security/nss/lib/freebl/blapi.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /*
michael@0 2 * blapi.h - public prototypes for the freebl library
michael@0 3 *
michael@0 4 * This Source Code Form is subject to the terms of the Mozilla Public
michael@0 5 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 6 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 7
michael@0 8 #ifndef _BLAPI_H_
michael@0 9 #define _BLAPI_H_
michael@0 10
michael@0 11 #include "blapit.h"
michael@0 12 #include "hasht.h"
michael@0 13 #include "alghmac.h"
michael@0 14
michael@0 15 SEC_BEGIN_PROTOS
michael@0 16
michael@0 17 /*
michael@0 18 ** RSA encryption/decryption. When encrypting/decrypting the output
michael@0 19 ** buffer must be at least the size of the public key modulus.
michael@0 20 */
michael@0 21
michael@0 22 extern SECStatus BL_Init(void);
michael@0 23
michael@0 24 /*
michael@0 25 ** Generate and return a new RSA public and private key.
michael@0 26 ** Both keys are encoded in a single RSAPrivateKey structure.
michael@0 27 ** "cx" is the random number generator context
michael@0 28 ** "keySizeInBits" is the size of the key to be generated, in bits.
michael@0 29 ** 512, 1024, etc.
michael@0 30 ** "publicExponent" when not NULL is a pointer to some data that
michael@0 31 ** represents the public exponent to use. The data is a byte
michael@0 32 ** encoded integer, in "big endian" order.
michael@0 33 */
michael@0 34 extern RSAPrivateKey *RSA_NewKey(int keySizeInBits,
michael@0 35 SECItem * publicExponent);
michael@0 36
michael@0 37 /*
michael@0 38 ** Perform a raw public-key operation
michael@0 39 ** Length of input and output buffers are equal to key's modulus len.
michael@0 40 */
michael@0 41 extern SECStatus RSA_PublicKeyOp(RSAPublicKey * key,
michael@0 42 unsigned char * output,
michael@0 43 const unsigned char * input);
michael@0 44
michael@0 45 /*
michael@0 46 ** Perform a raw private-key operation
michael@0 47 ** Length of input and output buffers are equal to key's modulus len.
michael@0 48 */
michael@0 49 extern SECStatus RSA_PrivateKeyOp(RSAPrivateKey * key,
michael@0 50 unsigned char * output,
michael@0 51 const unsigned char * input);
michael@0 52
michael@0 53 /*
michael@0 54 ** Perform a raw private-key operation, and check the parameters used in
michael@0 55 ** the operation for validity by performing a test operation first.
michael@0 56 ** Length of input and output buffers are equal to key's modulus len.
michael@0 57 */
michael@0 58 extern SECStatus RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey * key,
michael@0 59 unsigned char * output,
michael@0 60 const unsigned char * input);
michael@0 61
michael@0 62 /*
michael@0 63 ** Perform a check of private key parameters for consistency.
michael@0 64 */
michael@0 65 extern SECStatus RSA_PrivateKeyCheck(const RSAPrivateKey *key);
michael@0 66
michael@0 67 /*
michael@0 68 ** Given only minimal private key parameters, fill in the rest of the
michael@0 69 ** parameters.
michael@0 70 **
michael@0 71 **
michael@0 72 ** All the entries, including those supplied by the caller, will be
michael@0 73 ** overwritten with data alocated out of the arena.
michael@0 74 **
michael@0 75 ** If no arena is supplied, one will be created.
michael@0 76 **
michael@0 77 ** The following fields must be supplied in order for this function
michael@0 78 ** to succeed:
michael@0 79 ** one of either publicExponent or privateExponent
michael@0 80 ** two more of the following 5 parameters (not counting the above).
michael@0 81 ** modulus (n)
michael@0 82 ** prime1 (p)
michael@0 83 ** prime2 (q)
michael@0 84 ** publicExponent (e)
michael@0 85 ** privateExponent (d)
michael@0 86 **
michael@0 87 ** NOTE: if only the publicExponent, privateExponent, and one prime is given,
michael@0 88 ** then there may be more than one RSA key that matches that combination. If
michael@0 89 ** we find 2 possible valid keys that meet this criteria, we return an error.
michael@0 90 ** If we return the wrong key, and the original modulus is compared to the
michael@0 91 ** new modulus, both can be factored by calculateing gcd(n_old,n_new) to get
michael@0 92 ** the common prime.
michael@0 93 **
michael@0 94 ** NOTE: in some cases the publicExponent must be less than 2^23 for this
michael@0 95 ** function to work correctly. (The case where we have only one of: modulus
michael@0 96 ** prime1 and prime2).
michael@0 97 **
michael@0 98 ** All parameters will be replaced in the key structure with new parameters
michael@0 99 ** allocated out of the arena. There is no attempt to free the old structures.
michael@0 100 ** prime1 will always be greater than prime2 (even if the caller supplies the
michael@0 101 ** smaller prime as prime1 or the larger prime as prime2). The parameters are
michael@0 102 ** not overwritten on failure.
michael@0 103 **
michael@0 104 ** While the remaining Chinese remainder theorem parameters (dp,dp, and qinv)
michael@0 105 ** can also be used in reconstructing the private key, they are currently
michael@0 106 ** ignored in this implementation.
michael@0 107 */
michael@0 108 extern SECStatus RSA_PopulatePrivateKey(RSAPrivateKey *key);
michael@0 109
michael@0 110 /********************************************************************
michael@0 111 ** RSA algorithm
michael@0 112 */
michael@0 113
michael@0 114 /********************************************************************
michael@0 115 ** Raw signing/encryption/decryption operations.
michael@0 116 **
michael@0 117 ** No padding or formatting will be applied.
michael@0 118 ** inputLen MUST be equivalent to the modulus size (in bytes).
michael@0 119 */
michael@0 120 extern SECStatus
michael@0 121 RSA_SignRaw(RSAPrivateKey * key,
michael@0 122 unsigned char * output,
michael@0 123 unsigned int * outputLen,
michael@0 124 unsigned int maxOutputLen,
michael@0 125 const unsigned char * input,
michael@0 126 unsigned int inputLen);
michael@0 127
michael@0 128 extern SECStatus
michael@0 129 RSA_CheckSignRaw(RSAPublicKey * key,
michael@0 130 const unsigned char * sig,
michael@0 131 unsigned int sigLen,
michael@0 132 const unsigned char * hash,
michael@0 133 unsigned int hashLen);
michael@0 134
michael@0 135 extern SECStatus
michael@0 136 RSA_CheckSignRecoverRaw(RSAPublicKey * key,
michael@0 137 unsigned char * data,
michael@0 138 unsigned int * dataLen,
michael@0 139 unsigned int maxDataLen,
michael@0 140 const unsigned char * sig,
michael@0 141 unsigned int sigLen);
michael@0 142
michael@0 143 extern SECStatus
michael@0 144 RSA_EncryptRaw(RSAPublicKey * key,
michael@0 145 unsigned char * output,
michael@0 146 unsigned int * outputLen,
michael@0 147 unsigned int maxOutputLen,
michael@0 148 const unsigned char * input,
michael@0 149 unsigned int inputLen);
michael@0 150
michael@0 151 extern SECStatus
michael@0 152 RSA_DecryptRaw(RSAPrivateKey * key,
michael@0 153 unsigned char * output,
michael@0 154 unsigned int * outputLen,
michael@0 155 unsigned int maxOutputLen,
michael@0 156 const unsigned char * input,
michael@0 157 unsigned int inputLen);
michael@0 158
michael@0 159 /********************************************************************
michael@0 160 ** RSAES-OAEP encryption/decryption, as defined in RFC 3447, Section 7.1.
michael@0 161 **
michael@0 162 ** Note: Only MGF1 is supported as the mask generation function. It will be
michael@0 163 ** used with maskHashAlg as the inner hash function.
michael@0 164 **
michael@0 165 ** Unless performing Known Answer Tests, "seed" should be NULL, indicating that
michael@0 166 ** freebl should generate a random value. Otherwise, it should be an octet
michael@0 167 ** string of seedLen bytes, which should be the same size as the output of
michael@0 168 ** hashAlg.
michael@0 169 */
michael@0 170 extern SECStatus
michael@0 171 RSA_EncryptOAEP(RSAPublicKey * key,
michael@0 172 HASH_HashType hashAlg,
michael@0 173 HASH_HashType maskHashAlg,
michael@0 174 const unsigned char * label,
michael@0 175 unsigned int labelLen,
michael@0 176 const unsigned char * seed,
michael@0 177 unsigned int seedLen,
michael@0 178 unsigned char * output,
michael@0 179 unsigned int * outputLen,
michael@0 180 unsigned int maxOutputLen,
michael@0 181 const unsigned char * input,
michael@0 182 unsigned int inputLen);
michael@0 183
michael@0 184 extern SECStatus
michael@0 185 RSA_DecryptOAEP(RSAPrivateKey * key,
michael@0 186 HASH_HashType hashAlg,
michael@0 187 HASH_HashType maskHashAlg,
michael@0 188 const unsigned char * label,
michael@0 189 unsigned int labelLen,
michael@0 190 unsigned char * output,
michael@0 191 unsigned int * outputLen,
michael@0 192 unsigned int maxOutputLen,
michael@0 193 const unsigned char * input,
michael@0 194 unsigned int inputLen);
michael@0 195
michael@0 196 /********************************************************************
michael@0 197 ** RSAES-PKCS1-v1_5 encryption/decryption, as defined in RFC 3447, Section 7.2.
michael@0 198 */
michael@0 199 extern SECStatus
michael@0 200 RSA_EncryptBlock(RSAPublicKey * key,
michael@0 201 unsigned char * output,
michael@0 202 unsigned int * outputLen,
michael@0 203 unsigned int maxOutputLen,
michael@0 204 const unsigned char * input,
michael@0 205 unsigned int inputLen);
michael@0 206
michael@0 207 extern SECStatus
michael@0 208 RSA_DecryptBlock(RSAPrivateKey * key,
michael@0 209 unsigned char * output,
michael@0 210 unsigned int * outputLen,
michael@0 211 unsigned int maxOutputLen,
michael@0 212 const unsigned char * input,
michael@0 213 unsigned int inputLen);
michael@0 214
michael@0 215 /********************************************************************
michael@0 216 ** RSASSA-PSS signing/verifying, as defined in RFC 3447, Section 8.1.
michael@0 217 **
michael@0 218 ** Note: Only MGF1 is supported as the mask generation function. It will be
michael@0 219 ** used with maskHashAlg as the inner hash function.
michael@0 220 **
michael@0 221 ** Unless performing Known Answer Tests, "salt" should be NULL, indicating that
michael@0 222 ** freebl should generate a random value.
michael@0 223 */
michael@0 224 extern SECStatus
michael@0 225 RSA_SignPSS(RSAPrivateKey * key,
michael@0 226 HASH_HashType hashAlg,
michael@0 227 HASH_HashType maskHashAlg,
michael@0 228 const unsigned char * salt,
michael@0 229 unsigned int saltLen,
michael@0 230 unsigned char * output,
michael@0 231 unsigned int * outputLen,
michael@0 232 unsigned int maxOutputLen,
michael@0 233 const unsigned char * input,
michael@0 234 unsigned int inputLen);
michael@0 235
michael@0 236 extern SECStatus
michael@0 237 RSA_CheckSignPSS(RSAPublicKey * key,
michael@0 238 HASH_HashType hashAlg,
michael@0 239 HASH_HashType maskHashAlg,
michael@0 240 unsigned int saltLen,
michael@0 241 const unsigned char * sig,
michael@0 242 unsigned int sigLen,
michael@0 243 const unsigned char * hash,
michael@0 244 unsigned int hashLen);
michael@0 245
michael@0 246 /********************************************************************
michael@0 247 ** RSASSA-PKCS1-v1_5 signing/verifying, as defined in RFC 3447, Section 8.2.
michael@0 248 **
michael@0 249 ** These functions expect as input to be the raw value to be signed. For most
michael@0 250 ** cases using PKCS1-v1_5, this should be the value of T, the DER-encoded
michael@0 251 ** DigestInfo structure defined in Section 9.2, Step 2.
michael@0 252 ** Note: This can also be used for signatures that use PKCS1-v1_5 padding, such
michael@0 253 ** as the signatures used in SSL/TLS, which sign a raw hash.
michael@0 254 */
michael@0 255 extern SECStatus
michael@0 256 RSA_Sign(RSAPrivateKey * key,
michael@0 257 unsigned char * output,
michael@0 258 unsigned int * outputLen,
michael@0 259 unsigned int maxOutputLen,
michael@0 260 const unsigned char * data,
michael@0 261 unsigned int dataLen);
michael@0 262
michael@0 263 extern SECStatus
michael@0 264 RSA_CheckSign(RSAPublicKey * key,
michael@0 265 const unsigned char * sig,
michael@0 266 unsigned int sigLen,
michael@0 267 const unsigned char * data,
michael@0 268 unsigned int dataLen);
michael@0 269
michael@0 270 extern SECStatus
michael@0 271 RSA_CheckSignRecover(RSAPublicKey * key,
michael@0 272 unsigned char * output,
michael@0 273 unsigned int * outputLen,
michael@0 274 unsigned int maxOutputLen,
michael@0 275 const unsigned char * sig,
michael@0 276 unsigned int sigLen);
michael@0 277
michael@0 278 /********************************************************************
michael@0 279 ** DSA signing algorithm
michael@0 280 */
michael@0 281
michael@0 282 /* Generate a new random value within the interval [2, q-1].
michael@0 283 */
michael@0 284 extern SECStatus DSA_NewRandom(PLArenaPool * arena, const SECItem * q,
michael@0 285 SECItem * random);
michael@0 286
michael@0 287 /*
michael@0 288 ** Generate and return a new DSA public and private key pair,
michael@0 289 ** both of which are encoded into a single DSAPrivateKey struct.
michael@0 290 ** "params" is a pointer to the PQG parameters for the domain
michael@0 291 ** Uses a random seed.
michael@0 292 */
michael@0 293 extern SECStatus DSA_NewKey(const PQGParams * params,
michael@0 294 DSAPrivateKey ** privKey);
michael@0 295
michael@0 296 /* signature is caller-supplied buffer of at least 20 bytes.
michael@0 297 ** On input, signature->len == size of buffer to hold signature.
michael@0 298 ** digest->len == size of digest.
michael@0 299 ** On output, signature->len == size of signature in buffer.
michael@0 300 ** Uses a random seed.
michael@0 301 */
michael@0 302 extern SECStatus DSA_SignDigest(DSAPrivateKey * key,
michael@0 303 SECItem * signature,
michael@0 304 const SECItem * digest);
michael@0 305
michael@0 306 /* signature is caller-supplied buffer of at least 20 bytes.
michael@0 307 ** On input, signature->len == size of buffer to hold signature.
michael@0 308 ** digest->len == size of digest.
michael@0 309 */
michael@0 310 extern SECStatus DSA_VerifyDigest(DSAPublicKey * key,
michael@0 311 const SECItem * signature,
michael@0 312 const SECItem * digest);
michael@0 313
michael@0 314 /* For FIPS compliance testing. Seed must be exactly 20 bytes long */
michael@0 315 extern SECStatus DSA_NewKeyFromSeed(const PQGParams *params,
michael@0 316 const unsigned char * seed,
michael@0 317 DSAPrivateKey **privKey);
michael@0 318
michael@0 319 /* For FIPS compliance testing. Seed must be exactly 20 bytes. */
michael@0 320 extern SECStatus DSA_SignDigestWithSeed(DSAPrivateKey * key,
michael@0 321 SECItem * signature,
michael@0 322 const SECItem * digest,
michael@0 323 const unsigned char * seed);
michael@0 324
michael@0 325 /******************************************************
michael@0 326 ** Diffie Helman key exchange algorithm
michael@0 327 */
michael@0 328
michael@0 329 /* Generates parameters for Diffie-Helman key generation.
michael@0 330 ** primeLen is the length in bytes of prime P to be generated.
michael@0 331 */
michael@0 332 extern SECStatus DH_GenParam(int primeLen, DHParams ** params);
michael@0 333
michael@0 334 /* Generates a public and private key, both of which are encoded in a single
michael@0 335 ** DHPrivateKey struct. Params is input, privKey are output.
michael@0 336 ** This is Phase 1 of Diffie Hellman.
michael@0 337 */
michael@0 338 extern SECStatus DH_NewKey(DHParams * params,
michael@0 339 DHPrivateKey ** privKey);
michael@0 340
michael@0 341 /*
michael@0 342 ** DH_Derive does the Diffie-Hellman phase 2 calculation, using the
michael@0 343 ** other party's publicValue, and the prime and our privateValue.
michael@0 344 ** maxOutBytes is the requested length of the generated secret in bytes.
michael@0 345 ** A zero value means produce a value of any length up to the size of
michael@0 346 ** the prime. If successful, derivedSecret->data is set
michael@0 347 ** to the address of the newly allocated buffer containing the derived
michael@0 348 ** secret, and derivedSecret->len is the size of the secret produced.
michael@0 349 ** The size of the secret produced will depend on the value of outBytes.
michael@0 350 ** If outBytes is 0, the key length will be all the significant bytes of
michael@0 351 ** the derived secret (leading zeros are dropped). This length could be less
michael@0 352 ** than the length of the prime. If outBytes is nonzero, the length of the
michael@0 353 ** produced key will be outBytes long. If the key is truncated, the most
michael@0 354 ** significant bytes are truncated. If it is expanded, zero bytes are added
michael@0 355 ** at the beginning.
michael@0 356 ** It is the caller's responsibility to free the allocated buffer
michael@0 357 ** containing the derived secret.
michael@0 358 */
michael@0 359 extern SECStatus DH_Derive(SECItem * publicValue,
michael@0 360 SECItem * prime,
michael@0 361 SECItem * privateValue,
michael@0 362 SECItem * derivedSecret,
michael@0 363 unsigned int outBytes);
michael@0 364
michael@0 365 /*
michael@0 366 ** KEA_CalcKey returns octet string with the private key for a dual
michael@0 367 ** Diffie-Helman key generation as specified for government key exchange.
michael@0 368 */
michael@0 369 extern SECStatus KEA_Derive(SECItem *prime,
michael@0 370 SECItem *public1,
michael@0 371 SECItem *public2,
michael@0 372 SECItem *private1,
michael@0 373 SECItem *private2,
michael@0 374 SECItem *derivedSecret);
michael@0 375
michael@0 376 /*
michael@0 377 * verify that a KEA or DSA public key is a valid key for this prime and
michael@0 378 * subprime domain.
michael@0 379 */
michael@0 380 extern PRBool KEA_Verify(SECItem *Y, SECItem *prime, SECItem *subPrime);
michael@0 381
michael@0 382 /****************************************
michael@0 383 * J-PAKE key transport
michael@0 384 */
michael@0 385
michael@0 386 /* Given gx == g^x, create a Schnorr zero-knowledge proof for the value x
michael@0 387 * using the specified hash algorithm and signer ID. The signature is
michael@0 388 * returned in the values gv and r. testRandom must be NULL for a PRNG
michael@0 389 * generated random committment to be used in the sigature. When testRandom
michael@0 390 * is non-NULL, that value must contain a value in the subgroup q; that
michael@0 391 * value will be used instead of a PRNG-generated committment in order to
michael@0 392 * facilitate known-answer tests.
michael@0 393 *
michael@0 394 * If gxIn is non-NULL then it must contain a pre-computed value of g^x that
michael@0 395 * will be used by the function; in this case, the gxOut parameter must be NULL.
michael@0 396 * If the gxIn parameter is NULL then gxOut must be non-NULL; in this case
michael@0 397 * gxOut will contain the value g^x on output.
michael@0 398 *
michael@0 399 * gx (if not supplied by the caller), gv, and r will be allocated in the arena.
michael@0 400 * The arena is *not* optional so do not pass NULL for the arena parameter.
michael@0 401 * The arena should be zeroed when it is freed.
michael@0 402 */
michael@0 403 SECStatus
michael@0 404 JPAKE_Sign(PLArenaPool * arena, const PQGParams * pqg, HASH_HashType hashType,
michael@0 405 const SECItem * signerID, const SECItem * x,
michael@0 406 const SECItem * testRandom, const SECItem * gxIn, SECItem * gxOut,
michael@0 407 SECItem * gv, SECItem * r);
michael@0 408
michael@0 409 /* Given gx == g^x, verify the Schnorr zero-knowledge proof (gv, r) for the
michael@0 410 * value x using the specified hash algorithm and signer ID.
michael@0 411 *
michael@0 412 * The arena is *not* optional so do not pass NULL for the arena parameter.
michael@0 413 */
michael@0 414 SECStatus
michael@0 415 JPAKE_Verify(PLArenaPool * arena, const PQGParams * pqg,
michael@0 416 HASH_HashType hashType, const SECItem * signerID,
michael@0 417 const SECItem * peerID, const SECItem * gx,
michael@0 418 const SECItem * gv, const SECItem * r);
michael@0 419
michael@0 420 /* Call before round 2 with x2, s, and x2s all non-NULL. This will calculate
michael@0 421 * base = g^(x1+x3+x4) (mod p) and x2s = x2*s (mod q). The values to send in
michael@0 422 * round 2 (A and the proof of knowledge of x2s) can then be calculated with
michael@0 423 * JPAKE_Sign using pqg->base = base and x = x2s.
michael@0 424 *
michael@0 425 * Call after round 2 with x2, s, and x2s all NULL, and passing (gx1, gx2, gx3)
michael@0 426 * instead of (gx1, gx3, gx4). This will calculate base = g^(x1+x2+x3). Then call
michael@0 427 * JPAKE_Verify with pqg->base = base and then JPAKE_Final.
michael@0 428 *
michael@0 429 * base and x2s will be allocated in the arena. The arena is *not* optional so
michael@0 430 * do not pass NULL for the arena parameter. The arena should be zeroed when it
michael@0 431 * is freed.
michael@0 432 */
michael@0 433 SECStatus
michael@0 434 JPAKE_Round2(PLArenaPool * arena, const SECItem * p, const SECItem *q,
michael@0 435 const SECItem * gx1, const SECItem * gx3, const SECItem * gx4,
michael@0 436 SECItem * base, const SECItem * x2, const SECItem * s, SECItem * x2s);
michael@0 437
michael@0 438 /* K = (B/g^(x2*x4*s))^x2 (mod p)
michael@0 439 *
michael@0 440 * K will be allocated in the arena. The arena is *not* optional so do not pass
michael@0 441 * NULL for the arena parameter. The arena should be zeroed when it is freed.
michael@0 442 */
michael@0 443 SECStatus
michael@0 444 JPAKE_Final(PLArenaPool * arena, const SECItem * p, const SECItem *q,
michael@0 445 const SECItem * x2, const SECItem * gx4, const SECItem * x2s,
michael@0 446 const SECItem * B, SECItem * K);
michael@0 447
michael@0 448 /******************************************************
michael@0 449 ** Elliptic Curve algorithms
michael@0 450 */
michael@0 451
michael@0 452 /* Generates a public and private key, both of which are encoded
michael@0 453 ** in a single ECPrivateKey struct. Params is input, privKey are
michael@0 454 ** output.
michael@0 455 */
michael@0 456 extern SECStatus EC_NewKey(ECParams * params,
michael@0 457 ECPrivateKey ** privKey);
michael@0 458
michael@0 459 extern SECStatus EC_NewKeyFromSeed(ECParams * params,
michael@0 460 ECPrivateKey ** privKey,
michael@0 461 const unsigned char* seed,
michael@0 462 int seedlen);
michael@0 463
michael@0 464 /* Validates an EC public key as described in Section 5.2.2 of
michael@0 465 * X9.62. Such validation prevents against small subgroup attacks
michael@0 466 * when the ECDH primitive is used with the cofactor.
michael@0 467 */
michael@0 468 extern SECStatus EC_ValidatePublicKey(ECParams * params,
michael@0 469 SECItem * publicValue);
michael@0 470
michael@0 471 /*
michael@0 472 ** ECDH_Derive performs a scalar point multiplication of a point
michael@0 473 ** representing a (peer's) public key and a large integer representing
michael@0 474 ** a private key (its own). Both keys must use the same elliptic curve
michael@0 475 ** parameters. If the withCofactor parameter is true, the
michael@0 476 ** multiplication also uses the cofactor associated with the curve
michael@0 477 ** parameters. The output of this scheme is the x-coordinate of the
michael@0 478 ** resulting point. If successful, derivedSecret->data is set to the
michael@0 479 ** address of the newly allocated buffer containing the derived
michael@0 480 ** secret, and derivedSecret->len is the size of the secret
michael@0 481 ** produced. It is the caller's responsibility to free the allocated
michael@0 482 ** buffer containing the derived secret.
michael@0 483 */
michael@0 484 extern SECStatus ECDH_Derive(SECItem * publicValue,
michael@0 485 ECParams * params,
michael@0 486 SECItem * privateValue,
michael@0 487 PRBool withCofactor,
michael@0 488 SECItem * derivedSecret);
michael@0 489
michael@0 490 /* On input, signature->len == size of buffer to hold signature.
michael@0 491 ** digest->len == size of digest.
michael@0 492 ** On output, signature->len == size of signature in buffer.
michael@0 493 ** Uses a random seed.
michael@0 494 */
michael@0 495 extern SECStatus ECDSA_SignDigest(ECPrivateKey *key,
michael@0 496 SECItem *signature,
michael@0 497 const SECItem *digest);
michael@0 498
michael@0 499 /* On input, signature->len == size of buffer to hold signature.
michael@0 500 ** digest->len == size of digest.
michael@0 501 */
michael@0 502 extern SECStatus ECDSA_VerifyDigest(ECPublicKey *key,
michael@0 503 const SECItem *signature,
michael@0 504 const SECItem *digest);
michael@0 505
michael@0 506 /* Uses the provided seed. */
michael@0 507 extern SECStatus ECDSA_SignDigestWithSeed(ECPrivateKey *key,
michael@0 508 SECItem *signature,
michael@0 509 const SECItem *digest,
michael@0 510 const unsigned char *seed,
michael@0 511 const int seedlen);
michael@0 512
michael@0 513 /******************************************/
michael@0 514 /*
michael@0 515 ** RC4 symmetric stream cypher
michael@0 516 */
michael@0 517
michael@0 518 /*
michael@0 519 ** Create a new RC4 context suitable for RC4 encryption/decryption.
michael@0 520 ** "key" raw key data
michael@0 521 ** "len" the number of bytes of key data
michael@0 522 */
michael@0 523 extern RC4Context *RC4_CreateContext(const unsigned char *key, int len);
michael@0 524
michael@0 525 extern RC4Context *RC4_AllocateContext(void);
michael@0 526 extern SECStatus RC4_InitContext(RC4Context *cx,
michael@0 527 const unsigned char *key,
michael@0 528 unsigned int keylen,
michael@0 529 const unsigned char *,
michael@0 530 int,
michael@0 531 unsigned int ,
michael@0 532 unsigned int );
michael@0 533
michael@0 534 /*
michael@0 535 ** Destroy an RC4 encryption/decryption context.
michael@0 536 ** "cx" the context
michael@0 537 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
michael@0 538 */
michael@0 539 extern void RC4_DestroyContext(RC4Context *cx, PRBool freeit);
michael@0 540
michael@0 541 /*
michael@0 542 ** Perform RC4 encryption.
michael@0 543 ** "cx" the context
michael@0 544 ** "output" the output buffer to store the encrypted data.
michael@0 545 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 546 ** after some data is stored in output.
michael@0 547 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 548 ** stored in "output"
michael@0 549 ** "input" the input data
michael@0 550 ** "inputLen" the amount of input data
michael@0 551 */
michael@0 552 extern SECStatus RC4_Encrypt(RC4Context *cx, unsigned char *output,
michael@0 553 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 554 const unsigned char *input, unsigned int inputLen);
michael@0 555
michael@0 556 /*
michael@0 557 ** Perform RC4 decryption.
michael@0 558 ** "cx" the context
michael@0 559 ** "output" the output buffer to store the decrypted data.
michael@0 560 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 561 ** after some data is stored in output.
michael@0 562 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 563 ** stored in "output"
michael@0 564 ** "input" the input data
michael@0 565 ** "inputLen" the amount of input data
michael@0 566 */
michael@0 567 extern SECStatus RC4_Decrypt(RC4Context *cx, unsigned char *output,
michael@0 568 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 569 const unsigned char *input, unsigned int inputLen);
michael@0 570
michael@0 571 /******************************************/
michael@0 572 /*
michael@0 573 ** RC2 symmetric block cypher
michael@0 574 */
michael@0 575
michael@0 576 /*
michael@0 577 ** Create a new RC2 context suitable for RC2 encryption/decryption.
michael@0 578 ** "key" raw key data
michael@0 579 ** "len" the number of bytes of key data
michael@0 580 ** "iv" is the CBC initialization vector (if mode is NSS_RC2_CBC)
michael@0 581 ** "mode" one of NSS_RC2 or NSS_RC2_CBC
michael@0 582 ** "effectiveKeyLen" is the effective key length (as specified in
michael@0 583 ** RFC 2268) in bytes (not bits).
michael@0 584 **
michael@0 585 ** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block
michael@0 586 ** chaining" mode.
michael@0 587 */
michael@0 588 extern RC2Context *RC2_CreateContext(const unsigned char *key, unsigned int len,
michael@0 589 const unsigned char *iv, int mode,
michael@0 590 unsigned effectiveKeyLen);
michael@0 591 extern RC2Context *RC2_AllocateContext(void);
michael@0 592 extern SECStatus RC2_InitContext(RC2Context *cx,
michael@0 593 const unsigned char *key,
michael@0 594 unsigned int keylen,
michael@0 595 const unsigned char *iv,
michael@0 596 int mode,
michael@0 597 unsigned int effectiveKeyLen,
michael@0 598 unsigned int );
michael@0 599
michael@0 600 /*
michael@0 601 ** Destroy an RC2 encryption/decryption context.
michael@0 602 ** "cx" the context
michael@0 603 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
michael@0 604 */
michael@0 605 extern void RC2_DestroyContext(RC2Context *cx, PRBool freeit);
michael@0 606
michael@0 607 /*
michael@0 608 ** Perform RC2 encryption.
michael@0 609 ** "cx" the context
michael@0 610 ** "output" the output buffer to store the encrypted data.
michael@0 611 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 612 ** after some data is stored in output.
michael@0 613 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 614 ** stored in "output"
michael@0 615 ** "input" the input data
michael@0 616 ** "inputLen" the amount of input data
michael@0 617 */
michael@0 618 extern SECStatus RC2_Encrypt(RC2Context *cx, unsigned char *output,
michael@0 619 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 620 const unsigned char *input, unsigned int inputLen);
michael@0 621
michael@0 622 /*
michael@0 623 ** Perform RC2 decryption.
michael@0 624 ** "cx" the context
michael@0 625 ** "output" the output buffer to store the decrypted data.
michael@0 626 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 627 ** after some data is stored in output.
michael@0 628 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 629 ** stored in "output"
michael@0 630 ** "input" the input data
michael@0 631 ** "inputLen" the amount of input data
michael@0 632 */
michael@0 633 extern SECStatus RC2_Decrypt(RC2Context *cx, unsigned char *output,
michael@0 634 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 635 const unsigned char *input, unsigned int inputLen);
michael@0 636
michael@0 637 /******************************************/
michael@0 638 /*
michael@0 639 ** RC5 symmetric block cypher -- 64-bit block size
michael@0 640 */
michael@0 641
michael@0 642 /*
michael@0 643 ** Create a new RC5 context suitable for RC5 encryption/decryption.
michael@0 644 ** "key" raw key data
michael@0 645 ** "len" the number of bytes of key data
michael@0 646 ** "iv" is the CBC initialization vector (if mode is NSS_RC5_CBC)
michael@0 647 ** "mode" one of NSS_RC5 or NSS_RC5_CBC
michael@0 648 **
michael@0 649 ** When mode is set to NSS_RC5_CBC the RC5 cipher is run in "cipher block
michael@0 650 ** chaining" mode.
michael@0 651 */
michael@0 652 extern RC5Context *RC5_CreateContext(const SECItem *key, unsigned int rounds,
michael@0 653 unsigned int wordSize, const unsigned char *iv, int mode);
michael@0 654 extern RC5Context *RC5_AllocateContext(void);
michael@0 655 extern SECStatus RC5_InitContext(RC5Context *cx,
michael@0 656 const unsigned char *key,
michael@0 657 unsigned int keylen,
michael@0 658 const unsigned char *iv,
michael@0 659 int mode,
michael@0 660 unsigned int rounds,
michael@0 661 unsigned int wordSize);
michael@0 662
michael@0 663 /*
michael@0 664 ** Destroy an RC5 encryption/decryption context.
michael@0 665 ** "cx" the context
michael@0 666 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
michael@0 667 */
michael@0 668 extern void RC5_DestroyContext(RC5Context *cx, PRBool freeit);
michael@0 669
michael@0 670 /*
michael@0 671 ** Perform RC5 encryption.
michael@0 672 ** "cx" the context
michael@0 673 ** "output" the output buffer to store the encrypted data.
michael@0 674 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 675 ** after some data is stored in output.
michael@0 676 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 677 ** stored in "output"
michael@0 678 ** "input" the input data
michael@0 679 ** "inputLen" the amount of input data
michael@0 680 */
michael@0 681 extern SECStatus RC5_Encrypt(RC5Context *cx, unsigned char *output,
michael@0 682 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 683 const unsigned char *input, unsigned int inputLen);
michael@0 684
michael@0 685 /*
michael@0 686 ** Perform RC5 decryption.
michael@0 687 ** "cx" the context
michael@0 688 ** "output" the output buffer to store the decrypted data.
michael@0 689 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 690 ** after some data is stored in output.
michael@0 691 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 692 ** stored in "output"
michael@0 693 ** "input" the input data
michael@0 694 ** "inputLen" the amount of input data
michael@0 695 */
michael@0 696
michael@0 697 extern SECStatus RC5_Decrypt(RC5Context *cx, unsigned char *output,
michael@0 698 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 699 const unsigned char *input, unsigned int inputLen);
michael@0 700
michael@0 701
michael@0 702
michael@0 703 /******************************************/
michael@0 704 /*
michael@0 705 ** DES symmetric block cypher
michael@0 706 */
michael@0 707
michael@0 708 /*
michael@0 709 ** Create a new DES context suitable for DES encryption/decryption.
michael@0 710 ** "key" raw key data
michael@0 711 ** "len" the number of bytes of key data
michael@0 712 ** "iv" is the CBC initialization vector (if mode is NSS_DES_CBC or
michael@0 713 ** mode is DES_EDE3_CBC)
michael@0 714 ** "mode" one of NSS_DES, NSS_DES_CBC, NSS_DES_EDE3 or NSS_DES_EDE3_CBC
michael@0 715 ** "encrypt" is PR_TRUE if the context will be used for encryption
michael@0 716 **
michael@0 717 ** When mode is set to NSS_DES_CBC or NSS_DES_EDE3_CBC then the DES
michael@0 718 ** cipher is run in "cipher block chaining" mode.
michael@0 719 */
michael@0 720 extern DESContext *DES_CreateContext(const unsigned char *key,
michael@0 721 const unsigned char *iv,
michael@0 722 int mode, PRBool encrypt);
michael@0 723 extern DESContext *DES_AllocateContext(void);
michael@0 724 extern SECStatus DES_InitContext(DESContext *cx,
michael@0 725 const unsigned char *key,
michael@0 726 unsigned int keylen,
michael@0 727 const unsigned char *iv,
michael@0 728 int mode,
michael@0 729 unsigned int encrypt,
michael@0 730 unsigned int );
michael@0 731
michael@0 732 /*
michael@0 733 ** Destroy an DES encryption/decryption context.
michael@0 734 ** "cx" the context
michael@0 735 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
michael@0 736 */
michael@0 737 extern void DES_DestroyContext(DESContext *cx, PRBool freeit);
michael@0 738
michael@0 739 /*
michael@0 740 ** Perform DES encryption.
michael@0 741 ** "cx" the context
michael@0 742 ** "output" the output buffer to store the encrypted data.
michael@0 743 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 744 ** after some data is stored in output.
michael@0 745 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 746 ** stored in "output"
michael@0 747 ** "input" the input data
michael@0 748 ** "inputLen" the amount of input data
michael@0 749 **
michael@0 750 ** NOTE: the inputLen must be a multiple of DES_KEY_LENGTH
michael@0 751 */
michael@0 752 extern SECStatus DES_Encrypt(DESContext *cx, unsigned char *output,
michael@0 753 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 754 const unsigned char *input, unsigned int inputLen);
michael@0 755
michael@0 756 /*
michael@0 757 ** Perform DES decryption.
michael@0 758 ** "cx" the context
michael@0 759 ** "output" the output buffer to store the decrypted data.
michael@0 760 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 761 ** after some data is stored in output.
michael@0 762 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 763 ** stored in "output"
michael@0 764 ** "input" the input data
michael@0 765 ** "inputLen" the amount of input data
michael@0 766 **
michael@0 767 ** NOTE: the inputLen must be a multiple of DES_KEY_LENGTH
michael@0 768 */
michael@0 769 extern SECStatus DES_Decrypt(DESContext *cx, unsigned char *output,
michael@0 770 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 771 const unsigned char *input, unsigned int inputLen);
michael@0 772
michael@0 773 /******************************************/
michael@0 774 /*
michael@0 775 ** SEED symmetric block cypher
michael@0 776 */
michael@0 777 extern SEEDContext *
michael@0 778 SEED_CreateContext(const unsigned char *key, const unsigned char *iv,
michael@0 779 int mode, PRBool encrypt);
michael@0 780 extern SEEDContext *SEED_AllocateContext(void);
michael@0 781 extern SECStatus SEED_InitContext(SEEDContext *cx,
michael@0 782 const unsigned char *key,
michael@0 783 unsigned int keylen,
michael@0 784 const unsigned char *iv,
michael@0 785 int mode, unsigned int encrypt,
michael@0 786 unsigned int );
michael@0 787 extern void SEED_DestroyContext(SEEDContext *cx, PRBool freeit);
michael@0 788 extern SECStatus
michael@0 789 SEED_Encrypt(SEEDContext *cx, unsigned char *output,
michael@0 790 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 791 const unsigned char *input, unsigned int inputLen);
michael@0 792 extern SECStatus
michael@0 793 SEED_Decrypt(SEEDContext *cx, unsigned char *output,
michael@0 794 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 795 const unsigned char *input, unsigned int inputLen);
michael@0 796
michael@0 797 /******************************************/
michael@0 798 /*
michael@0 799 ** AES symmetric block cypher (Rijndael)
michael@0 800 */
michael@0 801
michael@0 802 /*
michael@0 803 ** Create a new AES context suitable for AES encryption/decryption.
michael@0 804 ** "key" raw key data
michael@0 805 ** "keylen" the number of bytes of key data (16, 24, or 32)
michael@0 806 ** "blocklen" is the blocksize to use (16, 24, or 32)
michael@0 807 ** XXX currently only blocksize==16 has been tested!
michael@0 808 */
michael@0 809 extern AESContext *
michael@0 810 AES_CreateContext(const unsigned char *key, const unsigned char *iv,
michael@0 811 int mode, int encrypt,
michael@0 812 unsigned int keylen, unsigned int blocklen);
michael@0 813 extern AESContext *AES_AllocateContext(void);
michael@0 814 extern SECStatus AES_InitContext(AESContext *cx,
michael@0 815 const unsigned char *key,
michael@0 816 unsigned int keylen,
michael@0 817 const unsigned char *iv,
michael@0 818 int mode,
michael@0 819 unsigned int encrypt,
michael@0 820 unsigned int blocklen);
michael@0 821
michael@0 822 /*
michael@0 823 ** Destroy a AES encryption/decryption context.
michael@0 824 ** "cx" the context
michael@0 825 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
michael@0 826 */
michael@0 827 extern void
michael@0 828 AES_DestroyContext(AESContext *cx, PRBool freeit);
michael@0 829
michael@0 830 /*
michael@0 831 ** Perform AES encryption.
michael@0 832 ** "cx" the context
michael@0 833 ** "output" the output buffer to store the encrypted data.
michael@0 834 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 835 ** after some data is stored in output.
michael@0 836 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 837 ** stored in "output"
michael@0 838 ** "input" the input data
michael@0 839 ** "inputLen" the amount of input data
michael@0 840 */
michael@0 841 extern SECStatus
michael@0 842 AES_Encrypt(AESContext *cx, unsigned char *output,
michael@0 843 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 844 const unsigned char *input, unsigned int inputLen);
michael@0 845
michael@0 846 /*
michael@0 847 ** Perform AES decryption.
michael@0 848 ** "cx" the context
michael@0 849 ** "output" the output buffer to store the decrypted data.
michael@0 850 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 851 ** after some data is stored in output.
michael@0 852 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 853 ** stored in "output"
michael@0 854 ** "input" the input data
michael@0 855 ** "inputLen" the amount of input data
michael@0 856 */
michael@0 857 extern SECStatus
michael@0 858 AES_Decrypt(AESContext *cx, unsigned char *output,
michael@0 859 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 860 const unsigned char *input, unsigned int inputLen);
michael@0 861
michael@0 862 /******************************************/
michael@0 863 /*
michael@0 864 ** AES key wrap algorithm, RFC 3394
michael@0 865 */
michael@0 866
michael@0 867 /*
michael@0 868 ** Create a new AES context suitable for AES encryption/decryption.
michael@0 869 ** "key" raw key data
michael@0 870 ** "iv" The 8 byte "initial value"
michael@0 871 ** "encrypt", a boolean, true for key wrapping, false for unwrapping.
michael@0 872 ** "keylen" the number of bytes of key data (16, 24, or 32)
michael@0 873 */
michael@0 874 extern AESKeyWrapContext *
michael@0 875 AESKeyWrap_CreateContext(const unsigned char *key, const unsigned char *iv,
michael@0 876 int encrypt, unsigned int keylen);
michael@0 877 extern AESKeyWrapContext * AESKeyWrap_AllocateContext(void);
michael@0 878 extern SECStatus
michael@0 879 AESKeyWrap_InitContext(AESKeyWrapContext *cx,
michael@0 880 const unsigned char *key,
michael@0 881 unsigned int keylen,
michael@0 882 const unsigned char *iv,
michael@0 883 int ,
michael@0 884 unsigned int encrypt,
michael@0 885 unsigned int );
michael@0 886
michael@0 887 /*
michael@0 888 ** Destroy a AES KeyWrap context.
michael@0 889 ** "cx" the context
michael@0 890 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
michael@0 891 */
michael@0 892 extern void
michael@0 893 AESKeyWrap_DestroyContext(AESKeyWrapContext *cx, PRBool freeit);
michael@0 894
michael@0 895 /*
michael@0 896 ** Perform AES key wrap.
michael@0 897 ** "cx" the context
michael@0 898 ** "output" the output buffer to store the encrypted data.
michael@0 899 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 900 ** after some data is stored in output.
michael@0 901 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 902 ** stored in "output"
michael@0 903 ** "input" the input data
michael@0 904 ** "inputLen" the amount of input data
michael@0 905 */
michael@0 906 extern SECStatus
michael@0 907 AESKeyWrap_Encrypt(AESKeyWrapContext *cx, unsigned char *output,
michael@0 908 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 909 const unsigned char *input, unsigned int inputLen);
michael@0 910
michael@0 911 /*
michael@0 912 ** Perform AES key unwrap.
michael@0 913 ** "cx" the context
michael@0 914 ** "output" the output buffer to store the decrypted data.
michael@0 915 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 916 ** after some data is stored in output.
michael@0 917 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 918 ** stored in "output"
michael@0 919 ** "input" the input data
michael@0 920 ** "inputLen" the amount of input data
michael@0 921 */
michael@0 922 extern SECStatus
michael@0 923 AESKeyWrap_Decrypt(AESKeyWrapContext *cx, unsigned char *output,
michael@0 924 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 925 const unsigned char *input, unsigned int inputLen);
michael@0 926
michael@0 927 /******************************************/
michael@0 928 /*
michael@0 929 ** Camellia symmetric block cypher
michael@0 930 */
michael@0 931
michael@0 932 /*
michael@0 933 ** Create a new Camellia context suitable for Camellia encryption/decryption.
michael@0 934 ** "key" raw key data
michael@0 935 ** "keylen" the number of bytes of key data (16, 24, or 32)
michael@0 936 */
michael@0 937 extern CamelliaContext *
michael@0 938 Camellia_CreateContext(const unsigned char *key, const unsigned char *iv,
michael@0 939 int mode, int encrypt, unsigned int keylen);
michael@0 940
michael@0 941 extern CamelliaContext *Camellia_AllocateContext(void);
michael@0 942 extern SECStatus Camellia_InitContext(CamelliaContext *cx,
michael@0 943 const unsigned char *key,
michael@0 944 unsigned int keylen,
michael@0 945 const unsigned char *iv,
michael@0 946 int mode,
michael@0 947 unsigned int encrypt,
michael@0 948 unsigned int unused);
michael@0 949 /*
michael@0 950 ** Destroy a Camellia encryption/decryption context.
michael@0 951 ** "cx" the context
michael@0 952 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
michael@0 953 */
michael@0 954 extern void
michael@0 955 Camellia_DestroyContext(CamelliaContext *cx, PRBool freeit);
michael@0 956
michael@0 957 /*
michael@0 958 ** Perform Camellia encryption.
michael@0 959 ** "cx" the context
michael@0 960 ** "output" the output buffer to store the encrypted data.
michael@0 961 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 962 ** after some data is stored in output.
michael@0 963 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 964 ** stored in "output"
michael@0 965 ** "input" the input data
michael@0 966 ** "inputLen" the amount of input data
michael@0 967 */
michael@0 968 extern SECStatus
michael@0 969 Camellia_Encrypt(CamelliaContext *cx, unsigned char *output,
michael@0 970 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 971 const unsigned char *input, unsigned int inputLen);
michael@0 972
michael@0 973 /*
michael@0 974 ** Perform Camellia decryption.
michael@0 975 ** "cx" the context
michael@0 976 ** "output" the output buffer to store the decrypted data.
michael@0 977 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 978 ** after some data is stored in output.
michael@0 979 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 980 ** stored in "output"
michael@0 981 ** "input" the input data
michael@0 982 ** "inputLen" the amount of input data
michael@0 983 */
michael@0 984 extern SECStatus
michael@0 985 Camellia_Decrypt(CamelliaContext *cx, unsigned char *output,
michael@0 986 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 987 const unsigned char *input, unsigned int inputLen);
michael@0 988
michael@0 989
michael@0 990 /******************************************/
michael@0 991 /*
michael@0 992 ** MD5 secure hash function
michael@0 993 */
michael@0 994
michael@0 995 /*
michael@0 996 ** Hash a null terminated string "src" into "dest" using MD5
michael@0 997 */
michael@0 998 extern SECStatus MD5_Hash(unsigned char *dest, const char *src);
michael@0 999
michael@0 1000 /*
michael@0 1001 ** Hash a non-null terminated string "src" into "dest" using MD5
michael@0 1002 */
michael@0 1003 extern SECStatus MD5_HashBuf(unsigned char *dest, const unsigned char *src,
michael@0 1004 PRUint32 src_length);
michael@0 1005
michael@0 1006 /*
michael@0 1007 ** Create a new MD5 context
michael@0 1008 */
michael@0 1009 extern MD5Context *MD5_NewContext(void);
michael@0 1010
michael@0 1011
michael@0 1012 /*
michael@0 1013 ** Destroy an MD5 secure hash context.
michael@0 1014 ** "cx" the context
michael@0 1015 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
michael@0 1016 */
michael@0 1017 extern void MD5_DestroyContext(MD5Context *cx, PRBool freeit);
michael@0 1018
michael@0 1019 /*
michael@0 1020 ** Reset an MD5 context, preparing it for a fresh round of hashing
michael@0 1021 */
michael@0 1022 extern void MD5_Begin(MD5Context *cx);
michael@0 1023
michael@0 1024 /*
michael@0 1025 ** Update the MD5 hash function with more data.
michael@0 1026 ** "cx" the context
michael@0 1027 ** "input" the data to hash
michael@0 1028 ** "inputLen" the amount of data to hash
michael@0 1029 */
michael@0 1030 extern void MD5_Update(MD5Context *cx,
michael@0 1031 const unsigned char *input, unsigned int inputLen);
michael@0 1032
michael@0 1033 /*
michael@0 1034 ** Finish the MD5 hash function. Produce the digested results in "digest"
michael@0 1035 ** "cx" the context
michael@0 1036 ** "digest" where the 16 bytes of digest data are stored
michael@0 1037 ** "digestLen" where the digest length (16) is stored
michael@0 1038 ** "maxDigestLen" the maximum amount of data that can ever be
michael@0 1039 ** stored in "digest"
michael@0 1040 */
michael@0 1041 extern void MD5_End(MD5Context *cx, unsigned char *digest,
michael@0 1042 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1043
michael@0 1044 /*
michael@0 1045 ** Export the current state of the MD5 hash without appending the standard
michael@0 1046 ** padding and length bytes. Produce the digested results in "digest"
michael@0 1047 ** "cx" the context
michael@0 1048 ** "digest" where the 16 bytes of digest data are stored
michael@0 1049 ** "digestLen" where the digest length (16) is stored (optional)
michael@0 1050 ** "maxDigestLen" the maximum amount of data that can ever be
michael@0 1051 ** stored in "digest"
michael@0 1052 */
michael@0 1053 extern void MD5_EndRaw(MD5Context *cx, unsigned char *digest,
michael@0 1054 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1055
michael@0 1056 /*
michael@0 1057 * Return the the size of a buffer needed to flatten the MD5 Context into
michael@0 1058 * "cx" the context
michael@0 1059 * returns size;
michael@0 1060 */
michael@0 1061 extern unsigned int MD5_FlattenSize(MD5Context *cx);
michael@0 1062
michael@0 1063 /*
michael@0 1064 * Flatten the MD5 Context into a buffer:
michael@0 1065 * "cx" the context
michael@0 1066 * "space" the buffer to flatten to
michael@0 1067 * returns status;
michael@0 1068 */
michael@0 1069 extern SECStatus MD5_Flatten(MD5Context *cx,unsigned char *space);
michael@0 1070
michael@0 1071 /*
michael@0 1072 * Resurrect a flattened context into a MD5 Context
michael@0 1073 * "space" the buffer of the flattend buffer
michael@0 1074 * "arg" ptr to void used by cryptographic resurrect
michael@0 1075 * returns resurected context;
michael@0 1076 */
michael@0 1077 extern MD5Context * MD5_Resurrect(unsigned char *space, void *arg);
michael@0 1078 extern void MD5_Clone(MD5Context *dest, MD5Context *src);
michael@0 1079
michael@0 1080 /*
michael@0 1081 ** trace the intermediate state info of the MD5 hash.
michael@0 1082 */
michael@0 1083 extern void MD5_TraceState(MD5Context *cx);
michael@0 1084
michael@0 1085
michael@0 1086 /******************************************/
michael@0 1087 /*
michael@0 1088 ** MD2 secure hash function
michael@0 1089 */
michael@0 1090
michael@0 1091 /*
michael@0 1092 ** Hash a null terminated string "src" into "dest" using MD2
michael@0 1093 */
michael@0 1094 extern SECStatus MD2_Hash(unsigned char *dest, const char *src);
michael@0 1095
michael@0 1096 /*
michael@0 1097 ** Create a new MD2 context
michael@0 1098 */
michael@0 1099 extern MD2Context *MD2_NewContext(void);
michael@0 1100
michael@0 1101
michael@0 1102 /*
michael@0 1103 ** Destroy an MD2 secure hash context.
michael@0 1104 ** "cx" the context
michael@0 1105 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
michael@0 1106 */
michael@0 1107 extern void MD2_DestroyContext(MD2Context *cx, PRBool freeit);
michael@0 1108
michael@0 1109 /*
michael@0 1110 ** Reset an MD2 context, preparing it for a fresh round of hashing
michael@0 1111 */
michael@0 1112 extern void MD2_Begin(MD2Context *cx);
michael@0 1113
michael@0 1114 /*
michael@0 1115 ** Update the MD2 hash function with more data.
michael@0 1116 ** "cx" the context
michael@0 1117 ** "input" the data to hash
michael@0 1118 ** "inputLen" the amount of data to hash
michael@0 1119 */
michael@0 1120 extern void MD2_Update(MD2Context *cx,
michael@0 1121 const unsigned char *input, unsigned int inputLen);
michael@0 1122
michael@0 1123 /*
michael@0 1124 ** Finish the MD2 hash function. Produce the digested results in "digest"
michael@0 1125 ** "cx" the context
michael@0 1126 ** "digest" where the 16 bytes of digest data are stored
michael@0 1127 ** "digestLen" where the digest length (16) is stored
michael@0 1128 ** "maxDigestLen" the maximum amount of data that can ever be
michael@0 1129 ** stored in "digest"
michael@0 1130 */
michael@0 1131 extern void MD2_End(MD2Context *cx, unsigned char *digest,
michael@0 1132 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1133
michael@0 1134 /*
michael@0 1135 * Return the the size of a buffer needed to flatten the MD2 Context into
michael@0 1136 * "cx" the context
michael@0 1137 * returns size;
michael@0 1138 */
michael@0 1139 extern unsigned int MD2_FlattenSize(MD2Context *cx);
michael@0 1140
michael@0 1141 /*
michael@0 1142 * Flatten the MD2 Context into a buffer:
michael@0 1143 * "cx" the context
michael@0 1144 * "space" the buffer to flatten to
michael@0 1145 * returns status;
michael@0 1146 */
michael@0 1147 extern SECStatus MD2_Flatten(MD2Context *cx,unsigned char *space);
michael@0 1148
michael@0 1149 /*
michael@0 1150 * Resurrect a flattened context into a MD2 Context
michael@0 1151 * "space" the buffer of the flattend buffer
michael@0 1152 * "arg" ptr to void used by cryptographic resurrect
michael@0 1153 * returns resurected context;
michael@0 1154 */
michael@0 1155 extern MD2Context * MD2_Resurrect(unsigned char *space, void *arg);
michael@0 1156 extern void MD2_Clone(MD2Context *dest, MD2Context *src);
michael@0 1157
michael@0 1158 /******************************************/
michael@0 1159 /*
michael@0 1160 ** SHA-1 secure hash function
michael@0 1161 */
michael@0 1162
michael@0 1163 /*
michael@0 1164 ** Hash a null terminated string "src" into "dest" using SHA-1
michael@0 1165 */
michael@0 1166 extern SECStatus SHA1_Hash(unsigned char *dest, const char *src);
michael@0 1167
michael@0 1168 /*
michael@0 1169 ** Hash a non-null terminated string "src" into "dest" using SHA-1
michael@0 1170 */
michael@0 1171 extern SECStatus SHA1_HashBuf(unsigned char *dest, const unsigned char *src,
michael@0 1172 PRUint32 src_length);
michael@0 1173
michael@0 1174 /*
michael@0 1175 ** Create a new SHA-1 context
michael@0 1176 */
michael@0 1177 extern SHA1Context *SHA1_NewContext(void);
michael@0 1178
michael@0 1179
michael@0 1180 /*
michael@0 1181 ** Destroy a SHA-1 secure hash context.
michael@0 1182 ** "cx" the context
michael@0 1183 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
michael@0 1184 */
michael@0 1185 extern void SHA1_DestroyContext(SHA1Context *cx, PRBool freeit);
michael@0 1186
michael@0 1187 /*
michael@0 1188 ** Reset a SHA-1 context, preparing it for a fresh round of hashing
michael@0 1189 */
michael@0 1190 extern void SHA1_Begin(SHA1Context *cx);
michael@0 1191
michael@0 1192 /*
michael@0 1193 ** Update the SHA-1 hash function with more data.
michael@0 1194 ** "cx" the context
michael@0 1195 ** "input" the data to hash
michael@0 1196 ** "inputLen" the amount of data to hash
michael@0 1197 */
michael@0 1198 extern void SHA1_Update(SHA1Context *cx, const unsigned char *input,
michael@0 1199 unsigned int inputLen);
michael@0 1200
michael@0 1201 /*
michael@0 1202 ** Finish the SHA-1 hash function. Produce the digested results in "digest"
michael@0 1203 ** "cx" the context
michael@0 1204 ** "digest" where the 16 bytes of digest data are stored
michael@0 1205 ** "digestLen" where the digest length (20) is stored
michael@0 1206 ** "maxDigestLen" the maximum amount of data that can ever be
michael@0 1207 ** stored in "digest"
michael@0 1208 */
michael@0 1209 extern void SHA1_End(SHA1Context *cx, unsigned char *digest,
michael@0 1210 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1211
michael@0 1212 /*
michael@0 1213 ** Export the current state of the SHA-1 hash without appending the standard
michael@0 1214 ** padding and length bytes. Produce the digested results in "digest"
michael@0 1215 ** "cx" the context
michael@0 1216 ** "digest" where the 20 bytes of digest data are stored
michael@0 1217 ** "digestLen" where the digest length (20) is stored (optional)
michael@0 1218 ** "maxDigestLen" the maximum amount of data that can ever be
michael@0 1219 ** stored in "digest"
michael@0 1220 */
michael@0 1221 extern void SHA1_EndRaw(SHA1Context *cx, unsigned char *digest,
michael@0 1222 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1223
michael@0 1224 /*
michael@0 1225 ** trace the intermediate state info of the SHA1 hash.
michael@0 1226 */
michael@0 1227 extern void SHA1_TraceState(SHA1Context *cx);
michael@0 1228
michael@0 1229 /*
michael@0 1230 * Return the the size of a buffer needed to flatten the SHA-1 Context into
michael@0 1231 * "cx" the context
michael@0 1232 * returns size;
michael@0 1233 */
michael@0 1234 extern unsigned int SHA1_FlattenSize(SHA1Context *cx);
michael@0 1235
michael@0 1236 /*
michael@0 1237 * Flatten the SHA-1 Context into a buffer:
michael@0 1238 * "cx" the context
michael@0 1239 * "space" the buffer to flatten to
michael@0 1240 * returns status;
michael@0 1241 */
michael@0 1242 extern SECStatus SHA1_Flatten(SHA1Context *cx,unsigned char *space);
michael@0 1243
michael@0 1244 /*
michael@0 1245 * Resurrect a flattened context into a SHA-1 Context
michael@0 1246 * "space" the buffer of the flattend buffer
michael@0 1247 * "arg" ptr to void used by cryptographic resurrect
michael@0 1248 * returns resurected context;
michael@0 1249 */
michael@0 1250 extern SHA1Context * SHA1_Resurrect(unsigned char *space, void *arg);
michael@0 1251 extern void SHA1_Clone(SHA1Context *dest, SHA1Context *src);
michael@0 1252
michael@0 1253 /******************************************/
michael@0 1254
michael@0 1255 extern SHA224Context *SHA224_NewContext(void);
michael@0 1256 extern void SHA224_DestroyContext(SHA224Context *cx, PRBool freeit);
michael@0 1257 extern void SHA224_Begin(SHA224Context *cx);
michael@0 1258 extern void SHA224_Update(SHA224Context *cx, const unsigned char *input,
michael@0 1259 unsigned int inputLen);
michael@0 1260 extern void SHA224_End(SHA224Context *cx, unsigned char *digest,
michael@0 1261 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1262 /*
michael@0 1263 ** Export the current state of the SHA-224 hash without appending the standard
michael@0 1264 ** padding and length bytes. Produce the digested results in "digest"
michael@0 1265 ** "cx" the context
michael@0 1266 ** "digest" where the 28 bytes of digest data are stored
michael@0 1267 ** "digestLen" where the digest length (28) is stored (optional)
michael@0 1268 ** "maxDigestLen" the maximum amount of data that can ever be
michael@0 1269 ** stored in "digest"
michael@0 1270 */
michael@0 1271 extern void SHA224_EndRaw(SHA224Context *cx, unsigned char *digest,
michael@0 1272 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1273 extern SECStatus SHA224_HashBuf(unsigned char *dest, const unsigned char *src,
michael@0 1274 PRUint32 src_length);
michael@0 1275 extern SECStatus SHA224_Hash(unsigned char *dest, const char *src);
michael@0 1276 extern void SHA224_TraceState(SHA224Context *cx);
michael@0 1277 extern unsigned int SHA224_FlattenSize(SHA224Context *cx);
michael@0 1278 extern SECStatus SHA224_Flatten(SHA224Context *cx,unsigned char *space);
michael@0 1279 extern SHA224Context * SHA224_Resurrect(unsigned char *space, void *arg);
michael@0 1280 extern void SHA224_Clone(SHA224Context *dest, SHA224Context *src);
michael@0 1281
michael@0 1282 /******************************************/
michael@0 1283
michael@0 1284 extern SHA256Context *SHA256_NewContext(void);
michael@0 1285 extern void SHA256_DestroyContext(SHA256Context *cx, PRBool freeit);
michael@0 1286 extern void SHA256_Begin(SHA256Context *cx);
michael@0 1287 extern void SHA256_Update(SHA256Context *cx, const unsigned char *input,
michael@0 1288 unsigned int inputLen);
michael@0 1289 extern void SHA256_End(SHA256Context *cx, unsigned char *digest,
michael@0 1290 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1291 /*
michael@0 1292 ** Export the current state of the SHA-256 hash without appending the standard
michael@0 1293 ** padding and length bytes. Produce the digested results in "digest"
michael@0 1294 ** "cx" the context
michael@0 1295 ** "digest" where the 32 bytes of digest data are stored
michael@0 1296 ** "digestLen" where the digest length (32) is stored (optional)
michael@0 1297 ** "maxDigestLen" the maximum amount of data that can ever be
michael@0 1298 ** stored in "digest"
michael@0 1299 */
michael@0 1300 extern void SHA256_EndRaw(SHA256Context *cx, unsigned char *digest,
michael@0 1301 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1302 extern SECStatus SHA256_HashBuf(unsigned char *dest, const unsigned char *src,
michael@0 1303 PRUint32 src_length);
michael@0 1304 extern SECStatus SHA256_Hash(unsigned char *dest, const char *src);
michael@0 1305 extern void SHA256_TraceState(SHA256Context *cx);
michael@0 1306 extern unsigned int SHA256_FlattenSize(SHA256Context *cx);
michael@0 1307 extern SECStatus SHA256_Flatten(SHA256Context *cx,unsigned char *space);
michael@0 1308 extern SHA256Context * SHA256_Resurrect(unsigned char *space, void *arg);
michael@0 1309 extern void SHA256_Clone(SHA256Context *dest, SHA256Context *src);
michael@0 1310
michael@0 1311 /******************************************/
michael@0 1312
michael@0 1313 extern SHA512Context *SHA512_NewContext(void);
michael@0 1314 extern void SHA512_DestroyContext(SHA512Context *cx, PRBool freeit);
michael@0 1315 extern void SHA512_Begin(SHA512Context *cx);
michael@0 1316 extern void SHA512_Update(SHA512Context *cx, const unsigned char *input,
michael@0 1317 unsigned int inputLen);
michael@0 1318 /*
michael@0 1319 ** Export the current state of the SHA-512 hash without appending the standard
michael@0 1320 ** padding and length bytes. Produce the digested results in "digest"
michael@0 1321 ** "cx" the context
michael@0 1322 ** "digest" where the 64 bytes of digest data are stored
michael@0 1323 ** "digestLen" where the digest length (64) is stored (optional)
michael@0 1324 ** "maxDigestLen" the maximum amount of data that can ever be
michael@0 1325 ** stored in "digest"
michael@0 1326 */
michael@0 1327 extern void SHA512_EndRaw(SHA512Context *cx, unsigned char *digest,
michael@0 1328 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1329 extern void SHA512_End(SHA512Context *cx, unsigned char *digest,
michael@0 1330 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1331 extern SECStatus SHA512_HashBuf(unsigned char *dest, const unsigned char *src,
michael@0 1332 PRUint32 src_length);
michael@0 1333 extern SECStatus SHA512_Hash(unsigned char *dest, const char *src);
michael@0 1334 extern void SHA512_TraceState(SHA512Context *cx);
michael@0 1335 extern unsigned int SHA512_FlattenSize(SHA512Context *cx);
michael@0 1336 extern SECStatus SHA512_Flatten(SHA512Context *cx,unsigned char *space);
michael@0 1337 extern SHA512Context * SHA512_Resurrect(unsigned char *space, void *arg);
michael@0 1338 extern void SHA512_Clone(SHA512Context *dest, SHA512Context *src);
michael@0 1339
michael@0 1340 /******************************************/
michael@0 1341
michael@0 1342 extern SHA384Context *SHA384_NewContext(void);
michael@0 1343 extern void SHA384_DestroyContext(SHA384Context *cx, PRBool freeit);
michael@0 1344 extern void SHA384_Begin(SHA384Context *cx);
michael@0 1345 extern void SHA384_Update(SHA384Context *cx, const unsigned char *input,
michael@0 1346 unsigned int inputLen);
michael@0 1347 extern void SHA384_End(SHA384Context *cx, unsigned char *digest,
michael@0 1348 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1349 /*
michael@0 1350 ** Export the current state of the SHA-384 hash without appending the standard
michael@0 1351 ** padding and length bytes. Produce the digested results in "digest"
michael@0 1352 ** "cx" the context
michael@0 1353 ** "digest" where the 48 bytes of digest data are stored
michael@0 1354 ** "digestLen" where the digest length (48) is stored (optional)
michael@0 1355 ** "maxDigestLen" the maximum amount of data that can ever be
michael@0 1356 ** stored in "digest"
michael@0 1357 */
michael@0 1358 extern void SHA384_EndRaw(SHA384Context *cx, unsigned char *digest,
michael@0 1359 unsigned int *digestLen, unsigned int maxDigestLen);
michael@0 1360 extern SECStatus SHA384_HashBuf(unsigned char *dest, const unsigned char *src,
michael@0 1361 PRUint32 src_length);
michael@0 1362 extern SECStatus SHA384_Hash(unsigned char *dest, const char *src);
michael@0 1363 extern void SHA384_TraceState(SHA384Context *cx);
michael@0 1364 extern unsigned int SHA384_FlattenSize(SHA384Context *cx);
michael@0 1365 extern SECStatus SHA384_Flatten(SHA384Context *cx,unsigned char *space);
michael@0 1366 extern SHA384Context * SHA384_Resurrect(unsigned char *space, void *arg);
michael@0 1367 extern void SHA384_Clone(SHA384Context *dest, SHA384Context *src);
michael@0 1368
michael@0 1369 /****************************************
michael@0 1370 * implement TLS 1.0 Pseudo Random Function (PRF) and TLS P_hash function
michael@0 1371 */
michael@0 1372
michael@0 1373 extern SECStatus
michael@0 1374 TLS_PRF(const SECItem *secret, const char *label, SECItem *seed,
michael@0 1375 SECItem *result, PRBool isFIPS);
michael@0 1376
michael@0 1377 extern SECStatus
michael@0 1378 TLS_P_hash(HASH_HashType hashAlg, const SECItem *secret, const char *label,
michael@0 1379 SECItem *seed, SECItem *result, PRBool isFIPS);
michael@0 1380
michael@0 1381 /******************************************/
michael@0 1382 /*
michael@0 1383 ** Pseudo Random Number Generation. FIPS compliance desirable.
michael@0 1384 */
michael@0 1385
michael@0 1386 /*
michael@0 1387 ** Initialize the global RNG context and give it some seed input taken
michael@0 1388 ** from the system. This function is thread-safe and will only allow
michael@0 1389 ** the global context to be initialized once. The seed input is likely
michael@0 1390 ** small, so it is imperative that RNG_RandomUpdate() be called with
michael@0 1391 ** additional seed data before the generator is used. A good way to
michael@0 1392 ** provide the generator with additional entropy is to call
michael@0 1393 ** RNG_SystemInfoForRNG(). Note that NSS_Init() does exactly that.
michael@0 1394 */
michael@0 1395 extern SECStatus RNG_RNGInit(void);
michael@0 1396
michael@0 1397 /*
michael@0 1398 ** Update the global random number generator with more seeding
michael@0 1399 ** material
michael@0 1400 */
michael@0 1401 extern SECStatus RNG_RandomUpdate(const void *data, size_t bytes);
michael@0 1402
michael@0 1403 /*
michael@0 1404 ** Generate some random bytes, using the global random number generator
michael@0 1405 ** object.
michael@0 1406 */
michael@0 1407 extern SECStatus RNG_GenerateGlobalRandomBytes(void *dest, size_t len);
michael@0 1408
michael@0 1409 /* Destroy the global RNG context. After a call to RNG_RNGShutdown()
michael@0 1410 ** a call to RNG_RNGInit() is required in order to use the generator again,
michael@0 1411 ** along with seed data (see the comment above RNG_RNGInit()).
michael@0 1412 */
michael@0 1413 extern void RNG_RNGShutdown(void);
michael@0 1414
michael@0 1415 extern void RNG_SystemInfoForRNG(void);
michael@0 1416
michael@0 1417 /*
michael@0 1418 * FIPS 186-2 Change Notice 1 RNG Algorithm 1, used both to
michael@0 1419 * generate the DSA X parameter and as a generic purpose RNG.
michael@0 1420 *
michael@0 1421 * The following two FIPS186Change functions are needed for
michael@0 1422 * NIST RNG Validation System.
michael@0 1423 */
michael@0 1424
michael@0 1425 /*
michael@0 1426 * FIPS186Change_GenerateX is now deprecated. It will return SECFailure with
michael@0 1427 * the error set to PR_NOT_IMPLEMENTED_ERROR.
michael@0 1428 */
michael@0 1429 extern SECStatus
michael@0 1430 FIPS186Change_GenerateX(unsigned char *XKEY,
michael@0 1431 const unsigned char *XSEEDj,
michael@0 1432 unsigned char *x_j);
michael@0 1433
michael@0 1434 /*
michael@0 1435 * When generating the DSA X parameter, we generate 2*GSIZE bytes
michael@0 1436 * of random output and reduce it mod q.
michael@0 1437 *
michael@0 1438 * Input: w, 2*GSIZE bytes
michael@0 1439 * q, DSA_SUBPRIME_LEN bytes
michael@0 1440 * Output: xj, DSA_SUBPRIME_LEN bytes
michael@0 1441 */
michael@0 1442 extern SECStatus
michael@0 1443 FIPS186Change_ReduceModQForDSA(const unsigned char *w,
michael@0 1444 const unsigned char *q,
michael@0 1445 unsigned char *xj);
michael@0 1446
michael@0 1447 /*
michael@0 1448 * The following functions are for FIPS poweron self test and FIPS algorithm
michael@0 1449 * testing.
michael@0 1450 */
michael@0 1451 extern SECStatus
michael@0 1452 PRNGTEST_Instantiate(const PRUint8 *entropy, unsigned int entropy_len,
michael@0 1453 const PRUint8 *nonce, unsigned int nonce_len,
michael@0 1454 const PRUint8 *personal_string, unsigned int ps_len);
michael@0 1455
michael@0 1456 extern SECStatus
michael@0 1457 PRNGTEST_Reseed(const PRUint8 *entropy, unsigned int entropy_len,
michael@0 1458 const PRUint8 *additional, unsigned int additional_len);
michael@0 1459
michael@0 1460 extern SECStatus
michael@0 1461 PRNGTEST_Generate(PRUint8 *bytes, unsigned int bytes_len,
michael@0 1462 const PRUint8 *additional, unsigned int additional_len);
michael@0 1463
michael@0 1464 extern SECStatus
michael@0 1465 PRNGTEST_Uninstantiate(void);
michael@0 1466
michael@0 1467 extern SECStatus
michael@0 1468 PRNGTEST_RunHealthTests(void);
michael@0 1469
michael@0 1470 /* Generate PQGParams and PQGVerify structs.
michael@0 1471 * Length of seed and length of h both equal length of P.
michael@0 1472 * All lengths are specified by "j", according to the table above.
michael@0 1473 *
michael@0 1474 * The verify parameters will conform to FIPS186-1.
michael@0 1475 */
michael@0 1476 extern SECStatus
michael@0 1477 PQG_ParamGen(unsigned int j, /* input : determines length of P. */
michael@0 1478 PQGParams **pParams, /* output: P Q and G returned here */
michael@0 1479 PQGVerify **pVfy); /* output: counter and seed. */
michael@0 1480
michael@0 1481 /* Generate PQGParams and PQGVerify structs.
michael@0 1482 * Length of P specified by j. Length of h will match length of P.
michael@0 1483 * Length of SEED in bytes specified in seedBytes.
michael@0 1484 * seedBbytes must be in the range [20..255] or an error will result.
michael@0 1485 *
michael@0 1486 * The verify parameters will conform to FIPS186-1.
michael@0 1487 */
michael@0 1488 extern SECStatus
michael@0 1489 PQG_ParamGenSeedLen(
michael@0 1490 unsigned int j, /* input : determines length of P. */
michael@0 1491 unsigned int seedBytes, /* input : length of seed in bytes.*/
michael@0 1492 PQGParams **pParams, /* output: P Q and G returned here */
michael@0 1493 PQGVerify **pVfy); /* output: counter and seed. */
michael@0 1494
michael@0 1495 /* Generate PQGParams and PQGVerify structs.
michael@0 1496 * Length of P specified by L in bits.
michael@0 1497 * Length of Q specified by N in bits.
michael@0 1498 * Length of SEED in bytes specified in seedBytes.
michael@0 1499 * seedBbytes must be in the range [N..L*2] or an error will result.
michael@0 1500 *
michael@0 1501 * Not that J uses the above table, L is the length exact. L and N must
michael@0 1502 * match the table below or an error will result:
michael@0 1503 *
michael@0 1504 * L N
michael@0 1505 * 1024 160
michael@0 1506 * 2048 224
michael@0 1507 * 2048 256
michael@0 1508 * 3072 256
michael@0 1509 *
michael@0 1510 * If N or seedBytes are set to zero, then PQG_ParamGenSeedLen will
michael@0 1511 * pick a default value (typically the smallest secure value for these
michael@0 1512 * variables).
michael@0 1513 *
michael@0 1514 * The verify parameters will conform to FIPS186-3 using the smallest
michael@0 1515 * permissible hash for the key strength.
michael@0 1516 */
michael@0 1517 extern SECStatus
michael@0 1518 PQG_ParamGenV2(
michael@0 1519 unsigned int L, /* input : determines length of P. */
michael@0 1520 unsigned int N, /* input : determines length of Q. */
michael@0 1521 unsigned int seedBytes, /* input : length of seed in bytes.*/
michael@0 1522 PQGParams **pParams, /* output: P Q and G returned here */
michael@0 1523 PQGVerify **pVfy); /* output: counter and seed. */
michael@0 1524
michael@0 1525
michael@0 1526 /* Test PQGParams for validity as DSS PQG values.
michael@0 1527 * If vfy is non-NULL, test PQGParams to make sure they were generated
michael@0 1528 * using the specified seed, counter, and h values.
michael@0 1529 *
michael@0 1530 * Return value indicates whether Verification operation ran successfully
michael@0 1531 * to completion, but does not indicate if PQGParams are valid or not.
michael@0 1532 * If return value is SECSuccess, then *pResult has these meanings:
michael@0 1533 * SECSuccess: PQGParams are valid.
michael@0 1534 * SECFailure: PQGParams are invalid.
michael@0 1535 *
michael@0 1536 * Verify the PQG againts the counter, SEED and h.
michael@0 1537 * These tests are specified in FIPS 186-3 Appendix A.1.1.1, A.1.1.3, and A.2.2
michael@0 1538 * PQG_VerifyParams will automatically choose the appropriate test.
michael@0 1539 */
michael@0 1540
michael@0 1541 extern SECStatus PQG_VerifyParams(const PQGParams *params,
michael@0 1542 const PQGVerify *vfy, SECStatus *result);
michael@0 1543
michael@0 1544 extern void PQG_DestroyParams(PQGParams *params);
michael@0 1545
michael@0 1546 extern void PQG_DestroyVerify(PQGVerify *vfy);
michael@0 1547
michael@0 1548
michael@0 1549 /*
michael@0 1550 * clean-up any global tables freebl may have allocated after it starts up.
michael@0 1551 * This function is not thread safe and should be called only after the
michael@0 1552 * library has been quiessed.
michael@0 1553 */
michael@0 1554 extern void BL_Cleanup(void);
michael@0 1555
michael@0 1556 /* unload freebl shared library from memory */
michael@0 1557 extern void BL_Unload(void);
michael@0 1558
michael@0 1559 /**************************************************************************
michael@0 1560 * Verify a given Shared library signature *
michael@0 1561 **************************************************************************/
michael@0 1562 PRBool BLAPI_SHVerify(const char *name, PRFuncPtr addr);
michael@0 1563
michael@0 1564 /**************************************************************************
michael@0 1565 * Verify a given filename's signature *
michael@0 1566 **************************************************************************/
michael@0 1567 PRBool BLAPI_SHVerifyFile(const char *shName);
michael@0 1568
michael@0 1569 /**************************************************************************
michael@0 1570 * Verify Are Own Shared library signature *
michael@0 1571 **************************************************************************/
michael@0 1572 PRBool BLAPI_VerifySelf(const char *name);
michael@0 1573
michael@0 1574 /*********************************************************************/
michael@0 1575 extern const SECHashObject * HASH_GetRawHashObject(HASH_HashType hashType);
michael@0 1576
michael@0 1577 extern void BL_SetForkState(PRBool forked);
michael@0 1578
michael@0 1579 #ifndef NSS_DISABLE_ECC
michael@0 1580 /*
michael@0 1581 ** pepare an ECParam structure from DEREncoded params
michael@0 1582 */
michael@0 1583 extern SECStatus EC_FillParams(PLArenaPool *arena,
michael@0 1584 const SECItem *encodedParams, ECParams *params);
michael@0 1585 extern SECStatus EC_DecodeParams(const SECItem *encodedParams,
michael@0 1586 ECParams **ecparams);
michael@0 1587 extern SECStatus EC_CopyParams(PLArenaPool *arena, ECParams *dstParams,
michael@0 1588 const ECParams *srcParams);
michael@0 1589 #endif
michael@0 1590
michael@0 1591 SEC_END_PROTOS
michael@0 1592
michael@0 1593 #endif /* _BLAPI_H_ */

mercurial