media/libopus/silk/fixed/burg_modified_FIX.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /***********************************************************************
michael@0 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
michael@0 3 Redistribution and use in source and binary forms, with or without
michael@0 4 modification, are permitted provided that the following conditions
michael@0 5 are met:
michael@0 6 - Redistributions of source code must retain the above copyright notice,
michael@0 7 this list of conditions and the following disclaimer.
michael@0 8 - Redistributions in binary form must reproduce the above copyright
michael@0 9 notice, this list of conditions and the following disclaimer in the
michael@0 10 documentation and/or other materials provided with the distribution.
michael@0 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
michael@0 12 names of specific contributors, may be used to endorse or promote
michael@0 13 products derived from this software without specific prior written
michael@0 14 permission.
michael@0 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
michael@0 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
michael@0 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
michael@0 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
michael@0 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
michael@0 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
michael@0 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
michael@0 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
michael@0 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
michael@0 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
michael@0 25 POSSIBILITY OF SUCH DAMAGE.
michael@0 26 ***********************************************************************/
michael@0 27
michael@0 28 #ifdef HAVE_CONFIG_H
michael@0 29 #include "config.h"
michael@0 30 #endif
michael@0 31
michael@0 32 #include "SigProc_FIX.h"
michael@0 33 #include "define.h"
michael@0 34 #include "tuning_parameters.h"
michael@0 35 #include "pitch.h"
michael@0 36
michael@0 37 #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
michael@0 38
michael@0 39 #define QA 25
michael@0 40 #define N_BITS_HEAD_ROOM 2
michael@0 41 #define MIN_RSHIFTS -16
michael@0 42 #define MAX_RSHIFTS (32 - QA)
michael@0 43
michael@0 44 /* Compute reflection coefficients from input signal */
michael@0 45 void silk_burg_modified(
michael@0 46 opus_int32 *res_nrg, /* O Residual energy */
michael@0 47 opus_int *res_nrg_Q, /* O Residual energy Q value */
michael@0 48 opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
michael@0 49 const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
michael@0 50 const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
michael@0 51 const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
michael@0 52 const opus_int nb_subfr, /* I Number of subframes stacked in x */
michael@0 53 const opus_int D, /* I Order */
michael@0 54 int arch /* I Run-time architecture */
michael@0 55 )
michael@0 56 {
michael@0 57 opus_int k, n, s, lz, rshifts, rshifts_extra, reached_max_gain;
michael@0 58 opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
michael@0 59 const opus_int16 *x_ptr;
michael@0 60 opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ];
michael@0 61 opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ];
michael@0 62 opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ];
michael@0 63 opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ];
michael@0 64 opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ];
michael@0 65 opus_int32 xcorr[ SILK_MAX_ORDER_LPC ];
michael@0 66
michael@0 67 silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
michael@0 68
michael@0 69 /* Compute autocorrelations, added over subframes */
michael@0 70 silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length );
michael@0 71 if( rshifts > MAX_RSHIFTS ) {
michael@0 72 C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS );
michael@0 73 silk_assert( C0 > 0 );
michael@0 74 rshifts = MAX_RSHIFTS;
michael@0 75 } else {
michael@0 76 lz = silk_CLZ32( C0 ) - 1;
michael@0 77 rshifts_extra = N_BITS_HEAD_ROOM - lz;
michael@0 78 if( rshifts_extra > 0 ) {
michael@0 79 rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts );
michael@0 80 C0 = silk_RSHIFT32( C0, rshifts_extra );
michael@0 81 } else {
michael@0 82 rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts );
michael@0 83 C0 = silk_LSHIFT32( C0, -rshifts_extra );
michael@0 84 }
michael@0 85 rshifts += rshifts_extra;
michael@0 86 }
michael@0 87 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
michael@0 88 silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
michael@0 89 if( rshifts > 0 ) {
michael@0 90 for( s = 0; s < nb_subfr; s++ ) {
michael@0 91 x_ptr = x + s * subfr_length;
michael@0 92 for( n = 1; n < D + 1; n++ ) {
michael@0 93 C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
michael@0 94 silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts );
michael@0 95 }
michael@0 96 }
michael@0 97 } else {
michael@0 98 for( s = 0; s < nb_subfr; s++ ) {
michael@0 99 int i;
michael@0 100 opus_int32 d;
michael@0 101 x_ptr = x + s * subfr_length;
michael@0 102 celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch );
michael@0 103 for( n = 1; n < D + 1; n++ ) {
michael@0 104 for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ )
michael@0 105 d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] );
michael@0 106 xcorr[ n - 1 ] += d;
michael@0 107 }
michael@0 108 for( n = 1; n < D + 1; n++ ) {
michael@0 109 C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
michael@0 110 }
michael@0 111 }
michael@0 112 }
michael@0 113 silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
michael@0 114
michael@0 115 /* Initialize */
michael@0 116 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
michael@0 117
michael@0 118 invGain_Q30 = (opus_int32)1 << 30;
michael@0 119 reached_max_gain = 0;
michael@0 120 for( n = 0; n < D; n++ ) {
michael@0 121 /* Update first row of correlation matrix (without first element) */
michael@0 122 /* Update last row of correlation matrix (without last element, stored in reversed order) */
michael@0 123 /* Update C * Af */
michael@0 124 /* Update C * flipud(Af) (stored in reversed order) */
michael@0 125 if( rshifts > -2 ) {
michael@0 126 for( s = 0; s < nb_subfr; s++ ) {
michael@0 127 x_ptr = x + s * subfr_length;
michael@0 128 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */
michael@0 129 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */
michael@0 130 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */
michael@0 131 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */
michael@0 132 for( k = 0; k < n; k++ ) {
michael@0 133 C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
michael@0 134 C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
michael@0 135 Atmp_QA = Af_QA[ k ];
michael@0 136 tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */
michael@0 137 tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */
michael@0 138 }
michael@0 139 tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */
michael@0 140 tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */
michael@0 141 for( k = 0; k <= n; k++ ) {
michael@0 142 CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */
michael@0 143 CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */
michael@0 144 }
michael@0 145 }
michael@0 146 } else {
michael@0 147 for( s = 0; s < nb_subfr; s++ ) {
michael@0 148 x_ptr = x + s * subfr_length;
michael@0 149 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */
michael@0 150 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */
michael@0 151 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */
michael@0 152 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */
michael@0 153 for( k = 0; k < n; k++ ) {
michael@0 154 C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
michael@0 155 C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
michael@0 156 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */
michael@0 157 tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */
michael@0 158 tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */
michael@0 159 }
michael@0 160 tmp1 = -tmp1; /* Q17 */
michael@0 161 tmp2 = -tmp2; /* Q17 */
michael@0 162 for( k = 0; k <= n; k++ ) {
michael@0 163 CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
michael@0 164 silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */
michael@0 165 CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
michael@0 166 silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
michael@0 167 }
michael@0 168 }
michael@0 169 }
michael@0 170
michael@0 171 /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
michael@0 172 tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */
michael@0 173 tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */
michael@0 174 num = 0; /* Q( -rshifts ) */
michael@0 175 nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */
michael@0 176 for( k = 0; k < n; k++ ) {
michael@0 177 Atmp_QA = Af_QA[ k ];
michael@0 178 lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
michael@0 179 lz = silk_min( 32 - QA, lz );
michael@0 180 Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */
michael@0 181
michael@0 182 tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
michael@0 183 tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
michael@0 184 num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
michael@0 185 nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
michael@0 186 Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */
michael@0 187 }
michael@0 188 CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */
michael@0 189 CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */
michael@0 190 num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */
michael@0 191 num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */
michael@0 192
michael@0 193 /* Calculate the next order reflection (parcor) coefficient */
michael@0 194 if( silk_abs( num ) < nrg ) {
michael@0 195 rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
michael@0 196 } else {
michael@0 197 rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
michael@0 198 }
michael@0 199
michael@0 200 /* Update inverse prediction gain */
michael@0 201 tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
michael@0 202 tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
michael@0 203 if( tmp1 <= minInvGain_Q30 ) {
michael@0 204 /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
michael@0 205 tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */
michael@0 206 rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */
michael@0 207 /* Newton-Raphson iteration */
michael@0 208 rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */
michael@0 209 rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */
michael@0 210 if( num < 0 ) {
michael@0 211 /* Ensure adjusted reflection coefficients has the original sign */
michael@0 212 rc_Q31 = -rc_Q31;
michael@0 213 }
michael@0 214 invGain_Q30 = minInvGain_Q30;
michael@0 215 reached_max_gain = 1;
michael@0 216 } else {
michael@0 217 invGain_Q30 = tmp1;
michael@0 218 }
michael@0 219
michael@0 220 /* Update the AR coefficients */
michael@0 221 for( k = 0; k < (n + 1) >> 1; k++ ) {
michael@0 222 tmp1 = Af_QA[ k ]; /* QA */
michael@0 223 tmp2 = Af_QA[ n - k - 1 ]; /* QA */
michael@0 224 Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */
michael@0 225 Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */
michael@0 226 }
michael@0 227 Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
michael@0 228
michael@0 229 if( reached_max_gain ) {
michael@0 230 /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
michael@0 231 for( k = n + 1; k < D; k++ ) {
michael@0 232 Af_QA[ k ] = 0;
michael@0 233 }
michael@0 234 break;
michael@0 235 }
michael@0 236
michael@0 237 /* Update C * Af and C * Ab */
michael@0 238 for( k = 0; k <= n + 1; k++ ) {
michael@0 239 tmp1 = CAf[ k ]; /* Q( -rshifts ) */
michael@0 240 tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */
michael@0 241 CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */
michael@0 242 CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */
michael@0 243 }
michael@0 244 }
michael@0 245
michael@0 246 if( reached_max_gain ) {
michael@0 247 for( k = 0; k < D; k++ ) {
michael@0 248 /* Scale coefficients */
michael@0 249 A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
michael@0 250 }
michael@0 251 /* Subtract energy of preceding samples from C0 */
michael@0 252 if( rshifts > 0 ) {
michael@0 253 for( s = 0; s < nb_subfr; s++ ) {
michael@0 254 x_ptr = x + s * subfr_length;
michael@0 255 C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D ), rshifts );
michael@0 256 }
michael@0 257 } else {
michael@0 258 for( s = 0; s < nb_subfr; s++ ) {
michael@0 259 x_ptr = x + s * subfr_length;
michael@0 260 C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D ), -rshifts );
michael@0 261 }
michael@0 262 }
michael@0 263 /* Approximate residual energy */
michael@0 264 *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
michael@0 265 *res_nrg_Q = -rshifts;
michael@0 266 } else {
michael@0 267 /* Return residual energy */
michael@0 268 nrg = CAf[ 0 ]; /* Q( -rshifts ) */
michael@0 269 tmp1 = (opus_int32)1 << 16; /* Q16 */
michael@0 270 for( k = 0; k < D; k++ ) {
michael@0 271 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */
michael@0 272 nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */
michael@0 273 tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */
michael@0 274 A_Q16[ k ] = -Atmp1;
michael@0 275 }
michael@0 276 *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */
michael@0 277 *res_nrg_Q = -rshifts;
michael@0 278 }
michael@0 279 }

mercurial