael@0 | 2743 | |
michael@0 | 2744 | m_backtrackingState.linkDataLabels(linkBuffer); |
michael@0 | 2745 | |
michael@0 | 2746 | if (compileMode == MatchOnly) { |
michael@0 | 2747 | #if YARR_8BIT_CHAR_SUPPORT |
michael@0 | 2748 | if (m_charSize == Char8) |
michael@0 | 2749 | jitObject.set8BitCodeMatchOnly(linkBuffer.finalizeCode()); |
michael@0 | 2750 | else |
michael@0 | 2751 | #endif |
michael@0 | 2752 | jitObject.set16BitCodeMatchOnly(linkBuffer.finalizeCode()); |
michael@0 | 2753 | } else { |
michael@0 | 2754 | #if YARR_8BIT_CHAR_SUPPORT |
michael@0 | 2755 | if (m_charSize == Char8) |
michael@0 | 2756 | jitObject.set8BitCode(linkBuffer.finalizeCode()); |
michael@0 | 2757 | else |
michael@0 | 2758 | #endif |
michael@0 | 2759 | jitObject.set16BitCode(linkBuffer.finalizeCode()); |
michael@0 | 2760 | } |
michael@0 | 2761 | jitObject.setFallBack(m_shouldFallBack); |
michael@0 | 2762 | } |
michael@0 | 2763 | |
michael@0 | 2764 | private: |
michael@0 | 2765 | YarrPattern& m_pattern; |
michael@0 | 2766 | |
michael@0 | 2767 | YarrCharSize m_charSize; |
michael@0 | 2768 | |
michael@0 | 2769 | Scale m_charScale; |
michael@0 | 2770 | |
michael@0 | 2771 | // Used to detect regular expression constructs that are not currently |
michael@0 | 2772 | // supported in the JIT; fall back to the interpreter when this is detected. |
michael@0 | 2773 | bool m_shouldFallBack; |
michael@0 | 2774 | |
michael@0 | 2775 | // The regular expression expressed as a linear sequence of operations. |
michael@0 | 2776 | Vector<YarrOp, 128> m_ops; |
michael@0 | 2777 | |
michael@0 | 2778 | // This records the current input offset being applied due to the current |
michael@0 | 2779 | // set of alternatives we are nested within. E.g. when matching the |
michael@0 | 2780 | // character 'b' within the regular expression /abc/, we will know that |
michael@0 | 2781 | // the minimum size for the alternative is 3, checked upon entry to the |
michael@0 | 2782 | // alternative, and that 'b' is at offset 1 from the start, and as such |
michael@0 | 2783 | // when matching 'b' we need to apply an offset of -2 to the load. |
michael@0 | 2784 | // |
michael@0 | 2785 | // FIXME: This should go away. Rather than tracking this value throughout |
michael@0 | 2786 | // code generation, we should gather this information up front & store it |
michael@0 | 2787 | // on the YarrOp structure. |
michael@0 | 2788 | int m_checked; |
michael@0 | 2789 | |
michael@0 | 2790 | // This class records state whilst generating the backtracking path of code. |
michael@0 | 2791 | BacktrackingState m_backtrackingState; |
michael@0 | 2792 | }; |
michael@0 | 2793 | |
michael@0 | 2794 | void jitCompile(YarrPattern& pattern, YarrCharSize charSize, JSGlobalData* globalData, YarrCodeBlock& jitObject, YarrJITCompileMode mode) |
michael@0 | 2795 | { |
michael@0 | 2796 | if (mode == MatchOnly) |
michael@0 | 2797 | YarrGenerator<MatchOnly>(pattern, charSize).compile(globalData, jitObject); |
michael@0 | 2798 | else |
michael@0 | 2799 | YarrGenerator<IncludeSubpatterns>(pattern, charSize).compile(globalData, jitObject); |
michael@0 | 2800 | } |
michael@0 | 2801 | |
michael@0 | 2802 | }} |
michael@0 | 2803 | |
michael@0 | 2804 | #endif |