media/libjpeg/jfdctfst.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /*
michael@0 2 * jfdctfst.c
michael@0 3 *
michael@0 4 * Copyright (C) 1994-1996, Thomas G. Lane.
michael@0 5 * This file is part of the Independent JPEG Group's software.
michael@0 6 * For conditions of distribution and use, see the accompanying README file.
michael@0 7 *
michael@0 8 * This file contains a fast, not so accurate integer implementation of the
michael@0 9 * forward DCT (Discrete Cosine Transform).
michael@0 10 *
michael@0 11 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
michael@0 12 * on each column. Direct algorithms are also available, but they are
michael@0 13 * much more complex and seem not to be any faster when reduced to code.
michael@0 14 *
michael@0 15 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
michael@0 16 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
michael@0 17 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
michael@0 18 * JPEG textbook (see REFERENCES section in file README). The following code
michael@0 19 * is based directly on figure 4-8 in P&M.
michael@0 20 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
michael@0 21 * possible to arrange the computation so that many of the multiplies are
michael@0 22 * simple scalings of the final outputs. These multiplies can then be
michael@0 23 * folded into the multiplications or divisions by the JPEG quantization
michael@0 24 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
michael@0 25 * to be done in the DCT itself.
michael@0 26 * The primary disadvantage of this method is that with fixed-point math,
michael@0 27 * accuracy is lost due to imprecise representation of the scaled
michael@0 28 * quantization values. The smaller the quantization table entry, the less
michael@0 29 * precise the scaled value, so this implementation does worse with high-
michael@0 30 * quality-setting files than with low-quality ones.
michael@0 31 */
michael@0 32
michael@0 33 #define JPEG_INTERNALS
michael@0 34 #include "jinclude.h"
michael@0 35 #include "jpeglib.h"
michael@0 36 #include "jdct.h" /* Private declarations for DCT subsystem */
michael@0 37
michael@0 38 #ifdef DCT_IFAST_SUPPORTED
michael@0 39
michael@0 40
michael@0 41 /*
michael@0 42 * This module is specialized to the case DCTSIZE = 8.
michael@0 43 */
michael@0 44
michael@0 45 #if DCTSIZE != 8
michael@0 46 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
michael@0 47 #endif
michael@0 48
michael@0 49
michael@0 50 /* Scaling decisions are generally the same as in the LL&M algorithm;
michael@0 51 * see jfdctint.c for more details. However, we choose to descale
michael@0 52 * (right shift) multiplication products as soon as they are formed,
michael@0 53 * rather than carrying additional fractional bits into subsequent additions.
michael@0 54 * This compromises accuracy slightly, but it lets us save a few shifts.
michael@0 55 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
michael@0 56 * everywhere except in the multiplications proper; this saves a good deal
michael@0 57 * of work on 16-bit-int machines.
michael@0 58 *
michael@0 59 * Again to save a few shifts, the intermediate results between pass 1 and
michael@0 60 * pass 2 are not upscaled, but are represented only to integral precision.
michael@0 61 *
michael@0 62 * A final compromise is to represent the multiplicative constants to only
michael@0 63 * 8 fractional bits, rather than 13. This saves some shifting work on some
michael@0 64 * machines, and may also reduce the cost of multiplication (since there
michael@0 65 * are fewer one-bits in the constants).
michael@0 66 */
michael@0 67
michael@0 68 #define CONST_BITS 8
michael@0 69
michael@0 70
michael@0 71 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
michael@0 72 * causing a lot of useless floating-point operations at run time.
michael@0 73 * To get around this we use the following pre-calculated constants.
michael@0 74 * If you change CONST_BITS you may want to add appropriate values.
michael@0 75 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
michael@0 76 */
michael@0 77
michael@0 78 #if CONST_BITS == 8
michael@0 79 #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
michael@0 80 #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
michael@0 81 #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
michael@0 82 #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
michael@0 83 #else
michael@0 84 #define FIX_0_382683433 FIX(0.382683433)
michael@0 85 #define FIX_0_541196100 FIX(0.541196100)
michael@0 86 #define FIX_0_707106781 FIX(0.707106781)
michael@0 87 #define FIX_1_306562965 FIX(1.306562965)
michael@0 88 #endif
michael@0 89
michael@0 90
michael@0 91 /* We can gain a little more speed, with a further compromise in accuracy,
michael@0 92 * by omitting the addition in a descaling shift. This yields an incorrectly
michael@0 93 * rounded result half the time...
michael@0 94 */
michael@0 95
michael@0 96 #ifndef USE_ACCURATE_ROUNDING
michael@0 97 #undef DESCALE
michael@0 98 #define DESCALE(x,n) RIGHT_SHIFT(x, n)
michael@0 99 #endif
michael@0 100
michael@0 101
michael@0 102 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
michael@0 103 * descale to yield a DCTELEM result.
michael@0 104 */
michael@0 105
michael@0 106 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
michael@0 107
michael@0 108
michael@0 109 /*
michael@0 110 * Perform the forward DCT on one block of samples.
michael@0 111 */
michael@0 112
michael@0 113 GLOBAL(void)
michael@0 114 jpeg_fdct_ifast (DCTELEM * data)
michael@0 115 {
michael@0 116 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
michael@0 117 DCTELEM tmp10, tmp11, tmp12, tmp13;
michael@0 118 DCTELEM z1, z2, z3, z4, z5, z11, z13;
michael@0 119 DCTELEM *dataptr;
michael@0 120 int ctr;
michael@0 121 SHIFT_TEMPS
michael@0 122
michael@0 123 /* Pass 1: process rows. */
michael@0 124
michael@0 125 dataptr = data;
michael@0 126 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
michael@0 127 tmp0 = dataptr[0] + dataptr[7];
michael@0 128 tmp7 = dataptr[0] - dataptr[7];
michael@0 129 tmp1 = dataptr[1] + dataptr[6];
michael@0 130 tmp6 = dataptr[1] - dataptr[6];
michael@0 131 tmp2 = dataptr[2] + dataptr[5];
michael@0 132 tmp5 = dataptr[2] - dataptr[5];
michael@0 133 tmp3 = dataptr[3] + dataptr[4];
michael@0 134 tmp4 = dataptr[3] - dataptr[4];
michael@0 135
michael@0 136 /* Even part */
michael@0 137
michael@0 138 tmp10 = tmp0 + tmp3; /* phase 2 */
michael@0 139 tmp13 = tmp0 - tmp3;
michael@0 140 tmp11 = tmp1 + tmp2;
michael@0 141 tmp12 = tmp1 - tmp2;
michael@0 142
michael@0 143 dataptr[0] = tmp10 + tmp11; /* phase 3 */
michael@0 144 dataptr[4] = tmp10 - tmp11;
michael@0 145
michael@0 146 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
michael@0 147 dataptr[2] = tmp13 + z1; /* phase 5 */
michael@0 148 dataptr[6] = tmp13 - z1;
michael@0 149
michael@0 150 /* Odd part */
michael@0 151
michael@0 152 tmp10 = tmp4 + tmp5; /* phase 2 */
michael@0 153 tmp11 = tmp5 + tmp6;
michael@0 154 tmp12 = tmp6 + tmp7;
michael@0 155
michael@0 156 /* The rotator is modified from fig 4-8 to avoid extra negations. */
michael@0 157 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
michael@0 158 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
michael@0 159 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
michael@0 160 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
michael@0 161
michael@0 162 z11 = tmp7 + z3; /* phase 5 */
michael@0 163 z13 = tmp7 - z3;
michael@0 164
michael@0 165 dataptr[5] = z13 + z2; /* phase 6 */
michael@0 166 dataptr[3] = z13 - z2;
michael@0 167 dataptr[1] = z11 + z4;
michael@0 168 dataptr[7] = z11 - z4;
michael@0 169
michael@0 170 dataptr += DCTSIZE; /* advance pointer to next row */
michael@0 171 }
michael@0 172
michael@0 173 /* Pass 2: process columns. */
michael@0 174
michael@0 175 dataptr = data;
michael@0 176 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
michael@0 177 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
michael@0 178 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
michael@0 179 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
michael@0 180 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
michael@0 181 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
michael@0 182 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
michael@0 183 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
michael@0 184 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
michael@0 185
michael@0 186 /* Even part */
michael@0 187
michael@0 188 tmp10 = tmp0 + tmp3; /* phase 2 */
michael@0 189 tmp13 = tmp0 - tmp3;
michael@0 190 tmp11 = tmp1 + tmp2;
michael@0 191 tmp12 = tmp1 - tmp2;
michael@0 192
michael@0 193 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
michael@0 194 dataptr[DCTSIZE*4] = tmp10 - tmp11;
michael@0 195
michael@0 196 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
michael@0 197 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
michael@0 198 dataptr[DCTSIZE*6] = tmp13 - z1;
michael@0 199
michael@0 200 /* Odd part */
michael@0 201
michael@0 202 tmp10 = tmp4 + tmp5; /* phase 2 */
michael@0 203 tmp11 = tmp5 + tmp6;
michael@0 204 tmp12 = tmp6 + tmp7;
michael@0 205
michael@0 206 /* The rotator is modified from fig 4-8 to avoid extra negations. */
michael@0 207 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
michael@0 208 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
michael@0 209 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
michael@0 210 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
michael@0 211
michael@0 212 z11 = tmp7 + z3; /* phase 5 */
michael@0 213 z13 = tmp7 - z3;
michael@0 214
michael@0 215 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
michael@0 216 dataptr[DCTSIZE*3] = z13 - z2;
michael@0 217 dataptr[DCTSIZE*1] = z11 + z4;
michael@0 218 dataptr[DCTSIZE*7] = z11 - z4;
michael@0 219
michael@0 220 dataptr++; /* advance pointer to next column */
michael@0 221 }
michael@0 222 }
michael@0 223
michael@0 224 #endif /* DCT_IFAST_SUPPORTED */

mercurial