Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | /* |
michael@0 | 2 | * jfdctfst.c |
michael@0 | 3 | * |
michael@0 | 4 | * Copyright (C) 1994-1996, Thomas G. Lane. |
michael@0 | 5 | * This file is part of the Independent JPEG Group's software. |
michael@0 | 6 | * For conditions of distribution and use, see the accompanying README file. |
michael@0 | 7 | * |
michael@0 | 8 | * This file contains a fast, not so accurate integer implementation of the |
michael@0 | 9 | * forward DCT (Discrete Cosine Transform). |
michael@0 | 10 | * |
michael@0 | 11 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
michael@0 | 12 | * on each column. Direct algorithms are also available, but they are |
michael@0 | 13 | * much more complex and seem not to be any faster when reduced to code. |
michael@0 | 14 | * |
michael@0 | 15 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
michael@0 | 16 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
michael@0 | 17 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
michael@0 | 18 | * JPEG textbook (see REFERENCES section in file README). The following code |
michael@0 | 19 | * is based directly on figure 4-8 in P&M. |
michael@0 | 20 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
michael@0 | 21 | * possible to arrange the computation so that many of the multiplies are |
michael@0 | 22 | * simple scalings of the final outputs. These multiplies can then be |
michael@0 | 23 | * folded into the multiplications or divisions by the JPEG quantization |
michael@0 | 24 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
michael@0 | 25 | * to be done in the DCT itself. |
michael@0 | 26 | * The primary disadvantage of this method is that with fixed-point math, |
michael@0 | 27 | * accuracy is lost due to imprecise representation of the scaled |
michael@0 | 28 | * quantization values. The smaller the quantization table entry, the less |
michael@0 | 29 | * precise the scaled value, so this implementation does worse with high- |
michael@0 | 30 | * quality-setting files than with low-quality ones. |
michael@0 | 31 | */ |
michael@0 | 32 | |
michael@0 | 33 | #define JPEG_INTERNALS |
michael@0 | 34 | #include "jinclude.h" |
michael@0 | 35 | #include "jpeglib.h" |
michael@0 | 36 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
michael@0 | 37 | |
michael@0 | 38 | #ifdef DCT_IFAST_SUPPORTED |
michael@0 | 39 | |
michael@0 | 40 | |
michael@0 | 41 | /* |
michael@0 | 42 | * This module is specialized to the case DCTSIZE = 8. |
michael@0 | 43 | */ |
michael@0 | 44 | |
michael@0 | 45 | #if DCTSIZE != 8 |
michael@0 | 46 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
michael@0 | 47 | #endif |
michael@0 | 48 | |
michael@0 | 49 | |
michael@0 | 50 | /* Scaling decisions are generally the same as in the LL&M algorithm; |
michael@0 | 51 | * see jfdctint.c for more details. However, we choose to descale |
michael@0 | 52 | * (right shift) multiplication products as soon as they are formed, |
michael@0 | 53 | * rather than carrying additional fractional bits into subsequent additions. |
michael@0 | 54 | * This compromises accuracy slightly, but it lets us save a few shifts. |
michael@0 | 55 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
michael@0 | 56 | * everywhere except in the multiplications proper; this saves a good deal |
michael@0 | 57 | * of work on 16-bit-int machines. |
michael@0 | 58 | * |
michael@0 | 59 | * Again to save a few shifts, the intermediate results between pass 1 and |
michael@0 | 60 | * pass 2 are not upscaled, but are represented only to integral precision. |
michael@0 | 61 | * |
michael@0 | 62 | * A final compromise is to represent the multiplicative constants to only |
michael@0 | 63 | * 8 fractional bits, rather than 13. This saves some shifting work on some |
michael@0 | 64 | * machines, and may also reduce the cost of multiplication (since there |
michael@0 | 65 | * are fewer one-bits in the constants). |
michael@0 | 66 | */ |
michael@0 | 67 | |
michael@0 | 68 | #define CONST_BITS 8 |
michael@0 | 69 | |
michael@0 | 70 | |
michael@0 | 71 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
michael@0 | 72 | * causing a lot of useless floating-point operations at run time. |
michael@0 | 73 | * To get around this we use the following pre-calculated constants. |
michael@0 | 74 | * If you change CONST_BITS you may want to add appropriate values. |
michael@0 | 75 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
michael@0 | 76 | */ |
michael@0 | 77 | |
michael@0 | 78 | #if CONST_BITS == 8 |
michael@0 | 79 | #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ |
michael@0 | 80 | #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ |
michael@0 | 81 | #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ |
michael@0 | 82 | #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ |
michael@0 | 83 | #else |
michael@0 | 84 | #define FIX_0_382683433 FIX(0.382683433) |
michael@0 | 85 | #define FIX_0_541196100 FIX(0.541196100) |
michael@0 | 86 | #define FIX_0_707106781 FIX(0.707106781) |
michael@0 | 87 | #define FIX_1_306562965 FIX(1.306562965) |
michael@0 | 88 | #endif |
michael@0 | 89 | |
michael@0 | 90 | |
michael@0 | 91 | /* We can gain a little more speed, with a further compromise in accuracy, |
michael@0 | 92 | * by omitting the addition in a descaling shift. This yields an incorrectly |
michael@0 | 93 | * rounded result half the time... |
michael@0 | 94 | */ |
michael@0 | 95 | |
michael@0 | 96 | #ifndef USE_ACCURATE_ROUNDING |
michael@0 | 97 | #undef DESCALE |
michael@0 | 98 | #define DESCALE(x,n) RIGHT_SHIFT(x, n) |
michael@0 | 99 | #endif |
michael@0 | 100 | |
michael@0 | 101 | |
michael@0 | 102 | /* Multiply a DCTELEM variable by an INT32 constant, and immediately |
michael@0 | 103 | * descale to yield a DCTELEM result. |
michael@0 | 104 | */ |
michael@0 | 105 | |
michael@0 | 106 | #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
michael@0 | 107 | |
michael@0 | 108 | |
michael@0 | 109 | /* |
michael@0 | 110 | * Perform the forward DCT on one block of samples. |
michael@0 | 111 | */ |
michael@0 | 112 | |
michael@0 | 113 | GLOBAL(void) |
michael@0 | 114 | jpeg_fdct_ifast (DCTELEM * data) |
michael@0 | 115 | { |
michael@0 | 116 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
michael@0 | 117 | DCTELEM tmp10, tmp11, tmp12, tmp13; |
michael@0 | 118 | DCTELEM z1, z2, z3, z4, z5, z11, z13; |
michael@0 | 119 | DCTELEM *dataptr; |
michael@0 | 120 | int ctr; |
michael@0 | 121 | SHIFT_TEMPS |
michael@0 | 122 | |
michael@0 | 123 | /* Pass 1: process rows. */ |
michael@0 | 124 | |
michael@0 | 125 | dataptr = data; |
michael@0 | 126 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
michael@0 | 127 | tmp0 = dataptr[0] + dataptr[7]; |
michael@0 | 128 | tmp7 = dataptr[0] - dataptr[7]; |
michael@0 | 129 | tmp1 = dataptr[1] + dataptr[6]; |
michael@0 | 130 | tmp6 = dataptr[1] - dataptr[6]; |
michael@0 | 131 | tmp2 = dataptr[2] + dataptr[5]; |
michael@0 | 132 | tmp5 = dataptr[2] - dataptr[5]; |
michael@0 | 133 | tmp3 = dataptr[3] + dataptr[4]; |
michael@0 | 134 | tmp4 = dataptr[3] - dataptr[4]; |
michael@0 | 135 | |
michael@0 | 136 | /* Even part */ |
michael@0 | 137 | |
michael@0 | 138 | tmp10 = tmp0 + tmp3; /* phase 2 */ |
michael@0 | 139 | tmp13 = tmp0 - tmp3; |
michael@0 | 140 | tmp11 = tmp1 + tmp2; |
michael@0 | 141 | tmp12 = tmp1 - tmp2; |
michael@0 | 142 | |
michael@0 | 143 | dataptr[0] = tmp10 + tmp11; /* phase 3 */ |
michael@0 | 144 | dataptr[4] = tmp10 - tmp11; |
michael@0 | 145 | |
michael@0 | 146 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
michael@0 | 147 | dataptr[2] = tmp13 + z1; /* phase 5 */ |
michael@0 | 148 | dataptr[6] = tmp13 - z1; |
michael@0 | 149 | |
michael@0 | 150 | /* Odd part */ |
michael@0 | 151 | |
michael@0 | 152 | tmp10 = tmp4 + tmp5; /* phase 2 */ |
michael@0 | 153 | tmp11 = tmp5 + tmp6; |
michael@0 | 154 | tmp12 = tmp6 + tmp7; |
michael@0 | 155 | |
michael@0 | 156 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
michael@0 | 157 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
michael@0 | 158 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
michael@0 | 159 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
michael@0 | 160 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
michael@0 | 161 | |
michael@0 | 162 | z11 = tmp7 + z3; /* phase 5 */ |
michael@0 | 163 | z13 = tmp7 - z3; |
michael@0 | 164 | |
michael@0 | 165 | dataptr[5] = z13 + z2; /* phase 6 */ |
michael@0 | 166 | dataptr[3] = z13 - z2; |
michael@0 | 167 | dataptr[1] = z11 + z4; |
michael@0 | 168 | dataptr[7] = z11 - z4; |
michael@0 | 169 | |
michael@0 | 170 | dataptr += DCTSIZE; /* advance pointer to next row */ |
michael@0 | 171 | } |
michael@0 | 172 | |
michael@0 | 173 | /* Pass 2: process columns. */ |
michael@0 | 174 | |
michael@0 | 175 | dataptr = data; |
michael@0 | 176 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
michael@0 | 177 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
michael@0 | 178 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
michael@0 | 179 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
michael@0 | 180 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
michael@0 | 181 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
michael@0 | 182 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
michael@0 | 183 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
michael@0 | 184 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
michael@0 | 185 | |
michael@0 | 186 | /* Even part */ |
michael@0 | 187 | |
michael@0 | 188 | tmp10 = tmp0 + tmp3; /* phase 2 */ |
michael@0 | 189 | tmp13 = tmp0 - tmp3; |
michael@0 | 190 | tmp11 = tmp1 + tmp2; |
michael@0 | 191 | tmp12 = tmp1 - tmp2; |
michael@0 | 192 | |
michael@0 | 193 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
michael@0 | 194 | dataptr[DCTSIZE*4] = tmp10 - tmp11; |
michael@0 | 195 | |
michael@0 | 196 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
michael@0 | 197 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
michael@0 | 198 | dataptr[DCTSIZE*6] = tmp13 - z1; |
michael@0 | 199 | |
michael@0 | 200 | /* Odd part */ |
michael@0 | 201 | |
michael@0 | 202 | tmp10 = tmp4 + tmp5; /* phase 2 */ |
michael@0 | 203 | tmp11 = tmp5 + tmp6; |
michael@0 | 204 | tmp12 = tmp6 + tmp7; |
michael@0 | 205 | |
michael@0 | 206 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
michael@0 | 207 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
michael@0 | 208 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
michael@0 | 209 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
michael@0 | 210 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
michael@0 | 211 | |
michael@0 | 212 | z11 = tmp7 + z3; /* phase 5 */ |
michael@0 | 213 | z13 = tmp7 - z3; |
michael@0 | 214 | |
michael@0 | 215 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
michael@0 | 216 | dataptr[DCTSIZE*3] = z13 - z2; |
michael@0 | 217 | dataptr[DCTSIZE*1] = z11 + z4; |
michael@0 | 218 | dataptr[DCTSIZE*7] = z11 - z4; |
michael@0 | 219 | |
michael@0 | 220 | dataptr++; /* advance pointer to next column */ |
michael@0 | 221 | } |
michael@0 | 222 | } |
michael@0 | 223 | |
michael@0 | 224 | #endif /* DCT_IFAST_SUPPORTED */ |