Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | /* This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 2 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 3 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 4 | |
michael@0 | 5 | #ifndef __ecl_priv_h_ |
michael@0 | 6 | #define __ecl_priv_h_ |
michael@0 | 7 | |
michael@0 | 8 | #include "ecl.h" |
michael@0 | 9 | #include "mpi.h" |
michael@0 | 10 | #include "mplogic.h" |
michael@0 | 11 | |
michael@0 | 12 | /* MAX_FIELD_SIZE_DIGITS is the maximum size of field element supported */ |
michael@0 | 13 | /* the following needs to go away... */ |
michael@0 | 14 | #if defined(MP_USE_LONG_LONG_DIGIT) || defined(MP_USE_LONG_DIGIT) |
michael@0 | 15 | #define ECL_SIXTY_FOUR_BIT |
michael@0 | 16 | #else |
michael@0 | 17 | #define ECL_THIRTY_TWO_BIT |
michael@0 | 18 | #endif |
michael@0 | 19 | |
michael@0 | 20 | #define ECL_CURVE_DIGITS(curve_size_in_bits) \ |
michael@0 | 21 | (((curve_size_in_bits)+(sizeof(mp_digit)*8-1))/(sizeof(mp_digit)*8)) |
michael@0 | 22 | #define ECL_BITS (sizeof(mp_digit)*8) |
michael@0 | 23 | #define ECL_MAX_FIELD_SIZE_DIGITS (80/sizeof(mp_digit)) |
michael@0 | 24 | |
michael@0 | 25 | /* Gets the i'th bit in the binary representation of a. If i >= length(a), |
michael@0 | 26 | * then return 0. (The above behaviour differs from mpl_get_bit, which |
michael@0 | 27 | * causes an error if i >= length(a).) */ |
michael@0 | 28 | #define MP_GET_BIT(a, i) \ |
michael@0 | 29 | ((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i)) |
michael@0 | 30 | |
michael@0 | 31 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
michael@0 | 32 | #define MP_ADD_CARRY(a1, a2, s, cin, cout) \ |
michael@0 | 33 | { mp_word w; \ |
michael@0 | 34 | w = ((mp_word)(cin)) + (a1) + (a2); \ |
michael@0 | 35 | s = ACCUM(w); \ |
michael@0 | 36 | cout = CARRYOUT(w); } |
michael@0 | 37 | |
michael@0 | 38 | #define MP_SUB_BORROW(a1, a2, s, bin, bout) \ |
michael@0 | 39 | { mp_word w; \ |
michael@0 | 40 | w = ((mp_word)(a1)) - (a2) - (bin); \ |
michael@0 | 41 | s = ACCUM(w); \ |
michael@0 | 42 | bout = (w >> MP_DIGIT_BIT) & 1; } |
michael@0 | 43 | |
michael@0 | 44 | #else |
michael@0 | 45 | /* NOTE, |
michael@0 | 46 | * cin and cout could be the same variable. |
michael@0 | 47 | * bin and bout could be the same variable. |
michael@0 | 48 | * a1 or a2 and s could be the same variable. |
michael@0 | 49 | * don't trash those outputs until their respective inputs have |
michael@0 | 50 | * been read. */ |
michael@0 | 51 | #define MP_ADD_CARRY(a1, a2, s, cin, cout) \ |
michael@0 | 52 | { mp_digit tmp,sum; \ |
michael@0 | 53 | tmp = (a1); \ |
michael@0 | 54 | sum = tmp + (a2); \ |
michael@0 | 55 | tmp = (sum < tmp); /* detect overflow */ \ |
michael@0 | 56 | s = sum += (cin); \ |
michael@0 | 57 | cout = tmp + (sum < (cin)); } |
michael@0 | 58 | |
michael@0 | 59 | #define MP_SUB_BORROW(a1, a2, s, bin, bout) \ |
michael@0 | 60 | { mp_digit tmp; \ |
michael@0 | 61 | tmp = (a1); \ |
michael@0 | 62 | s = tmp - (a2); \ |
michael@0 | 63 | tmp = (s > tmp); /* detect borrow */ \ |
michael@0 | 64 | if ((bin) && !s--) tmp++; \ |
michael@0 | 65 | bout = tmp; } |
michael@0 | 66 | #endif |
michael@0 | 67 | |
michael@0 | 68 | |
michael@0 | 69 | struct GFMethodStr; |
michael@0 | 70 | typedef struct GFMethodStr GFMethod; |
michael@0 | 71 | struct GFMethodStr { |
michael@0 | 72 | /* Indicates whether the structure was constructed from dynamic memory |
michael@0 | 73 | * or statically created. */ |
michael@0 | 74 | int constructed; |
michael@0 | 75 | /* Irreducible that defines the field. For prime fields, this is the |
michael@0 | 76 | * prime p. For binary polynomial fields, this is the bitstring |
michael@0 | 77 | * representation of the irreducible polynomial. */ |
michael@0 | 78 | mp_int irr; |
michael@0 | 79 | /* For prime fields, the value irr_arr[0] is the number of bits in the |
michael@0 | 80 | * field. For binary polynomial fields, the irreducible polynomial |
michael@0 | 81 | * f(t) is represented as an array of unsigned int[], where f(t) is |
michael@0 | 82 | * of the form: f(t) = t^p[0] + t^p[1] + ... + t^p[4] where m = p[0] |
michael@0 | 83 | * > p[1] > ... > p[4] = 0. */ |
michael@0 | 84 | unsigned int irr_arr[5]; |
michael@0 | 85 | /* Field arithmetic methods. All methods (except field_enc and |
michael@0 | 86 | * field_dec) are assumed to take field-encoded parameters and return |
michael@0 | 87 | * field-encoded values. All methods (except field_enc and field_dec) |
michael@0 | 88 | * are required to be implemented. */ |
michael@0 | 89 | mp_err (*field_add) (const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 90 | const GFMethod *meth); |
michael@0 | 91 | mp_err (*field_neg) (const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 92 | mp_err (*field_sub) (const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 93 | const GFMethod *meth); |
michael@0 | 94 | mp_err (*field_mod) (const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 95 | mp_err (*field_mul) (const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 96 | const GFMethod *meth); |
michael@0 | 97 | mp_err (*field_sqr) (const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 98 | mp_err (*field_div) (const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 99 | const GFMethod *meth); |
michael@0 | 100 | mp_err (*field_enc) (const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 101 | mp_err (*field_dec) (const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 102 | /* Extra storage for implementation-specific data. Any memory |
michael@0 | 103 | * allocated to these extra fields will be cleared by extra_free. */ |
michael@0 | 104 | void *extra1; |
michael@0 | 105 | void *extra2; |
michael@0 | 106 | void (*extra_free) (GFMethod *meth); |
michael@0 | 107 | }; |
michael@0 | 108 | |
michael@0 | 109 | /* Construct generic GFMethods. */ |
michael@0 | 110 | GFMethod *GFMethod_consGFp(const mp_int *irr); |
michael@0 | 111 | GFMethod *GFMethod_consGFp_mont(const mp_int *irr); |
michael@0 | 112 | GFMethod *GFMethod_consGF2m(const mp_int *irr, |
michael@0 | 113 | const unsigned int irr_arr[5]); |
michael@0 | 114 | /* Free the memory allocated (if any) to a GFMethod object. */ |
michael@0 | 115 | void GFMethod_free(GFMethod *meth); |
michael@0 | 116 | |
michael@0 | 117 | struct ECGroupStr { |
michael@0 | 118 | /* Indicates whether the structure was constructed from dynamic memory |
michael@0 | 119 | * or statically created. */ |
michael@0 | 120 | int constructed; |
michael@0 | 121 | /* Field definition and arithmetic. */ |
michael@0 | 122 | GFMethod *meth; |
michael@0 | 123 | /* Textual representation of curve name, if any. */ |
michael@0 | 124 | char *text; |
michael@0 | 125 | /* Curve parameters, field-encoded. */ |
michael@0 | 126 | mp_int curvea, curveb; |
michael@0 | 127 | /* x and y coordinates of the base point, field-encoded. */ |
michael@0 | 128 | mp_int genx, geny; |
michael@0 | 129 | /* Order and cofactor of the base point. */ |
michael@0 | 130 | mp_int order; |
michael@0 | 131 | int cofactor; |
michael@0 | 132 | /* Point arithmetic methods. All methods are assumed to take |
michael@0 | 133 | * field-encoded parameters and return field-encoded values. All |
michael@0 | 134 | * methods (except base_point_mul and points_mul) are required to be |
michael@0 | 135 | * implemented. */ |
michael@0 | 136 | mp_err (*point_add) (const mp_int *px, const mp_int *py, |
michael@0 | 137 | const mp_int *qx, const mp_int *qy, mp_int *rx, |
michael@0 | 138 | mp_int *ry, const ECGroup *group); |
michael@0 | 139 | mp_err (*point_sub) (const mp_int *px, const mp_int *py, |
michael@0 | 140 | const mp_int *qx, const mp_int *qy, mp_int *rx, |
michael@0 | 141 | mp_int *ry, const ECGroup *group); |
michael@0 | 142 | mp_err (*point_dbl) (const mp_int *px, const mp_int *py, mp_int *rx, |
michael@0 | 143 | mp_int *ry, const ECGroup *group); |
michael@0 | 144 | mp_err (*point_mul) (const mp_int *n, const mp_int *px, |
michael@0 | 145 | const mp_int *py, mp_int *rx, mp_int *ry, |
michael@0 | 146 | const ECGroup *group); |
michael@0 | 147 | mp_err (*base_point_mul) (const mp_int *n, mp_int *rx, mp_int *ry, |
michael@0 | 148 | const ECGroup *group); |
michael@0 | 149 | mp_err (*points_mul) (const mp_int *k1, const mp_int *k2, |
michael@0 | 150 | const mp_int *px, const mp_int *py, mp_int *rx, |
michael@0 | 151 | mp_int *ry, const ECGroup *group); |
michael@0 | 152 | mp_err (*validate_point) (const mp_int *px, const mp_int *py, const ECGroup *group); |
michael@0 | 153 | /* Extra storage for implementation-specific data. Any memory |
michael@0 | 154 | * allocated to these extra fields will be cleared by extra_free. */ |
michael@0 | 155 | void *extra1; |
michael@0 | 156 | void *extra2; |
michael@0 | 157 | void (*extra_free) (ECGroup *group); |
michael@0 | 158 | }; |
michael@0 | 159 | |
michael@0 | 160 | /* Wrapper functions for generic prime field arithmetic. */ |
michael@0 | 161 | mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 162 | const GFMethod *meth); |
michael@0 | 163 | mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 164 | mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 165 | const GFMethod *meth); |
michael@0 | 166 | |
michael@0 | 167 | /* fixed length in-line adds. Count is in words */ |
michael@0 | 168 | mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 169 | const GFMethod *meth); |
michael@0 | 170 | mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 171 | const GFMethod *meth); |
michael@0 | 172 | mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 173 | const GFMethod *meth); |
michael@0 | 174 | mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 175 | const GFMethod *meth); |
michael@0 | 176 | mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 177 | const GFMethod *meth); |
michael@0 | 178 | mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 179 | const GFMethod *meth); |
michael@0 | 180 | mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 181 | const GFMethod *meth); |
michael@0 | 182 | mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 183 | const GFMethod *meth); |
michael@0 | 184 | |
michael@0 | 185 | mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 186 | mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 187 | const GFMethod *meth); |
michael@0 | 188 | mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 189 | mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 190 | const GFMethod *meth); |
michael@0 | 191 | /* Wrapper functions for generic binary polynomial field arithmetic. */ |
michael@0 | 192 | mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 193 | const GFMethod *meth); |
michael@0 | 194 | mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 195 | mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 196 | mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 197 | const GFMethod *meth); |
michael@0 | 198 | mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 199 | mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 200 | const GFMethod *meth); |
michael@0 | 201 | |
michael@0 | 202 | /* Montgomery prime field arithmetic. */ |
michael@0 | 203 | mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 204 | const GFMethod *meth); |
michael@0 | 205 | mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 206 | mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 207 | const GFMethod *meth); |
michael@0 | 208 | mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 209 | mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth); |
michael@0 | 210 | void ec_GFp_extra_free_mont(GFMethod *meth); |
michael@0 | 211 | |
michael@0 | 212 | /* point multiplication */ |
michael@0 | 213 | mp_err ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, |
michael@0 | 214 | const mp_int *px, const mp_int *py, mp_int *rx, |
michael@0 | 215 | mp_int *ry, const ECGroup *group); |
michael@0 | 216 | mp_err ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, |
michael@0 | 217 | const mp_int *px, const mp_int *py, mp_int *rx, |
michael@0 | 218 | mp_int *ry, const ECGroup *group); |
michael@0 | 219 | |
michael@0 | 220 | /* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should |
michael@0 | 221 | * be an array of signed char's to output to, bitsize should be the number |
michael@0 | 222 | * of bits of out, in is the original scalar, and w is the window size. |
michael@0 | 223 | * NAF is discussed in the paper: D. Hankerson, J. Hernandez and A. |
michael@0 | 224 | * Menezes, "Software implementation of elliptic curve cryptography over |
michael@0 | 225 | * binary fields", Proc. CHES 2000. */ |
michael@0 | 226 | mp_err ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in, |
michael@0 | 227 | int w); |
michael@0 | 228 | |
michael@0 | 229 | /* Optimized field arithmetic */ |
michael@0 | 230 | mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName); |
michael@0 | 231 | mp_err ec_group_set_gfp224(ECGroup *group, ECCurveName); |
michael@0 | 232 | mp_err ec_group_set_gfp256(ECGroup *group, ECCurveName); |
michael@0 | 233 | mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName); |
michael@0 | 234 | mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName); |
michael@0 | 235 | mp_err ec_group_set_gf2m163(ECGroup *group, ECCurveName name); |
michael@0 | 236 | mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name); |
michael@0 | 237 | mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name); |
michael@0 | 238 | |
michael@0 | 239 | /* Optimized point multiplication */ |
michael@0 | 240 | mp_err ec_group_set_gfp256_32(ECGroup *group, ECCurveName name); |
michael@0 | 241 | |
michael@0 | 242 | /* Optimized floating-point arithmetic */ |
michael@0 | 243 | #ifdef ECL_USE_FP |
michael@0 | 244 | mp_err ec_group_set_secp160r1_fp(ECGroup *group); |
michael@0 | 245 | mp_err ec_group_set_nistp192_fp(ECGroup *group); |
michael@0 | 246 | mp_err ec_group_set_nistp224_fp(ECGroup *group); |
michael@0 | 247 | #endif |
michael@0 | 248 | |
michael@0 | 249 | #endif /* __ecl_priv_h_ */ |