security/nss/lib/freebl/ecl/ecp_256_32.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /* This Source Code Form is subject to the terms of the Mozilla Public
michael@0 2 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 4
michael@0 5 /* A 32-bit implementation of the NIST P-256 elliptic curve. */
michael@0 6
michael@0 7 #include <string.h>
michael@0 8
michael@0 9 #include "prtypes.h"
michael@0 10 #include "mpi.h"
michael@0 11 #include "mpi-priv.h"
michael@0 12 #include "ecp.h"
michael@0 13
michael@0 14 typedef PRUint8 u8;
michael@0 15 typedef PRUint32 u32;
michael@0 16 typedef PRUint64 u64;
michael@0 17
michael@0 18 /* Our field elements are represented as nine, unsigned 32-bit words. Freebl's
michael@0 19 * MPI library calls them digits, but here they are called limbs, which is
michael@0 20 * GMP's terminology.
michael@0 21 *
michael@0 22 * The value of an felem (field element) is:
michael@0 23 * x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
michael@0 24 *
michael@0 25 * That is, each limb is alternately 29 or 28-bits wide in little-endian
michael@0 26 * order.
michael@0 27 *
michael@0 28 * This means that an felem hits 2**257, rather than 2**256 as we would like. A
michael@0 29 * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems
michael@0 30 * when multiplying as terms end up one bit short of a limb which would require
michael@0 31 * much bit-shifting to correct.
michael@0 32 *
michael@0 33 * Finally, the values stored in an felem are in Montgomery form. So the value
michael@0 34 * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257.
michael@0 35 */
michael@0 36 typedef u32 limb;
michael@0 37 #define NLIMBS 9
michael@0 38 typedef limb felem[NLIMBS];
michael@0 39
michael@0 40 static const limb kBottom28Bits = 0xfffffff;
michael@0 41 static const limb kBottom29Bits = 0x1fffffff;
michael@0 42
michael@0 43 /* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and
michael@0 44 * 28-bit words.
michael@0 45 */
michael@0 46 static const felem kOne = {
michael@0 47 2, 0, 0, 0xffff800,
michael@0 48 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff,
michael@0 49 0
michael@0 50 };
michael@0 51 static const felem kZero = {0};
michael@0 52 static const felem kP = {
michael@0 53 0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff,
michael@0 54 0, 0, 0x200000, 0xf000000,
michael@0 55 0xfffffff
michael@0 56 };
michael@0 57 static const felem k2P = {
michael@0 58 0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff,
michael@0 59 0, 0, 0x400000, 0xe000000,
michael@0 60 0x1fffffff
michael@0 61 };
michael@0 62
michael@0 63 /* kPrecomputed contains precomputed values to aid the calculation of scalar
michael@0 64 * multiples of the base point, G. It's actually two, equal length, tables
michael@0 65 * concatenated.
michael@0 66 *
michael@0 67 * The first table contains (x,y) felem pairs for 16 multiples of the base
michael@0 68 * point, G.
michael@0 69 *
michael@0 70 * Index | Index (binary) | Value
michael@0 71 * 0 | 0000 | 0G (all zeros, omitted)
michael@0 72 * 1 | 0001 | G
michael@0 73 * 2 | 0010 | 2**64G
michael@0 74 * 3 | 0011 | 2**64G + G
michael@0 75 * 4 | 0100 | 2**128G
michael@0 76 * 5 | 0101 | 2**128G + G
michael@0 77 * 6 | 0110 | 2**128G + 2**64G
michael@0 78 * 7 | 0111 | 2**128G + 2**64G + G
michael@0 79 * 8 | 1000 | 2**192G
michael@0 80 * 9 | 1001 | 2**192G + G
michael@0 81 * 10 | 1010 | 2**192G + 2**64G
michael@0 82 * 11 | 1011 | 2**192G + 2**64G + G
michael@0 83 * 12 | 1100 | 2**192G + 2**128G
michael@0 84 * 13 | 1101 | 2**192G + 2**128G + G
michael@0 85 * 14 | 1110 | 2**192G + 2**128G + 2**64G
michael@0 86 * 15 | 1111 | 2**192G + 2**128G + 2**64G + G
michael@0 87 *
michael@0 88 * The second table follows the same style, but the terms are 2**32G,
michael@0 89 * 2**96G, 2**160G, 2**224G.
michael@0 90 *
michael@0 91 * This is ~2KB of data.
michael@0 92 */
michael@0 93 static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = {
michael@0 94 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee,
michael@0 95 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3,
michael@0 96 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c,
michael@0 97 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22,
michael@0 98 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050,
michael@0 99 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
michael@0 100 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa,
michael@0 101 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2,
michael@0 102 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609,
michael@0 103 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581,
michael@0 104 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca,
michael@0 105 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33,
michael@0 106 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6,
michael@0 107 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd,
michael@0 108 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0,
michael@0 109 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881,
michael@0 110 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a,
michael@0 111 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26,
michael@0 112 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b,
michael@0 113 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023,
michael@0 114 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133,
michael@0 115 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa,
michael@0 116 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29,
michael@0 117 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc,
michael@0 118 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8,
michael@0 119 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59,
michael@0 120 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39,
michael@0 121 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689,
michael@0 122 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa,
michael@0 123 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3,
michael@0 124 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1,
michael@0 125 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f,
michael@0 126 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72,
michael@0 127 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d,
michael@0 128 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b,
michael@0 129 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a,
michael@0 130 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a,
michael@0 131 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f,
michael@0 132 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb,
michael@0 133 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc,
michael@0 134 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
michael@0 135 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce,
michael@0 136 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2,
michael@0 137 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca,
michael@0 138 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229,
michael@0 139 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57,
michael@0 140 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c,
michael@0 141 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa,
michael@0 142 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651,
michael@0 143 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec,
michael@0 144 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7,
michael@0 145 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c,
michael@0 146 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927,
michael@0 147 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298,
michael@0 148 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8,
michael@0 149 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2,
michael@0 150 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d,
michael@0 151 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4,
michael@0 152 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8,
michael@0 153 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
michael@0 154 };
michael@0 155
michael@0 156 /* Field element operations:
michael@0 157 */
michael@0 158
michael@0 159 /* NON_ZERO_TO_ALL_ONES returns:
michael@0 160 * 0xffffffff for 0 < x <= 2**31
michael@0 161 * 0 for x == 0 or x > 2**31.
michael@0 162 *
michael@0 163 * x must be a u32 or an equivalent type such as limb.
michael@0 164 */
michael@0 165 #define NON_ZERO_TO_ALL_ONES(x) ((((u32)(x) - 1) >> 31) - 1)
michael@0 166
michael@0 167 /* felem_reduce_carry adds a multiple of p in order to cancel |carry|,
michael@0 168 * which is a term at 2**257.
michael@0 169 *
michael@0 170 * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
michael@0 171 * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29.
michael@0 172 */
michael@0 173 static void felem_reduce_carry(felem inout, limb carry)
michael@0 174 {
michael@0 175 const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry);
michael@0 176
michael@0 177 inout[0] += carry << 1;
michael@0 178 inout[3] += 0x10000000 & carry_mask;
michael@0 179 /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
michael@0 180 * previous line therefore this doesn't underflow.
michael@0 181 */
michael@0 182 inout[3] -= carry << 11;
michael@0 183 inout[4] += (0x20000000 - 1) & carry_mask;
michael@0 184 inout[5] += (0x10000000 - 1) & carry_mask;
michael@0 185 inout[6] += (0x20000000 - 1) & carry_mask;
michael@0 186 inout[6] -= carry << 22;
michael@0 187 /* This may underflow if carry is non-zero but, if so, we'll fix it in the
michael@0 188 * next line.
michael@0 189 */
michael@0 190 inout[7] -= 1 & carry_mask;
michael@0 191 inout[7] += carry << 25;
michael@0 192 }
michael@0 193
michael@0 194 /* felem_sum sets out = in+in2.
michael@0 195 *
michael@0 196 * On entry, in[i]+in2[i] must not overflow a 32-bit word.
michael@0 197 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
michael@0 198 */
michael@0 199 static void felem_sum(felem out, const felem in, const felem in2)
michael@0 200 {
michael@0 201 limb carry = 0;
michael@0 202 unsigned int i;
michael@0 203 for (i = 0;; i++) {
michael@0 204 out[i] = in[i] + in2[i];
michael@0 205 out[i] += carry;
michael@0 206 carry = out[i] >> 29;
michael@0 207 out[i] &= kBottom29Bits;
michael@0 208
michael@0 209 i++;
michael@0 210 if (i == NLIMBS)
michael@0 211 break;
michael@0 212
michael@0 213 out[i] = in[i] + in2[i];
michael@0 214 out[i] += carry;
michael@0 215 carry = out[i] >> 28;
michael@0 216 out[i] &= kBottom28Bits;
michael@0 217 }
michael@0 218
michael@0 219 felem_reduce_carry(out, carry);
michael@0 220 }
michael@0 221
michael@0 222 #define two31m3 (((limb)1) << 31) - (((limb)1) << 3)
michael@0 223 #define two30m2 (((limb)1) << 30) - (((limb)1) << 2)
michael@0 224 #define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2)
michael@0 225 #define two31m2 (((limb)1) << 31) - (((limb)1) << 2)
michael@0 226 #define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2)
michael@0 227 #define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2)
michael@0 228
michael@0 229 /* zero31 is 0 mod p.
michael@0 230 */
michael@0 231 static const felem zero31 = {
michael@0 232 two31m3, two30m2, two31m2, two30p13m2,
michael@0 233 two31m2, two30m2, two31p24m2, two30m27m2,
michael@0 234 two31m2
michael@0 235 };
michael@0 236
michael@0 237 /* felem_diff sets out = in-in2.
michael@0 238 *
michael@0 239 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
michael@0 240 * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
michael@0 241 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
michael@0 242 */
michael@0 243 static void felem_diff(felem out, const felem in, const felem in2)
michael@0 244 {
michael@0 245 limb carry = 0;
michael@0 246 unsigned int i;
michael@0 247
michael@0 248 for (i = 0;; i++) {
michael@0 249 out[i] = in[i] - in2[i];
michael@0 250 out[i] += zero31[i];
michael@0 251 out[i] += carry;
michael@0 252 carry = out[i] >> 29;
michael@0 253 out[i] &= kBottom29Bits;
michael@0 254
michael@0 255 i++;
michael@0 256 if (i == NLIMBS)
michael@0 257 break;
michael@0 258
michael@0 259 out[i] = in[i] - in2[i];
michael@0 260 out[i] += zero31[i];
michael@0 261 out[i] += carry;
michael@0 262 carry = out[i] >> 28;
michael@0 263 out[i] &= kBottom28Bits;
michael@0 264 }
michael@0 265
michael@0 266 felem_reduce_carry(out, carry);
michael@0 267 }
michael@0 268
michael@0 269 /* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words
michael@0 270 * with the same 29,28,... bit positions as an felem.
michael@0 271 *
michael@0 272 * The values in felems are in Montgomery form: x*R mod p where R = 2**257.
michael@0 273 * Since we just multiplied two Montgomery values together, the result is
michael@0 274 * x*y*R*R mod p. We wish to divide by R in order for the result also to be
michael@0 275 * in Montgomery form.
michael@0 276 *
michael@0 277 * On entry: tmp[i] < 2**64
michael@0 278 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
michael@0 279 */
michael@0 280 static void felem_reduce_degree(felem out, u64 tmp[17])
michael@0 281 {
michael@0 282 /* The following table may be helpful when reading this code:
michael@0 283 *
michael@0 284 * Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
michael@0 285 * Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
michael@0 286 * Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
michael@0 287 * (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285
michael@0 288 */
michael@0 289 limb tmp2[18], carry, x, xMask;
michael@0 290 unsigned int i;
michael@0 291
michael@0 292 /* tmp contains 64-bit words with the same 29,28,29-bit positions as an
michael@0 293 * felem. So the top of an element of tmp might overlap with another
michael@0 294 * element two positions down. The following loop eliminates this
michael@0 295 * overlap.
michael@0 296 */
michael@0 297 tmp2[0] = tmp[0] & kBottom29Bits;
michael@0 298
michael@0 299 /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try
michael@0 300 * and hint to the compiler that it can do a single-word shift by selecting
michael@0 301 * the right register rather than doing a double-word shift and truncating
michael@0 302 * afterwards.
michael@0 303 */
michael@0 304 tmp2[1] = ((limb) tmp[0]) >> 29;
michael@0 305 tmp2[1] |= (((limb) (tmp[0] >> 32)) << 3) & kBottom28Bits;
michael@0 306 tmp2[1] += ((limb) tmp[1]) & kBottom28Bits;
michael@0 307 carry = tmp2[1] >> 28;
michael@0 308 tmp2[1] &= kBottom28Bits;
michael@0 309
michael@0 310 for (i = 2; i < 17; i++) {
michael@0 311 tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25;
michael@0 312 tmp2[i] += ((limb) (tmp[i - 1])) >> 28;
michael@0 313 tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 4) & kBottom29Bits;
michael@0 314 tmp2[i] += ((limb) tmp[i]) & kBottom29Bits;
michael@0 315 tmp2[i] += carry;
michael@0 316 carry = tmp2[i] >> 29;
michael@0 317 tmp2[i] &= kBottom29Bits;
michael@0 318
michael@0 319 i++;
michael@0 320 if (i == 17)
michael@0 321 break;
michael@0 322 tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25;
michael@0 323 tmp2[i] += ((limb) (tmp[i - 1])) >> 29;
michael@0 324 tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 3) & kBottom28Bits;
michael@0 325 tmp2[i] += ((limb) tmp[i]) & kBottom28Bits;
michael@0 326 tmp2[i] += carry;
michael@0 327 carry = tmp2[i] >> 28;
michael@0 328 tmp2[i] &= kBottom28Bits;
michael@0 329 }
michael@0 330
michael@0 331 tmp2[17] = ((limb) (tmp[15] >> 32)) >> 25;
michael@0 332 tmp2[17] += ((limb) (tmp[16])) >> 29;
michael@0 333 tmp2[17] += (((limb) (tmp[16] >> 32)) << 3);
michael@0 334 tmp2[17] += carry;
michael@0 335
michael@0 336 /* Montgomery elimination of terms:
michael@0 337 *
michael@0 338 * Since R is 2**257, we can divide by R with a bitwise shift if we can
michael@0 339 * ensure that the right-most 257 bits are all zero. We can make that true
michael@0 340 * by adding multiplies of p without affecting the value.
michael@0 341 *
michael@0 342 * So we eliminate limbs from right to left. Since the bottom 29 bits of p
michael@0 343 * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
michael@0 344 * We can do that for 8 further limbs and then right shift to eliminate the
michael@0 345 * extra factor of R.
michael@0 346 */
michael@0 347 for (i = 0;; i += 2) {
michael@0 348 tmp2[i + 1] += tmp2[i] >> 29;
michael@0 349 x = tmp2[i] & kBottom29Bits;
michael@0 350 xMask = NON_ZERO_TO_ALL_ONES(x);
michael@0 351 tmp2[i] = 0;
michael@0 352
michael@0 353 /* The bounds calculations for this loop are tricky. Each iteration of
michael@0 354 * the loop eliminates two words by adding values to words to their
michael@0 355 * right.
michael@0 356 *
michael@0 357 * The following table contains the amounts added to each word (as an
michael@0 358 * offset from the value of i at the top of the loop). The amounts are
michael@0 359 * accounted for from the first and second half of the loop separately
michael@0 360 * and are written as, for example, 28 to mean a value <2**28.
michael@0 361 *
michael@0 362 * Word: 3 4 5 6 7 8 9 10
michael@0 363 * Added in top half: 28 11 29 21 29 28
michael@0 364 * 28 29
michael@0 365 * 29
michael@0 366 * Added in bottom half: 29 10 28 21 28 28
michael@0 367 * 29
michael@0 368 *
michael@0 369 * The value that is currently offset 7 will be offset 5 for the next
michael@0 370 * iteration and then offset 3 for the iteration after that. Therefore
michael@0 371 * the total value added will be the values added at 7, 5 and 3.
michael@0 372 *
michael@0 373 * The following table accumulates these values. The sums at the bottom
michael@0 374 * are written as, for example, 29+28, to mean a value < 2**29+2**28.
michael@0 375 *
michael@0 376 * Word: 3 4 5 6 7 8 9 10 11 12 13
michael@0 377 * 28 11 10 29 21 29 28 28 28 28 28
michael@0 378 * 29 28 11 28 29 28 29 28 29 28
michael@0 379 * 29 28 21 21 29 21 29 21
michael@0 380 * 10 29 28 21 28 21 28
michael@0 381 * 28 29 28 29 28 29 28
michael@0 382 * 11 10 29 10 29 10
michael@0 383 * 29 28 11 28 11
michael@0 384 * 29 29
michael@0 385 * --------------------------------------------
michael@0 386 * 30+ 31+ 30+ 31+ 30+
michael@0 387 * 28+ 29+ 28+ 29+ 21+
michael@0 388 * 21+ 28+ 21+ 28+ 10
michael@0 389 * 10 21+ 10 21+
michael@0 390 * 11 11
michael@0 391 *
michael@0 392 * So the greatest amount is added to tmp2[10] and tmp2[12]. If
michael@0 393 * tmp2[10/12] has an initial value of <2**29, then the maximum value
michael@0 394 * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
michael@0 395 * as required.
michael@0 396 */
michael@0 397 tmp2[i + 3] += (x << 10) & kBottom28Bits;
michael@0 398 tmp2[i + 4] += (x >> 18);
michael@0 399
michael@0 400 tmp2[i + 6] += (x << 21) & kBottom29Bits;
michael@0 401 tmp2[i + 7] += x >> 8;
michael@0 402
michael@0 403 /* At position 200, which is the starting bit position for word 7, we
michael@0 404 * have a factor of 0xf000000 = 2**28 - 2**24.
michael@0 405 */
michael@0 406 tmp2[i + 7] += 0x10000000 & xMask;
michael@0 407 /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */
michael@0 408 tmp2[i + 8] += (x - 1) & xMask;
michael@0 409 tmp2[i + 7] -= (x << 24) & kBottom28Bits;
michael@0 410 tmp2[i + 8] -= x >> 4;
michael@0 411
michael@0 412 tmp2[i + 8] += 0x20000000 & xMask;
michael@0 413 tmp2[i + 8] -= x;
michael@0 414 tmp2[i + 8] += (x << 28) & kBottom29Bits;
michael@0 415 tmp2[i + 9] += ((x >> 1) - 1) & xMask;
michael@0 416
michael@0 417 if (i+1 == NLIMBS)
michael@0 418 break;
michael@0 419 tmp2[i + 2] += tmp2[i + 1] >> 28;
michael@0 420 x = tmp2[i + 1] & kBottom28Bits;
michael@0 421 xMask = NON_ZERO_TO_ALL_ONES(x);
michael@0 422 tmp2[i + 1] = 0;
michael@0 423
michael@0 424 tmp2[i + 4] += (x << 11) & kBottom29Bits;
michael@0 425 tmp2[i + 5] += (x >> 18);
michael@0 426
michael@0 427 tmp2[i + 7] += (x << 21) & kBottom28Bits;
michael@0 428 tmp2[i + 8] += x >> 7;
michael@0 429
michael@0 430 /* At position 199, which is the starting bit of the 8th word when
michael@0 431 * dealing with a context starting on an odd word, we have a factor of
michael@0 432 * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
michael@0 433 * word from i+1 is i+8.
michael@0 434 */
michael@0 435 tmp2[i + 8] += 0x20000000 & xMask;
michael@0 436 tmp2[i + 9] += (x - 1) & xMask;
michael@0 437 tmp2[i + 8] -= (x << 25) & kBottom29Bits;
michael@0 438 tmp2[i + 9] -= x >> 4;
michael@0 439
michael@0 440 tmp2[i + 9] += 0x10000000 & xMask;
michael@0 441 tmp2[i + 9] -= x;
michael@0 442 tmp2[i + 10] += (x - 1) & xMask;
michael@0 443 }
michael@0 444
michael@0 445 /* We merge the right shift with a carry chain. The words above 2**257 have
michael@0 446 * widths of 28,29,... which we need to correct when copying them down.
michael@0 447 */
michael@0 448 carry = 0;
michael@0 449 for (i = 0; i < 8; i++) {
michael@0 450 /* The maximum value of tmp2[i + 9] occurs on the first iteration and
michael@0 451 * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
michael@0 452 * therefore safe.
michael@0 453 */
michael@0 454 out[i] = tmp2[i + 9];
michael@0 455 out[i] += carry;
michael@0 456 out[i] += (tmp2[i + 10] << 28) & kBottom29Bits;
michael@0 457 carry = out[i] >> 29;
michael@0 458 out[i] &= kBottom29Bits;
michael@0 459
michael@0 460 i++;
michael@0 461 out[i] = tmp2[i + 9] >> 1;
michael@0 462 out[i] += carry;
michael@0 463 carry = out[i] >> 28;
michael@0 464 out[i] &= kBottom28Bits;
michael@0 465 }
michael@0 466
michael@0 467 out[8] = tmp2[17];
michael@0 468 out[8] += carry;
michael@0 469 carry = out[8] >> 29;
michael@0 470 out[8] &= kBottom29Bits;
michael@0 471
michael@0 472 felem_reduce_carry(out, carry);
michael@0 473 }
michael@0 474
michael@0 475 /* felem_square sets out=in*in.
michael@0 476 *
michael@0 477 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
michael@0 478 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
michael@0 479 */
michael@0 480 static void felem_square(felem out, const felem in)
michael@0 481 {
michael@0 482 u64 tmp[17];
michael@0 483
michael@0 484 tmp[0] = ((u64) in[0]) * in[0];
michael@0 485 tmp[1] = ((u64) in[0]) * (in[1] << 1);
michael@0 486 tmp[2] = ((u64) in[0]) * (in[2] << 1) +
michael@0 487 ((u64) in[1]) * (in[1] << 1);
michael@0 488 tmp[3] = ((u64) in[0]) * (in[3] << 1) +
michael@0 489 ((u64) in[1]) * (in[2] << 1);
michael@0 490 tmp[4] = ((u64) in[0]) * (in[4] << 1) +
michael@0 491 ((u64) in[1]) * (in[3] << 2) +
michael@0 492 ((u64) in[2]) * in[2];
michael@0 493 tmp[5] = ((u64) in[0]) * (in[5] << 1) +
michael@0 494 ((u64) in[1]) * (in[4] << 1) +
michael@0 495 ((u64) in[2]) * (in[3] << 1);
michael@0 496 tmp[6] = ((u64) in[0]) * (in[6] << 1) +
michael@0 497 ((u64) in[1]) * (in[5] << 2) +
michael@0 498 ((u64) in[2]) * (in[4] << 1) +
michael@0 499 ((u64) in[3]) * (in[3] << 1);
michael@0 500 tmp[7] = ((u64) in[0]) * (in[7] << 1) +
michael@0 501 ((u64) in[1]) * (in[6] << 1) +
michael@0 502 ((u64) in[2]) * (in[5] << 1) +
michael@0 503 ((u64) in[3]) * (in[4] << 1);
michael@0 504 /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
michael@0 505 * which is < 2**64 as required.
michael@0 506 */
michael@0 507 tmp[8] = ((u64) in[0]) * (in[8] << 1) +
michael@0 508 ((u64) in[1]) * (in[7] << 2) +
michael@0 509 ((u64) in[2]) * (in[6] << 1) +
michael@0 510 ((u64) in[3]) * (in[5] << 2) +
michael@0 511 ((u64) in[4]) * in[4];
michael@0 512 tmp[9] = ((u64) in[1]) * (in[8] << 1) +
michael@0 513 ((u64) in[2]) * (in[7] << 1) +
michael@0 514 ((u64) in[3]) * (in[6] << 1) +
michael@0 515 ((u64) in[4]) * (in[5] << 1);
michael@0 516 tmp[10] = ((u64) in[2]) * (in[8] << 1) +
michael@0 517 ((u64) in[3]) * (in[7] << 2) +
michael@0 518 ((u64) in[4]) * (in[6] << 1) +
michael@0 519 ((u64) in[5]) * (in[5] << 1);
michael@0 520 tmp[11] = ((u64) in[3]) * (in[8] << 1) +
michael@0 521 ((u64) in[4]) * (in[7] << 1) +
michael@0 522 ((u64) in[5]) * (in[6] << 1);
michael@0 523 tmp[12] = ((u64) in[4]) * (in[8] << 1) +
michael@0 524 ((u64) in[5]) * (in[7] << 2) +
michael@0 525 ((u64) in[6]) * in[6];
michael@0 526 tmp[13] = ((u64) in[5]) * (in[8] << 1) +
michael@0 527 ((u64) in[6]) * (in[7] << 1);
michael@0 528 tmp[14] = ((u64) in[6]) * (in[8] << 1) +
michael@0 529 ((u64) in[7]) * (in[7] << 1);
michael@0 530 tmp[15] = ((u64) in[7]) * (in[8] << 1);
michael@0 531 tmp[16] = ((u64) in[8]) * in[8];
michael@0 532
michael@0 533 felem_reduce_degree(out, tmp);
michael@0 534 }
michael@0 535
michael@0 536 /* felem_mul sets out=in*in2.
michael@0 537 *
michael@0 538 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
michael@0 539 * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
michael@0 540 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
michael@0 541 */
michael@0 542 static void felem_mul(felem out, const felem in, const felem in2)
michael@0 543 {
michael@0 544 u64 tmp[17];
michael@0 545
michael@0 546 tmp[0] = ((u64) in[0]) * in2[0];
michael@0 547 tmp[1] = ((u64) in[0]) * (in2[1] << 0) +
michael@0 548 ((u64) in[1]) * (in2[0] << 0);
michael@0 549 tmp[2] = ((u64) in[0]) * (in2[2] << 0) +
michael@0 550 ((u64) in[1]) * (in2[1] << 1) +
michael@0 551 ((u64) in[2]) * (in2[0] << 0);
michael@0 552 tmp[3] = ((u64) in[0]) * (in2[3] << 0) +
michael@0 553 ((u64) in[1]) * (in2[2] << 0) +
michael@0 554 ((u64) in[2]) * (in2[1] << 0) +
michael@0 555 ((u64) in[3]) * (in2[0] << 0);
michael@0 556 tmp[4] = ((u64) in[0]) * (in2[4] << 0) +
michael@0 557 ((u64) in[1]) * (in2[3] << 1) +
michael@0 558 ((u64) in[2]) * (in2[2] << 0) +
michael@0 559 ((u64) in[3]) * (in2[1] << 1) +
michael@0 560 ((u64) in[4]) * (in2[0] << 0);
michael@0 561 tmp[5] = ((u64) in[0]) * (in2[5] << 0) +
michael@0 562 ((u64) in[1]) * (in2[4] << 0) +
michael@0 563 ((u64) in[2]) * (in2[3] << 0) +
michael@0 564 ((u64) in[3]) * (in2[2] << 0) +
michael@0 565 ((u64) in[4]) * (in2[1] << 0) +
michael@0 566 ((u64) in[5]) * (in2[0] << 0);
michael@0 567 tmp[6] = ((u64) in[0]) * (in2[6] << 0) +
michael@0 568 ((u64) in[1]) * (in2[5] << 1) +
michael@0 569 ((u64) in[2]) * (in2[4] << 0) +
michael@0 570 ((u64) in[3]) * (in2[3] << 1) +
michael@0 571 ((u64) in[4]) * (in2[2] << 0) +
michael@0 572 ((u64) in[5]) * (in2[1] << 1) +
michael@0 573 ((u64) in[6]) * (in2[0] << 0);
michael@0 574 tmp[7] = ((u64) in[0]) * (in2[7] << 0) +
michael@0 575 ((u64) in[1]) * (in2[6] << 0) +
michael@0 576 ((u64) in[2]) * (in2[5] << 0) +
michael@0 577 ((u64) in[3]) * (in2[4] << 0) +
michael@0 578 ((u64) in[4]) * (in2[3] << 0) +
michael@0 579 ((u64) in[5]) * (in2[2] << 0) +
michael@0 580 ((u64) in[6]) * (in2[1] << 0) +
michael@0 581 ((u64) in[7]) * (in2[0] << 0);
michael@0 582 /* tmp[8] has the greatest value but doesn't overflow. See logic in
michael@0 583 * felem_square.
michael@0 584 */
michael@0 585 tmp[8] = ((u64) in[0]) * (in2[8] << 0) +
michael@0 586 ((u64) in[1]) * (in2[7] << 1) +
michael@0 587 ((u64) in[2]) * (in2[6] << 0) +
michael@0 588 ((u64) in[3]) * (in2[5] << 1) +
michael@0 589 ((u64) in[4]) * (in2[4] << 0) +
michael@0 590 ((u64) in[5]) * (in2[3] << 1) +
michael@0 591 ((u64) in[6]) * (in2[2] << 0) +
michael@0 592 ((u64) in[7]) * (in2[1] << 1) +
michael@0 593 ((u64) in[8]) * (in2[0] << 0);
michael@0 594 tmp[9] = ((u64) in[1]) * (in2[8] << 0) +
michael@0 595 ((u64) in[2]) * (in2[7] << 0) +
michael@0 596 ((u64) in[3]) * (in2[6] << 0) +
michael@0 597 ((u64) in[4]) * (in2[5] << 0) +
michael@0 598 ((u64) in[5]) * (in2[4] << 0) +
michael@0 599 ((u64) in[6]) * (in2[3] << 0) +
michael@0 600 ((u64) in[7]) * (in2[2] << 0) +
michael@0 601 ((u64) in[8]) * (in2[1] << 0);
michael@0 602 tmp[10] = ((u64) in[2]) * (in2[8] << 0) +
michael@0 603 ((u64) in[3]) * (in2[7] << 1) +
michael@0 604 ((u64) in[4]) * (in2[6] << 0) +
michael@0 605 ((u64) in[5]) * (in2[5] << 1) +
michael@0 606 ((u64) in[6]) * (in2[4] << 0) +
michael@0 607 ((u64) in[7]) * (in2[3] << 1) +
michael@0 608 ((u64) in[8]) * (in2[2] << 0);
michael@0 609 tmp[11] = ((u64) in[3]) * (in2[8] << 0) +
michael@0 610 ((u64) in[4]) * (in2[7] << 0) +
michael@0 611 ((u64) in[5]) * (in2[6] << 0) +
michael@0 612 ((u64) in[6]) * (in2[5] << 0) +
michael@0 613 ((u64) in[7]) * (in2[4] << 0) +
michael@0 614 ((u64) in[8]) * (in2[3] << 0);
michael@0 615 tmp[12] = ((u64) in[4]) * (in2[8] << 0) +
michael@0 616 ((u64) in[5]) * (in2[7] << 1) +
michael@0 617 ((u64) in[6]) * (in2[6] << 0) +
michael@0 618 ((u64) in[7]) * (in2[5] << 1) +
michael@0 619 ((u64) in[8]) * (in2[4] << 0);
michael@0 620 tmp[13] = ((u64) in[5]) * (in2[8] << 0) +
michael@0 621 ((u64) in[6]) * (in2[7] << 0) +
michael@0 622 ((u64) in[7]) * (in2[6] << 0) +
michael@0 623 ((u64) in[8]) * (in2[5] << 0);
michael@0 624 tmp[14] = ((u64) in[6]) * (in2[8] << 0) +
michael@0 625 ((u64) in[7]) * (in2[7] << 1) +
michael@0 626 ((u64) in[8]) * (in2[6] << 0);
michael@0 627 tmp[15] = ((u64) in[7]) * (in2[8] << 0) +
michael@0 628 ((u64) in[8]) * (in2[7] << 0);
michael@0 629 tmp[16] = ((u64) in[8]) * (in2[8] << 0);
michael@0 630
michael@0 631 felem_reduce_degree(out, tmp);
michael@0 632 }
michael@0 633
michael@0 634 static void felem_assign(felem out, const felem in)
michael@0 635 {
michael@0 636 memcpy(out, in, sizeof(felem));
michael@0 637 }
michael@0 638
michael@0 639 /* felem_inv calculates |out| = |in|^{-1}
michael@0 640 *
michael@0 641 * Based on Fermat's Little Theorem:
michael@0 642 * a^p = a (mod p)
michael@0 643 * a^{p-1} = 1 (mod p)
michael@0 644 * a^{p-2} = a^{-1} (mod p)
michael@0 645 */
michael@0 646 static void felem_inv(felem out, const felem in)
michael@0 647 {
michael@0 648 felem ftmp, ftmp2;
michael@0 649 /* each e_I will hold |in|^{2^I - 1} */
michael@0 650 felem e2, e4, e8, e16, e32, e64;
michael@0 651 unsigned int i;
michael@0 652
michael@0 653 felem_square(ftmp, in); /* 2^1 */
michael@0 654 felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */
michael@0 655 felem_assign(e2, ftmp);
michael@0 656 felem_square(ftmp, ftmp); /* 2^3 - 2^1 */
michael@0 657 felem_square(ftmp, ftmp); /* 2^4 - 2^2 */
michael@0 658 felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */
michael@0 659 felem_assign(e4, ftmp);
michael@0 660 felem_square(ftmp, ftmp); /* 2^5 - 2^1 */
michael@0 661 felem_square(ftmp, ftmp); /* 2^6 - 2^2 */
michael@0 662 felem_square(ftmp, ftmp); /* 2^7 - 2^3 */
michael@0 663 felem_square(ftmp, ftmp); /* 2^8 - 2^4 */
michael@0 664 felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */
michael@0 665 felem_assign(e8, ftmp);
michael@0 666 for (i = 0; i < 8; i++) {
michael@0 667 felem_square(ftmp, ftmp);
michael@0 668 } /* 2^16 - 2^8 */
michael@0 669 felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */
michael@0 670 felem_assign(e16, ftmp);
michael@0 671 for (i = 0; i < 16; i++) {
michael@0 672 felem_square(ftmp, ftmp);
michael@0 673 } /* 2^32 - 2^16 */
michael@0 674 felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */
michael@0 675 felem_assign(e32, ftmp);
michael@0 676 for (i = 0; i < 32; i++) {
michael@0 677 felem_square(ftmp, ftmp);
michael@0 678 } /* 2^64 - 2^32 */
michael@0 679 felem_assign(e64, ftmp);
michael@0 680 felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */
michael@0 681 for (i = 0; i < 192; i++) {
michael@0 682 felem_square(ftmp, ftmp);
michael@0 683 } /* 2^256 - 2^224 + 2^192 */
michael@0 684
michael@0 685 felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */
michael@0 686 for (i = 0; i < 16; i++) {
michael@0 687 felem_square(ftmp2, ftmp2);
michael@0 688 } /* 2^80 - 2^16 */
michael@0 689 felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */
michael@0 690 for (i = 0; i < 8; i++) {
michael@0 691 felem_square(ftmp2, ftmp2);
michael@0 692 } /* 2^88 - 2^8 */
michael@0 693 felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */
michael@0 694 for (i = 0; i < 4; i++) {
michael@0 695 felem_square(ftmp2, ftmp2);
michael@0 696 } /* 2^92 - 2^4 */
michael@0 697 felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */
michael@0 698 felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */
michael@0 699 felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */
michael@0 700 felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */
michael@0 701 felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */
michael@0 702 felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */
michael@0 703 felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */
michael@0 704
michael@0 705 felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
michael@0 706 }
michael@0 707
michael@0 708 /* felem_scalar_3 sets out=3*out.
michael@0 709 *
michael@0 710 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
michael@0 711 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
michael@0 712 */
michael@0 713 static void felem_scalar_3(felem out)
michael@0 714 {
michael@0 715 limb carry = 0;
michael@0 716 unsigned int i;
michael@0 717
michael@0 718 for (i = 0;; i++) {
michael@0 719 out[i] *= 3;
michael@0 720 out[i] += carry;
michael@0 721 carry = out[i] >> 29;
michael@0 722 out[i] &= kBottom29Bits;
michael@0 723
michael@0 724 i++;
michael@0 725 if (i == NLIMBS)
michael@0 726 break;
michael@0 727
michael@0 728 out[i] *= 3;
michael@0 729 out[i] += carry;
michael@0 730 carry = out[i] >> 28;
michael@0 731 out[i] &= kBottom28Bits;
michael@0 732 }
michael@0 733
michael@0 734 felem_reduce_carry(out, carry);
michael@0 735 }
michael@0 736
michael@0 737 /* felem_scalar_4 sets out=4*out.
michael@0 738 *
michael@0 739 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
michael@0 740 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
michael@0 741 */
michael@0 742 static void felem_scalar_4(felem out)
michael@0 743 {
michael@0 744 limb carry = 0, next_carry;
michael@0 745 unsigned int i;
michael@0 746
michael@0 747 for (i = 0;; i++) {
michael@0 748 next_carry = out[i] >> 27;
michael@0 749 out[i] <<= 2;
michael@0 750 out[i] &= kBottom29Bits;
michael@0 751 out[i] += carry;
michael@0 752 carry = next_carry + (out[i] >> 29);
michael@0 753 out[i] &= kBottom29Bits;
michael@0 754
michael@0 755 i++;
michael@0 756 if (i == NLIMBS)
michael@0 757 break;
michael@0 758 next_carry = out[i] >> 26;
michael@0 759 out[i] <<= 2;
michael@0 760 out[i] &= kBottom28Bits;
michael@0 761 out[i] += carry;
michael@0 762 carry = next_carry + (out[i] >> 28);
michael@0 763 out[i] &= kBottom28Bits;
michael@0 764 }
michael@0 765
michael@0 766 felem_reduce_carry(out, carry);
michael@0 767 }
michael@0 768
michael@0 769 /* felem_scalar_8 sets out=8*out.
michael@0 770 *
michael@0 771 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
michael@0 772 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
michael@0 773 */
michael@0 774 static void felem_scalar_8(felem out)
michael@0 775 {
michael@0 776 limb carry = 0, next_carry;
michael@0 777 unsigned int i;
michael@0 778
michael@0 779 for (i = 0;; i++) {
michael@0 780 next_carry = out[i] >> 26;
michael@0 781 out[i] <<= 3;
michael@0 782 out[i] &= kBottom29Bits;
michael@0 783 out[i] += carry;
michael@0 784 carry = next_carry + (out[i] >> 29);
michael@0 785 out[i] &= kBottom29Bits;
michael@0 786
michael@0 787 i++;
michael@0 788 if (i == NLIMBS)
michael@0 789 break;
michael@0 790 next_carry = out[i] >> 25;
michael@0 791 out[i] <<= 3;
michael@0 792 out[i] &= kBottom28Bits;
michael@0 793 out[i] += carry;
michael@0 794 carry = next_carry + (out[i] >> 28);
michael@0 795 out[i] &= kBottom28Bits;
michael@0 796 }
michael@0 797
michael@0 798 felem_reduce_carry(out, carry);
michael@0 799 }
michael@0 800
michael@0 801 /* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of
michael@0 802 * time depending on the value of |in|.
michael@0 803 */
michael@0 804 static char felem_is_zero_vartime(const felem in)
michael@0 805 {
michael@0 806 limb carry;
michael@0 807 int i;
michael@0 808 limb tmp[NLIMBS];
michael@0 809 felem_assign(tmp, in);
michael@0 810
michael@0 811 /* First, reduce tmp to a minimal form.
michael@0 812 */
michael@0 813 do {
michael@0 814 carry = 0;
michael@0 815 for (i = 0;; i++) {
michael@0 816 tmp[i] += carry;
michael@0 817 carry = tmp[i] >> 29;
michael@0 818 tmp[i] &= kBottom29Bits;
michael@0 819
michael@0 820 i++;
michael@0 821 if (i == NLIMBS)
michael@0 822 break;
michael@0 823
michael@0 824 tmp[i] += carry;
michael@0 825 carry = tmp[i] >> 28;
michael@0 826 tmp[i] &= kBottom28Bits;
michael@0 827 }
michael@0 828
michael@0 829 felem_reduce_carry(tmp, carry);
michael@0 830 } while (carry);
michael@0 831
michael@0 832 /* tmp < 2**257, so the only possible zero values are 0, p and 2p.
michael@0 833 */
michael@0 834 return memcmp(tmp, kZero, sizeof(tmp)) == 0 ||
michael@0 835 memcmp(tmp, kP, sizeof(tmp)) == 0 ||
michael@0 836 memcmp(tmp, k2P, sizeof(tmp)) == 0;
michael@0 837 }
michael@0 838
michael@0 839 /* Group operations:
michael@0 840 *
michael@0 841 * Elements of the elliptic curve group are represented in Jacobian
michael@0 842 * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
michael@0 843 * Jacobian form.
michael@0 844 */
michael@0 845
michael@0 846 /* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}.
michael@0 847 *
michael@0 848 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
michael@0 849 */
michael@0 850 static void point_double(felem x_out, felem y_out, felem z_out,
michael@0 851 const felem x, const felem y, const felem z)
michael@0 852 {
michael@0 853 felem delta, gamma, alpha, beta, tmp, tmp2;
michael@0 854
michael@0 855 felem_square(delta, z);
michael@0 856 felem_square(gamma, y);
michael@0 857 felem_mul(beta, x, gamma);
michael@0 858
michael@0 859 felem_sum(tmp, x, delta);
michael@0 860 felem_diff(tmp2, x, delta);
michael@0 861 felem_mul(alpha, tmp, tmp2);
michael@0 862 felem_scalar_3(alpha);
michael@0 863
michael@0 864 felem_sum(tmp, y, z);
michael@0 865 felem_square(tmp, tmp);
michael@0 866 felem_diff(tmp, tmp, gamma);
michael@0 867 felem_diff(z_out, tmp, delta);
michael@0 868
michael@0 869 felem_scalar_4(beta);
michael@0 870 felem_square(x_out, alpha);
michael@0 871 felem_diff(x_out, x_out, beta);
michael@0 872 felem_diff(x_out, x_out, beta);
michael@0 873
michael@0 874 felem_diff(tmp, beta, x_out);
michael@0 875 felem_mul(tmp, alpha, tmp);
michael@0 876 felem_square(tmp2, gamma);
michael@0 877 felem_scalar_8(tmp2);
michael@0 878 felem_diff(y_out, tmp, tmp2);
michael@0 879 }
michael@0 880
michael@0 881 /* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}.
michael@0 882 * (i.e. the second point is affine.)
michael@0 883 *
michael@0 884 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
michael@0 885 *
michael@0 886 * Note that this function does not handle P+P, infinity+P nor P+infinity
michael@0 887 * correctly.
michael@0 888 */
michael@0 889 static void point_add_mixed(felem x_out, felem y_out, felem z_out,
michael@0 890 const felem x1, const felem y1, const felem z1,
michael@0 891 const felem x2, const felem y2)
michael@0 892 {
michael@0 893 felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp;
michael@0 894
michael@0 895 felem_square(z1z1, z1);
michael@0 896 felem_sum(tmp, z1, z1);
michael@0 897
michael@0 898 felem_mul(u2, x2, z1z1);
michael@0 899 felem_mul(z1z1z1, z1, z1z1);
michael@0 900 felem_mul(s2, y2, z1z1z1);
michael@0 901 felem_diff(h, u2, x1);
michael@0 902 felem_sum(i, h, h);
michael@0 903 felem_square(i, i);
michael@0 904 felem_mul(j, h, i);
michael@0 905 felem_diff(r, s2, y1);
michael@0 906 felem_sum(r, r, r);
michael@0 907 felem_mul(v, x1, i);
michael@0 908
michael@0 909 felem_mul(z_out, tmp, h);
michael@0 910 felem_square(rr, r);
michael@0 911 felem_diff(x_out, rr, j);
michael@0 912 felem_diff(x_out, x_out, v);
michael@0 913 felem_diff(x_out, x_out, v);
michael@0 914
michael@0 915 felem_diff(tmp, v, x_out);
michael@0 916 felem_mul(y_out, tmp, r);
michael@0 917 felem_mul(tmp, y1, j);
michael@0 918 felem_diff(y_out, y_out, tmp);
michael@0 919 felem_diff(y_out, y_out, tmp);
michael@0 920 }
michael@0 921
michael@0 922 /* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}.
michael@0 923 *
michael@0 924 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
michael@0 925 *
michael@0 926 * Note that this function does not handle P+P, infinity+P nor P+infinity
michael@0 927 * correctly.
michael@0 928 */
michael@0 929 static void point_add(felem x_out, felem y_out, felem z_out,
michael@0 930 const felem x1, const felem y1, const felem z1,
michael@0 931 const felem x2, const felem y2, const felem z2)
michael@0 932 {
michael@0 933 felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
michael@0 934
michael@0 935 felem_square(z1z1, z1);
michael@0 936 felem_square(z2z2, z2);
michael@0 937 felem_mul(u1, x1, z2z2);
michael@0 938
michael@0 939 felem_sum(tmp, z1, z2);
michael@0 940 felem_square(tmp, tmp);
michael@0 941 felem_diff(tmp, tmp, z1z1);
michael@0 942 felem_diff(tmp, tmp, z2z2);
michael@0 943
michael@0 944 felem_mul(z2z2z2, z2, z2z2);
michael@0 945 felem_mul(s1, y1, z2z2z2);
michael@0 946
michael@0 947 felem_mul(u2, x2, z1z1);
michael@0 948 felem_mul(z1z1z1, z1, z1z1);
michael@0 949 felem_mul(s2, y2, z1z1z1);
michael@0 950 felem_diff(h, u2, u1);
michael@0 951 felem_sum(i, h, h);
michael@0 952 felem_square(i, i);
michael@0 953 felem_mul(j, h, i);
michael@0 954 felem_diff(r, s2, s1);
michael@0 955 felem_sum(r, r, r);
michael@0 956 felem_mul(v, u1, i);
michael@0 957
michael@0 958 felem_mul(z_out, tmp, h);
michael@0 959 felem_square(rr, r);
michael@0 960 felem_diff(x_out, rr, j);
michael@0 961 felem_diff(x_out, x_out, v);
michael@0 962 felem_diff(x_out, x_out, v);
michael@0 963
michael@0 964 felem_diff(tmp, v, x_out);
michael@0 965 felem_mul(y_out, tmp, r);
michael@0 966 felem_mul(tmp, s1, j);
michael@0 967 felem_diff(y_out, y_out, tmp);
michael@0 968 felem_diff(y_out, y_out, tmp);
michael@0 969 }
michael@0 970
michael@0 971 /* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} +
michael@0 972 * {x2,y2,z2}.
michael@0 973 *
michael@0 974 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
michael@0 975 *
michael@0 976 * This function handles the case where {x1,y1,z1}={x2,y2,z2}.
michael@0 977 */
michael@0 978 static void point_add_or_double_vartime(
michael@0 979 felem x_out, felem y_out, felem z_out,
michael@0 980 const felem x1, const felem y1, const felem z1,
michael@0 981 const felem x2, const felem y2, const felem z2)
michael@0 982 {
michael@0 983 felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
michael@0 984 char x_equal, y_equal;
michael@0 985
michael@0 986 felem_square(z1z1, z1);
michael@0 987 felem_square(z2z2, z2);
michael@0 988 felem_mul(u1, x1, z2z2);
michael@0 989
michael@0 990 felem_sum(tmp, z1, z2);
michael@0 991 felem_square(tmp, tmp);
michael@0 992 felem_diff(tmp, tmp, z1z1);
michael@0 993 felem_diff(tmp, tmp, z2z2);
michael@0 994
michael@0 995 felem_mul(z2z2z2, z2, z2z2);
michael@0 996 felem_mul(s1, y1, z2z2z2);
michael@0 997
michael@0 998 felem_mul(u2, x2, z1z1);
michael@0 999 felem_mul(z1z1z1, z1, z1z1);
michael@0 1000 felem_mul(s2, y2, z1z1z1);
michael@0 1001 felem_diff(h, u2, u1);
michael@0 1002 x_equal = felem_is_zero_vartime(h);
michael@0 1003 felem_sum(i, h, h);
michael@0 1004 felem_square(i, i);
michael@0 1005 felem_mul(j, h, i);
michael@0 1006 felem_diff(r, s2, s1);
michael@0 1007 y_equal = felem_is_zero_vartime(r);
michael@0 1008 if (x_equal && y_equal) {
michael@0 1009 point_double(x_out, y_out, z_out, x1, y1, z1);
michael@0 1010 return;
michael@0 1011 }
michael@0 1012 felem_sum(r, r, r);
michael@0 1013 felem_mul(v, u1, i);
michael@0 1014
michael@0 1015 felem_mul(z_out, tmp, h);
michael@0 1016 felem_square(rr, r);
michael@0 1017 felem_diff(x_out, rr, j);
michael@0 1018 felem_diff(x_out, x_out, v);
michael@0 1019 felem_diff(x_out, x_out, v);
michael@0 1020
michael@0 1021 felem_diff(tmp, v, x_out);
michael@0 1022 felem_mul(y_out, tmp, r);
michael@0 1023 felem_mul(tmp, s1, j);
michael@0 1024 felem_diff(y_out, y_out, tmp);
michael@0 1025 felem_diff(y_out, y_out, tmp);
michael@0 1026 }
michael@0 1027
michael@0 1028 /* copy_conditional sets out=in if mask = 0xffffffff in constant time.
michael@0 1029 *
michael@0 1030 * On entry: mask is either 0 or 0xffffffff.
michael@0 1031 */
michael@0 1032 static void copy_conditional(felem out, const felem in, limb mask)
michael@0 1033 {
michael@0 1034 int i;
michael@0 1035
michael@0 1036 for (i = 0; i < NLIMBS; i++) {
michael@0 1037 const limb tmp = mask & (in[i] ^ out[i]);
michael@0 1038 out[i] ^= tmp;
michael@0 1039 }
michael@0 1040 }
michael@0 1041
michael@0 1042 /* select_affine_point sets {out_x,out_y} to the index'th entry of table.
michael@0 1043 * On entry: index < 16, table[0] must be zero.
michael@0 1044 */
michael@0 1045 static void select_affine_point(felem out_x, felem out_y,
michael@0 1046 const limb *table, limb index)
michael@0 1047 {
michael@0 1048 limb i, j;
michael@0 1049
michael@0 1050 memset(out_x, 0, sizeof(felem));
michael@0 1051 memset(out_y, 0, sizeof(felem));
michael@0 1052
michael@0 1053 for (i = 1; i < 16; i++) {
michael@0 1054 limb mask = i ^ index;
michael@0 1055 mask |= mask >> 2;
michael@0 1056 mask |= mask >> 1;
michael@0 1057 mask &= 1;
michael@0 1058 mask--;
michael@0 1059 for (j = 0; j < NLIMBS; j++, table++) {
michael@0 1060 out_x[j] |= *table & mask;
michael@0 1061 }
michael@0 1062 for (j = 0; j < NLIMBS; j++, table++) {
michael@0 1063 out_y[j] |= *table & mask;
michael@0 1064 }
michael@0 1065 }
michael@0 1066 }
michael@0 1067
michael@0 1068 /* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of
michael@0 1069 * table. On entry: index < 16, table[0] must be zero.
michael@0 1070 */
michael@0 1071 static void select_jacobian_point(felem out_x, felem out_y, felem out_z,
michael@0 1072 const limb *table, limb index)
michael@0 1073 {
michael@0 1074 limb i, j;
michael@0 1075
michael@0 1076 memset(out_x, 0, sizeof(felem));
michael@0 1077 memset(out_y, 0, sizeof(felem));
michael@0 1078 memset(out_z, 0, sizeof(felem));
michael@0 1079
michael@0 1080 /* The implicit value at index 0 is all zero. We don't need to perform that
michael@0 1081 * iteration of the loop because we already set out_* to zero.
michael@0 1082 */
michael@0 1083 table += 3*NLIMBS;
michael@0 1084
michael@0 1085 for (i = 1; i < 16; i++) {
michael@0 1086 limb mask = i ^ index;
michael@0 1087 mask |= mask >> 2;
michael@0 1088 mask |= mask >> 1;
michael@0 1089 mask &= 1;
michael@0 1090 mask--;
michael@0 1091 for (j = 0; j < NLIMBS; j++, table++) {
michael@0 1092 out_x[j] |= *table & mask;
michael@0 1093 }
michael@0 1094 for (j = 0; j < NLIMBS; j++, table++) {
michael@0 1095 out_y[j] |= *table & mask;
michael@0 1096 }
michael@0 1097 for (j = 0; j < NLIMBS; j++, table++) {
michael@0 1098 out_z[j] |= *table & mask;
michael@0 1099 }
michael@0 1100 }
michael@0 1101 }
michael@0 1102
michael@0 1103 /* get_bit returns the bit'th bit of scalar. */
michael@0 1104 static char get_bit(const u8 scalar[32], int bit)
michael@0 1105 {
michael@0 1106 return ((scalar[bit >> 3]) >> (bit & 7)) & 1;
michael@0 1107 }
michael@0 1108
michael@0 1109 /* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian
michael@0 1110 * number. Note that the value of scalar must be less than the order of the
michael@0 1111 * group.
michael@0 1112 */
michael@0 1113 static void scalar_base_mult(felem nx, felem ny, felem nz, const u8 scalar[32])
michael@0 1114 {
michael@0 1115 int i, j;
michael@0 1116 limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask;
michael@0 1117 u32 table_offset;
michael@0 1118
michael@0 1119 felem px, py;
michael@0 1120 felem tx, ty, tz;
michael@0 1121
michael@0 1122 memset(nx, 0, sizeof(felem));
michael@0 1123 memset(ny, 0, sizeof(felem));
michael@0 1124 memset(nz, 0, sizeof(felem));
michael@0 1125
michael@0 1126 /* The loop adds bits at positions 0, 64, 128 and 192, followed by
michael@0 1127 * positions 32,96,160 and 224 and does this 32 times.
michael@0 1128 */
michael@0 1129 for (i = 0; i < 32; i++) {
michael@0 1130 if (i) {
michael@0 1131 point_double(nx, ny, nz, nx, ny, nz);
michael@0 1132 }
michael@0 1133 table_offset = 0;
michael@0 1134 for (j = 0; j <= 32; j += 32) {
michael@0 1135 char bit0 = get_bit(scalar, 31 - i + j);
michael@0 1136 char bit1 = get_bit(scalar, 95 - i + j);
michael@0 1137 char bit2 = get_bit(scalar, 159 - i + j);
michael@0 1138 char bit3 = get_bit(scalar, 223 - i + j);
michael@0 1139 limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3);
michael@0 1140
michael@0 1141 select_affine_point(px, py, kPrecomputed + table_offset, index);
michael@0 1142 table_offset += 30 * NLIMBS;
michael@0 1143
michael@0 1144 /* Since scalar is less than the order of the group, we know that
michael@0 1145 * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle
michael@0 1146 * below.
michael@0 1147 */
michael@0 1148 point_add_mixed(tx, ty, tz, nx, ny, nz, px, py);
michael@0 1149 /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero
michael@0 1150 * (a.k.a. the point at infinity). We handle that situation by
michael@0 1151 * copying the point from the table.
michael@0 1152 */
michael@0 1153 copy_conditional(nx, px, n_is_infinity_mask);
michael@0 1154 copy_conditional(ny, py, n_is_infinity_mask);
michael@0 1155 copy_conditional(nz, kOne, n_is_infinity_mask);
michael@0 1156
michael@0 1157 /* Equally, the result is also wrong if the point from the table is
michael@0 1158 * zero, which happens when the index is zero. We handle that by
michael@0 1159 * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0.
michael@0 1160 */
michael@0 1161 p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
michael@0 1162 mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
michael@0 1163 copy_conditional(nx, tx, mask);
michael@0 1164 copy_conditional(ny, ty, mask);
michael@0 1165 copy_conditional(nz, tz, mask);
michael@0 1166 /* If p was not zero, then n is now non-zero. */
michael@0 1167 n_is_infinity_mask &= ~p_is_noninfinite_mask;
michael@0 1168 }
michael@0 1169 }
michael@0 1170 }
michael@0 1171
michael@0 1172 /* point_to_affine converts a Jacobian point to an affine point. If the input
michael@0 1173 * is the point at infinity then it returns (0, 0) in constant time.
michael@0 1174 */
michael@0 1175 static void point_to_affine(felem x_out, felem y_out,
michael@0 1176 const felem nx, const felem ny, const felem nz) {
michael@0 1177 felem z_inv, z_inv_sq;
michael@0 1178 felem_inv(z_inv, nz);
michael@0 1179 felem_square(z_inv_sq, z_inv);
michael@0 1180 felem_mul(x_out, nx, z_inv_sq);
michael@0 1181 felem_mul(z_inv, z_inv, z_inv_sq);
michael@0 1182 felem_mul(y_out, ny, z_inv);
michael@0 1183 }
michael@0 1184
michael@0 1185 /* scalar_mult sets {nx,ny,nz} = scalar*{x,y}. */
michael@0 1186 static void scalar_mult(felem nx, felem ny, felem nz,
michael@0 1187 const felem x, const felem y, const u8 scalar[32])
michael@0 1188 {
michael@0 1189 int i;
michael@0 1190 felem px, py, pz, tx, ty, tz;
michael@0 1191 felem precomp[16][3];
michael@0 1192 limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask;
michael@0 1193
michael@0 1194 /* We precompute 0,1,2,... times {x,y}. */
michael@0 1195 memset(precomp, 0, sizeof(felem) * 3);
michael@0 1196 memcpy(&precomp[1][0], x, sizeof(felem));
michael@0 1197 memcpy(&precomp[1][1], y, sizeof(felem));
michael@0 1198 memcpy(&precomp[1][2], kOne, sizeof(felem));
michael@0 1199
michael@0 1200 for (i = 2; i < 16; i += 2) {
michael@0 1201 point_double(precomp[i][0], precomp[i][1], precomp[i][2],
michael@0 1202 precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]);
michael@0 1203
michael@0 1204 point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2],
michael@0 1205 precomp[i][0], precomp[i][1], precomp[i][2], x, y);
michael@0 1206 }
michael@0 1207
michael@0 1208 memset(nx, 0, sizeof(felem));
michael@0 1209 memset(ny, 0, sizeof(felem));
michael@0 1210 memset(nz, 0, sizeof(felem));
michael@0 1211 n_is_infinity_mask = -1;
michael@0 1212
michael@0 1213 /* We add in a window of four bits each iteration and do this 64 times. */
michael@0 1214 for (i = 0; i < 64; i++) {
michael@0 1215 if (i) {
michael@0 1216 point_double(nx, ny, nz, nx, ny, nz);
michael@0 1217 point_double(nx, ny, nz, nx, ny, nz);
michael@0 1218 point_double(nx, ny, nz, nx, ny, nz);
michael@0 1219 point_double(nx, ny, nz, nx, ny, nz);
michael@0 1220 }
michael@0 1221
michael@0 1222 index = scalar[31 - i / 2];
michael@0 1223 if ((i & 1) == 1) {
michael@0 1224 index &= 15;
michael@0 1225 } else {
michael@0 1226 index >>= 4;
michael@0 1227 }
michael@0 1228
michael@0 1229 /* See the comments in scalar_base_mult about handling infinities. */
michael@0 1230 select_jacobian_point(px, py, pz, precomp[0][0], index);
michael@0 1231 point_add(tx, ty, tz, nx, ny, nz, px, py, pz);
michael@0 1232 copy_conditional(nx, px, n_is_infinity_mask);
michael@0 1233 copy_conditional(ny, py, n_is_infinity_mask);
michael@0 1234 copy_conditional(nz, pz, n_is_infinity_mask);
michael@0 1235
michael@0 1236 p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
michael@0 1237 mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
michael@0 1238 copy_conditional(nx, tx, mask);
michael@0 1239 copy_conditional(ny, ty, mask);
michael@0 1240 copy_conditional(nz, tz, mask);
michael@0 1241 n_is_infinity_mask &= ~p_is_noninfinite_mask;
michael@0 1242 }
michael@0 1243 }
michael@0 1244
michael@0 1245 /* Interface with Freebl: */
michael@0 1246
michael@0 1247 /* BYTESWAP_MP_DIGIT_TO_LE swaps the bytes of a mp_digit to
michael@0 1248 * little-endian order.
michael@0 1249 */
michael@0 1250 #ifdef IS_BIG_ENDIAN
michael@0 1251 #ifdef __APPLE__
michael@0 1252 #include <libkern/OSByteOrder.h>
michael@0 1253 #define BYTESWAP32(x) OSSwapInt32(x)
michael@0 1254 #define BYTESWAP64(x) OSSwapInt64(x)
michael@0 1255 #else
michael@0 1256 #define BYTESWAP32(x) \
michael@0 1257 ((x) >> 24 | (x) >> 8 & 0xff00 | ((x) & 0xff00) << 8 | (x) << 24)
michael@0 1258 #define BYTESWAP64(x) \
michael@0 1259 ((x) >> 56 | (x) >> 40 & 0xff00 | \
michael@0 1260 (x) >> 24 & 0xff0000 | (x) >> 8 & 0xff000000 | \
michael@0 1261 ((x) & 0xff000000) << 8 | ((x) & 0xff0000) << 24 | \
michael@0 1262 ((x) & 0xff00) << 40 | (x) << 56)
michael@0 1263 #endif
michael@0 1264
michael@0 1265 #ifdef MP_USE_UINT_DIGIT
michael@0 1266 #define BYTESWAP_MP_DIGIT_TO_LE(x) BYTESWAP32(x)
michael@0 1267 #else
michael@0 1268 #define BYTESWAP_MP_DIGIT_TO_LE(x) BYTESWAP64(x)
michael@0 1269 #endif
michael@0 1270 #endif /* IS_BIG_ENDIAN */
michael@0 1271
michael@0 1272 #ifdef MP_USE_UINT_DIGIT
michael@0 1273 static const mp_digit kRInvDigits[8] = {
michael@0 1274 0x80000000, 1, 0xffffffff, 0,
michael@0 1275 0x80000001, 0xfffffffe, 1, 0x7fffffff
michael@0 1276 };
michael@0 1277 #else
michael@0 1278 static const mp_digit kRInvDigits[4] = {
michael@0 1279 PR_UINT64(0x180000000), 0xffffffff,
michael@0 1280 PR_UINT64(0xfffffffe80000001), PR_UINT64(0x7fffffff00000001)
michael@0 1281 };
michael@0 1282 #endif
michael@0 1283 #define MP_DIGITS_IN_256_BITS (32/sizeof(mp_digit))
michael@0 1284 static const mp_int kRInv = {
michael@0 1285 MP_ZPOS,
michael@0 1286 MP_DIGITS_IN_256_BITS,
michael@0 1287 MP_DIGITS_IN_256_BITS,
michael@0 1288 (mp_digit*) kRInvDigits
michael@0 1289 };
michael@0 1290
michael@0 1291 static const limb kTwo28 = 0x10000000;
michael@0 1292 static const limb kTwo29 = 0x20000000;
michael@0 1293
michael@0 1294 /* to_montgomery sets out = R*in. */
michael@0 1295 static mp_err to_montgomery(felem out, const mp_int *in, const ECGroup *group)
michael@0 1296 {
michael@0 1297 /* There are no MPI functions for bitshift operations and we wish to shift
michael@0 1298 * in 257 bits left so we move the digits 256-bits left and then multiply
michael@0 1299 * by two.
michael@0 1300 */
michael@0 1301 mp_int in_shifted;
michael@0 1302 int i;
michael@0 1303 mp_err res;
michael@0 1304
michael@0 1305 mp_init(&in_shifted);
michael@0 1306 s_mp_pad(&in_shifted, MP_USED(in) + MP_DIGITS_IN_256_BITS);
michael@0 1307 memcpy(&MP_DIGIT(&in_shifted, MP_DIGITS_IN_256_BITS),
michael@0 1308 MP_DIGITS(in),
michael@0 1309 MP_USED(in)*sizeof(mp_digit));
michael@0 1310 mp_mul_2(&in_shifted, &in_shifted);
michael@0 1311 MP_CHECKOK(group->meth->field_mod(&in_shifted, &in_shifted, group->meth));
michael@0 1312
michael@0 1313 for (i = 0;; i++) {
michael@0 1314 out[i] = MP_DIGIT(&in_shifted, 0) & kBottom29Bits;
michael@0 1315 mp_div_d(&in_shifted, kTwo29, &in_shifted, NULL);
michael@0 1316
michael@0 1317 i++;
michael@0 1318 if (i == NLIMBS)
michael@0 1319 break;
michael@0 1320 out[i] = MP_DIGIT(&in_shifted, 0) & kBottom28Bits;
michael@0 1321 mp_div_d(&in_shifted, kTwo28, &in_shifted, NULL);
michael@0 1322 }
michael@0 1323
michael@0 1324 CLEANUP:
michael@0 1325 mp_clear(&in_shifted);
michael@0 1326 return res;
michael@0 1327 }
michael@0 1328
michael@0 1329 /* from_montgomery sets out=in/R. */
michael@0 1330 static mp_err from_montgomery(mp_int *out, const felem in,
michael@0 1331 const ECGroup *group)
michael@0 1332 {
michael@0 1333 mp_int result, tmp;
michael@0 1334 mp_err res;
michael@0 1335 int i;
michael@0 1336
michael@0 1337 mp_init(&result);
michael@0 1338 mp_init(&tmp);
michael@0 1339
michael@0 1340 MP_CHECKOK(mp_add_d(&tmp, in[NLIMBS-1], &result));
michael@0 1341 for (i = NLIMBS-2; i >= 0; i--) {
michael@0 1342 if ((i & 1) == 0) {
michael@0 1343 MP_CHECKOK(mp_mul_d(&result, kTwo29, &tmp));
michael@0 1344 } else {
michael@0 1345 MP_CHECKOK(mp_mul_d(&result, kTwo28, &tmp));
michael@0 1346 }
michael@0 1347 MP_CHECKOK(mp_add_d(&tmp, in[i], &result));
michael@0 1348 }
michael@0 1349
michael@0 1350 MP_CHECKOK(mp_mul(&result, &kRInv, out));
michael@0 1351 MP_CHECKOK(group->meth->field_mod(out, out, group->meth));
michael@0 1352
michael@0 1353 CLEANUP:
michael@0 1354 mp_clear(&result);
michael@0 1355 mp_clear(&tmp);
michael@0 1356 return res;
michael@0 1357 }
michael@0 1358
michael@0 1359 /* scalar_from_mp_int sets out_scalar=n, where n < the group order. */
michael@0 1360 static void scalar_from_mp_int(u8 out_scalar[32], const mp_int *n)
michael@0 1361 {
michael@0 1362 /* We require that |n| is less than the order of the group and therefore it
michael@0 1363 * will fit into |out_scalar|. However, these is a timing side-channel here
michael@0 1364 * that we cannot avoid: if |n| is sufficiently small it may be one or more
michael@0 1365 * words too short and we'll copy less data.
michael@0 1366 */
michael@0 1367 memset(out_scalar, 0, 32);
michael@0 1368 #ifdef IS_LITTLE_ENDIAN
michael@0 1369 memcpy(out_scalar, MP_DIGITS(n), MP_USED(n) * sizeof(mp_digit));
michael@0 1370 #else
michael@0 1371 {
michael@0 1372 mp_size i;
michael@0 1373 mp_digit swapped[MP_DIGITS_IN_256_BITS];
michael@0 1374 for (i = 0; i < MP_USED(n); i++) {
michael@0 1375 swapped[i] = BYTESWAP_MP_DIGIT_TO_LE(MP_DIGIT(n, i));
michael@0 1376 }
michael@0 1377 memcpy(out_scalar, swapped, MP_USED(n) * sizeof(mp_digit));
michael@0 1378 }
michael@0 1379 #endif
michael@0 1380 }
michael@0 1381
michael@0 1382 /* ec_GFp_nistp256_base_point_mul sets {out_x,out_y} = nG, where n is < the
michael@0 1383 * order of the group.
michael@0 1384 */
michael@0 1385 static mp_err ec_GFp_nistp256_base_point_mul(const mp_int *n,
michael@0 1386 mp_int *out_x, mp_int *out_y,
michael@0 1387 const ECGroup *group)
michael@0 1388 {
michael@0 1389 u8 scalar[32];
michael@0 1390 felem x, y, z, x_affine, y_affine;
michael@0 1391 mp_err res;
michael@0 1392
michael@0 1393 /* FIXME(agl): test that n < order. */
michael@0 1394
michael@0 1395 scalar_from_mp_int(scalar, n);
michael@0 1396 scalar_base_mult(x, y, z, scalar);
michael@0 1397 point_to_affine(x_affine, y_affine, x, y, z);
michael@0 1398 MP_CHECKOK(from_montgomery(out_x, x_affine, group));
michael@0 1399 MP_CHECKOK(from_montgomery(out_y, y_affine, group));
michael@0 1400
michael@0 1401 CLEANUP:
michael@0 1402 return res;
michael@0 1403 }
michael@0 1404
michael@0 1405 /* ec_GFp_nistp256_point_mul sets {out_x,out_y} = n*{in_x,in_y}, where n is <
michael@0 1406 * the order of the group.
michael@0 1407 */
michael@0 1408 static mp_err ec_GFp_nistp256_point_mul(const mp_int *n,
michael@0 1409 const mp_int *in_x, const mp_int *in_y,
michael@0 1410 mp_int *out_x, mp_int *out_y,
michael@0 1411 const ECGroup *group)
michael@0 1412 {
michael@0 1413 u8 scalar[32];
michael@0 1414 felem x, y, z, x_affine, y_affine, px, py;
michael@0 1415 mp_err res;
michael@0 1416
michael@0 1417 scalar_from_mp_int(scalar, n);
michael@0 1418
michael@0 1419 MP_CHECKOK(to_montgomery(px, in_x, group));
michael@0 1420 MP_CHECKOK(to_montgomery(py, in_y, group));
michael@0 1421
michael@0 1422 scalar_mult(x, y, z, px, py, scalar);
michael@0 1423 point_to_affine(x_affine, y_affine, x, y, z);
michael@0 1424 MP_CHECKOK(from_montgomery(out_x, x_affine, group));
michael@0 1425 MP_CHECKOK(from_montgomery(out_y, y_affine, group));
michael@0 1426
michael@0 1427 CLEANUP:
michael@0 1428 return res;
michael@0 1429 }
michael@0 1430
michael@0 1431 /* ec_GFp_nistp256_point_mul_vartime sets {out_x,out_y} = n1*G +
michael@0 1432 * n2*{in_x,in_y}, where n1 and n2 are < the order of the group.
michael@0 1433 *
michael@0 1434 * As indicated by the name, this function operates in variable time. This
michael@0 1435 * is safe because it's used for signature validation which doesn't deal
michael@0 1436 * with secrets.
michael@0 1437 */
michael@0 1438 static mp_err ec_GFp_nistp256_points_mul_vartime(
michael@0 1439 const mp_int *n1, const mp_int *n2,
michael@0 1440 const mp_int *in_x, const mp_int *in_y,
michael@0 1441 mp_int *out_x, mp_int *out_y,
michael@0 1442 const ECGroup *group)
michael@0 1443 {
michael@0 1444 u8 scalar1[32], scalar2[32];
michael@0 1445 felem x1, y1, z1, x2, y2, z2, x_affine, y_affine, px, py;
michael@0 1446 mp_err res = MP_OKAY;
michael@0 1447
michael@0 1448 /* If n2 == NULL, this is just a base-point multiplication. */
michael@0 1449 if (n2 == NULL) {
michael@0 1450 return ec_GFp_nistp256_base_point_mul(n1, out_x, out_y, group);
michael@0 1451 }
michael@0 1452
michael@0 1453 /* If n1 == nULL, this is just an arbitary-point multiplication. */
michael@0 1454 if (n1 == NULL) {
michael@0 1455 return ec_GFp_nistp256_point_mul(n2, in_x, in_y, out_x, out_y, group);
michael@0 1456 }
michael@0 1457
michael@0 1458 /* If both scalars are zero, then the result is the point at infinity. */
michael@0 1459 if (mp_cmp_z(n1) == 0 && mp_cmp_z(n2) == 0) {
michael@0 1460 mp_zero(out_x);
michael@0 1461 mp_zero(out_y);
michael@0 1462 return res;
michael@0 1463 }
michael@0 1464
michael@0 1465 scalar_from_mp_int(scalar1, n1);
michael@0 1466 scalar_from_mp_int(scalar2, n2);
michael@0 1467
michael@0 1468 MP_CHECKOK(to_montgomery(px, in_x, group));
michael@0 1469 MP_CHECKOK(to_montgomery(py, in_y, group));
michael@0 1470 scalar_base_mult(x1, y1, z1, scalar1);
michael@0 1471 scalar_mult(x2, y2, z2, px, py, scalar2);
michael@0 1472
michael@0 1473 if (mp_cmp_z(n2) == 0) {
michael@0 1474 /* If n2 == 0, then {x2,y2,z2} is zero and the result is just
michael@0 1475 * {x1,y1,z1}. */
michael@0 1476 } else if (mp_cmp_z(n1) == 0) {
michael@0 1477 /* If n1 == 0, then {x1,y1,z1} is zero and the result is just
michael@0 1478 * {x2,y2,z2}. */
michael@0 1479 memcpy(x1, x2, sizeof(x2));
michael@0 1480 memcpy(y1, y2, sizeof(y2));
michael@0 1481 memcpy(z1, z2, sizeof(z2));
michael@0 1482 } else {
michael@0 1483 /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */
michael@0 1484 point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2);
michael@0 1485 }
michael@0 1486
michael@0 1487 point_to_affine(x_affine, y_affine, x1, y1, z1);
michael@0 1488 MP_CHECKOK(from_montgomery(out_x, x_affine, group));
michael@0 1489 MP_CHECKOK(from_montgomery(out_y, y_affine, group));
michael@0 1490
michael@0 1491 CLEANUP:
michael@0 1492 return res;
michael@0 1493 }
michael@0 1494
michael@0 1495 /* Wire in fast point multiplication for named curves. */
michael@0 1496 mp_err ec_group_set_gfp256_32(ECGroup *group, ECCurveName name)
michael@0 1497 {
michael@0 1498 if (name == ECCurve_NIST_P256) {
michael@0 1499 group->base_point_mul = &ec_GFp_nistp256_base_point_mul;
michael@0 1500 group->point_mul = &ec_GFp_nistp256_point_mul;
michael@0 1501 group->points_mul = &ec_GFp_nistp256_points_mul_vartime;
michael@0 1502 }
michael@0 1503 return MP_OKAY;
michael@0 1504 }

mercurial