media/webrtc/trunk/testing/gtest/samples/sample6_unittest.cc

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 // Copyright 2008 Google Inc.
michael@0 2 // All Rights Reserved.
michael@0 3 //
michael@0 4 // Redistribution and use in source and binary forms, with or without
michael@0 5 // modification, are permitted provided that the following conditions are
michael@0 6 // met:
michael@0 7 //
michael@0 8 // * Redistributions of source code must retain the above copyright
michael@0 9 // notice, this list of conditions and the following disclaimer.
michael@0 10 // * Redistributions in binary form must reproduce the above
michael@0 11 // copyright notice, this list of conditions and the following disclaimer
michael@0 12 // in the documentation and/or other materials provided with the
michael@0 13 // distribution.
michael@0 14 // * Neither the name of Google Inc. nor the names of its
michael@0 15 // contributors may be used to endorse or promote products derived from
michael@0 16 // this software without specific prior written permission.
michael@0 17 //
michael@0 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
michael@0 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
michael@0 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
michael@0 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
michael@0 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
michael@0 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
michael@0 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
michael@0 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
michael@0 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
michael@0 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
michael@0 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
michael@0 29 //
michael@0 30 // Author: wan@google.com (Zhanyong Wan)
michael@0 31
michael@0 32 // This sample shows how to test common properties of multiple
michael@0 33 // implementations of the same interface (aka interface tests).
michael@0 34
michael@0 35 // The interface and its implementations are in this header.
michael@0 36 #include "prime_tables.h"
michael@0 37
michael@0 38 #include "gtest/gtest.h"
michael@0 39
michael@0 40 // First, we define some factory functions for creating instances of
michael@0 41 // the implementations. You may be able to skip this step if all your
michael@0 42 // implementations can be constructed the same way.
michael@0 43
michael@0 44 template <class T>
michael@0 45 PrimeTable* CreatePrimeTable();
michael@0 46
michael@0 47 template <>
michael@0 48 PrimeTable* CreatePrimeTable<OnTheFlyPrimeTable>() {
michael@0 49 return new OnTheFlyPrimeTable;
michael@0 50 }
michael@0 51
michael@0 52 template <>
michael@0 53 PrimeTable* CreatePrimeTable<PreCalculatedPrimeTable>() {
michael@0 54 return new PreCalculatedPrimeTable(10000);
michael@0 55 }
michael@0 56
michael@0 57 // Then we define a test fixture class template.
michael@0 58 template <class T>
michael@0 59 class PrimeTableTest : public testing::Test {
michael@0 60 protected:
michael@0 61 // The ctor calls the factory function to create a prime table
michael@0 62 // implemented by T.
michael@0 63 PrimeTableTest() : table_(CreatePrimeTable<T>()) {}
michael@0 64
michael@0 65 virtual ~PrimeTableTest() { delete table_; }
michael@0 66
michael@0 67 // Note that we test an implementation via the base interface
michael@0 68 // instead of the actual implementation class. This is important
michael@0 69 // for keeping the tests close to the real world scenario, where the
michael@0 70 // implementation is invoked via the base interface. It avoids
michael@0 71 // got-yas where the implementation class has a method that shadows
michael@0 72 // a method with the same name (but slightly different argument
michael@0 73 // types) in the base interface, for example.
michael@0 74 PrimeTable* const table_;
michael@0 75 };
michael@0 76
michael@0 77 #if GTEST_HAS_TYPED_TEST
michael@0 78
michael@0 79 using testing::Types;
michael@0 80
michael@0 81 // Google Test offers two ways for reusing tests for different types.
michael@0 82 // The first is called "typed tests". You should use it if you
michael@0 83 // already know *all* the types you are gonna exercise when you write
michael@0 84 // the tests.
michael@0 85
michael@0 86 // To write a typed test case, first use
michael@0 87 //
michael@0 88 // TYPED_TEST_CASE(TestCaseName, TypeList);
michael@0 89 //
michael@0 90 // to declare it and specify the type parameters. As with TEST_F,
michael@0 91 // TestCaseName must match the test fixture name.
michael@0 92
michael@0 93 // The list of types we want to test.
michael@0 94 typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable> Implementations;
michael@0 95
michael@0 96 TYPED_TEST_CASE(PrimeTableTest, Implementations);
michael@0 97
michael@0 98 // Then use TYPED_TEST(TestCaseName, TestName) to define a typed test,
michael@0 99 // similar to TEST_F.
michael@0 100 TYPED_TEST(PrimeTableTest, ReturnsFalseForNonPrimes) {
michael@0 101 // Inside the test body, you can refer to the type parameter by
michael@0 102 // TypeParam, and refer to the fixture class by TestFixture. We
michael@0 103 // don't need them in this example.
michael@0 104
michael@0 105 // Since we are in the template world, C++ requires explicitly
michael@0 106 // writing 'this->' when referring to members of the fixture class.
michael@0 107 // This is something you have to learn to live with.
michael@0 108 EXPECT_FALSE(this->table_->IsPrime(-5));
michael@0 109 EXPECT_FALSE(this->table_->IsPrime(0));
michael@0 110 EXPECT_FALSE(this->table_->IsPrime(1));
michael@0 111 EXPECT_FALSE(this->table_->IsPrime(4));
michael@0 112 EXPECT_FALSE(this->table_->IsPrime(6));
michael@0 113 EXPECT_FALSE(this->table_->IsPrime(100));
michael@0 114 }
michael@0 115
michael@0 116 TYPED_TEST(PrimeTableTest, ReturnsTrueForPrimes) {
michael@0 117 EXPECT_TRUE(this->table_->IsPrime(2));
michael@0 118 EXPECT_TRUE(this->table_->IsPrime(3));
michael@0 119 EXPECT_TRUE(this->table_->IsPrime(5));
michael@0 120 EXPECT_TRUE(this->table_->IsPrime(7));
michael@0 121 EXPECT_TRUE(this->table_->IsPrime(11));
michael@0 122 EXPECT_TRUE(this->table_->IsPrime(131));
michael@0 123 }
michael@0 124
michael@0 125 TYPED_TEST(PrimeTableTest, CanGetNextPrime) {
michael@0 126 EXPECT_EQ(2, this->table_->GetNextPrime(0));
michael@0 127 EXPECT_EQ(3, this->table_->GetNextPrime(2));
michael@0 128 EXPECT_EQ(5, this->table_->GetNextPrime(3));
michael@0 129 EXPECT_EQ(7, this->table_->GetNextPrime(5));
michael@0 130 EXPECT_EQ(11, this->table_->GetNextPrime(7));
michael@0 131 EXPECT_EQ(131, this->table_->GetNextPrime(128));
michael@0 132 }
michael@0 133
michael@0 134 // That's it! Google Test will repeat each TYPED_TEST for each type
michael@0 135 // in the type list specified in TYPED_TEST_CASE. Sit back and be
michael@0 136 // happy that you don't have to define them multiple times.
michael@0 137
michael@0 138 #endif // GTEST_HAS_TYPED_TEST
michael@0 139
michael@0 140 #if GTEST_HAS_TYPED_TEST_P
michael@0 141
michael@0 142 using testing::Types;
michael@0 143
michael@0 144 // Sometimes, however, you don't yet know all the types that you want
michael@0 145 // to test when you write the tests. For example, if you are the
michael@0 146 // author of an interface and expect other people to implement it, you
michael@0 147 // might want to write a set of tests to make sure each implementation
michael@0 148 // conforms to some basic requirements, but you don't know what
michael@0 149 // implementations will be written in the future.
michael@0 150 //
michael@0 151 // How can you write the tests without committing to the type
michael@0 152 // parameters? That's what "type-parameterized tests" can do for you.
michael@0 153 // It is a bit more involved than typed tests, but in return you get a
michael@0 154 // test pattern that can be reused in many contexts, which is a big
michael@0 155 // win. Here's how you do it:
michael@0 156
michael@0 157 // First, define a test fixture class template. Here we just reuse
michael@0 158 // the PrimeTableTest fixture defined earlier:
michael@0 159
michael@0 160 template <class T>
michael@0 161 class PrimeTableTest2 : public PrimeTableTest<T> {
michael@0 162 };
michael@0 163
michael@0 164 // Then, declare the test case. The argument is the name of the test
michael@0 165 // fixture, and also the name of the test case (as usual). The _P
michael@0 166 // suffix is for "parameterized" or "pattern".
michael@0 167 TYPED_TEST_CASE_P(PrimeTableTest2);
michael@0 168
michael@0 169 // Next, use TYPED_TEST_P(TestCaseName, TestName) to define a test,
michael@0 170 // similar to what you do with TEST_F.
michael@0 171 TYPED_TEST_P(PrimeTableTest2, ReturnsFalseForNonPrimes) {
michael@0 172 EXPECT_FALSE(this->table_->IsPrime(-5));
michael@0 173 EXPECT_FALSE(this->table_->IsPrime(0));
michael@0 174 EXPECT_FALSE(this->table_->IsPrime(1));
michael@0 175 EXPECT_FALSE(this->table_->IsPrime(4));
michael@0 176 EXPECT_FALSE(this->table_->IsPrime(6));
michael@0 177 EXPECT_FALSE(this->table_->IsPrime(100));
michael@0 178 }
michael@0 179
michael@0 180 TYPED_TEST_P(PrimeTableTest2, ReturnsTrueForPrimes) {
michael@0 181 EXPECT_TRUE(this->table_->IsPrime(2));
michael@0 182 EXPECT_TRUE(this->table_->IsPrime(3));
michael@0 183 EXPECT_TRUE(this->table_->IsPrime(5));
michael@0 184 EXPECT_TRUE(this->table_->IsPrime(7));
michael@0 185 EXPECT_TRUE(this->table_->IsPrime(11));
michael@0 186 EXPECT_TRUE(this->table_->IsPrime(131));
michael@0 187 }
michael@0 188
michael@0 189 TYPED_TEST_P(PrimeTableTest2, CanGetNextPrime) {
michael@0 190 EXPECT_EQ(2, this->table_->GetNextPrime(0));
michael@0 191 EXPECT_EQ(3, this->table_->GetNextPrime(2));
michael@0 192 EXPECT_EQ(5, this->table_->GetNextPrime(3));
michael@0 193 EXPECT_EQ(7, this->table_->GetNextPrime(5));
michael@0 194 EXPECT_EQ(11, this->table_->GetNextPrime(7));
michael@0 195 EXPECT_EQ(131, this->table_->GetNextPrime(128));
michael@0 196 }
michael@0 197
michael@0 198 // Type-parameterized tests involve one extra step: you have to
michael@0 199 // enumerate the tests you defined:
michael@0 200 REGISTER_TYPED_TEST_CASE_P(
michael@0 201 PrimeTableTest2, // The first argument is the test case name.
michael@0 202 // The rest of the arguments are the test names.
michael@0 203 ReturnsFalseForNonPrimes, ReturnsTrueForPrimes, CanGetNextPrime);
michael@0 204
michael@0 205 // At this point the test pattern is done. However, you don't have
michael@0 206 // any real test yet as you haven't said which types you want to run
michael@0 207 // the tests with.
michael@0 208
michael@0 209 // To turn the abstract test pattern into real tests, you instantiate
michael@0 210 // it with a list of types. Usually the test pattern will be defined
michael@0 211 // in a .h file, and anyone can #include and instantiate it. You can
michael@0 212 // even instantiate it more than once in the same program. To tell
michael@0 213 // different instances apart, you give each of them a name, which will
michael@0 214 // become part of the test case name and can be used in test filters.
michael@0 215
michael@0 216 // The list of types we want to test. Note that it doesn't have to be
michael@0 217 // defined at the time we write the TYPED_TEST_P()s.
michael@0 218 typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable>
michael@0 219 PrimeTableImplementations;
michael@0 220 INSTANTIATE_TYPED_TEST_CASE_P(OnTheFlyAndPreCalculated, // Instance name
michael@0 221 PrimeTableTest2, // Test case name
michael@0 222 PrimeTableImplementations); // Type list
michael@0 223
michael@0 224 #endif // GTEST_HAS_TYPED_TEST_P

mercurial