Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | /* This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 2 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 3 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 4 | |
michael@0 | 5 | /* A 32-bit implementation of the NIST P-256 elliptic curve. */ |
michael@0 | 6 | |
michael@0 | 7 | #include <string.h> |
michael@0 | 8 | |
michael@0 | 9 | #include "prtypes.h" |
michael@0 | 10 | #include "mpi.h" |
michael@0 | 11 | #include "mpi-priv.h" |
michael@0 | 12 | #include "ecp.h" |
michael@0 | 13 | |
michael@0 | 14 | typedef PRUint8 u8; |
michael@0 | 15 | typedef PRUint32 u32; |
michael@0 | 16 | typedef PRUint64 u64; |
michael@0 | 17 | |
michael@0 | 18 | /* Our field elements are represented as nine, unsigned 32-bit words. Freebl's |
michael@0 | 19 | * MPI library calls them digits, but here they are called limbs, which is |
michael@0 | 20 | * GMP's terminology. |
michael@0 | 21 | * |
michael@0 | 22 | * The value of an felem (field element) is: |
michael@0 | 23 | * x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228) |
michael@0 | 24 | * |
michael@0 | 25 | * That is, each limb is alternately 29 or 28-bits wide in little-endian |
michael@0 | 26 | * order. |
michael@0 | 27 | * |
michael@0 | 28 | * This means that an felem hits 2**257, rather than 2**256 as we would like. A |
michael@0 | 29 | * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems |
michael@0 | 30 | * when multiplying as terms end up one bit short of a limb which would require |
michael@0 | 31 | * much bit-shifting to correct. |
michael@0 | 32 | * |
michael@0 | 33 | * Finally, the values stored in an felem are in Montgomery form. So the value |
michael@0 | 34 | * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257. |
michael@0 | 35 | */ |
michael@0 | 36 | typedef u32 limb; |
michael@0 | 37 | #define NLIMBS 9 |
michael@0 | 38 | typedef limb felem[NLIMBS]; |
michael@0 | 39 | |
michael@0 | 40 | static const limb kBottom28Bits = 0xfffffff; |
michael@0 | 41 | static const limb kBottom29Bits = 0x1fffffff; |
michael@0 | 42 | |
michael@0 | 43 | /* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and |
michael@0 | 44 | * 28-bit words. |
michael@0 | 45 | */ |
michael@0 | 46 | static const felem kOne = { |
michael@0 | 47 | 2, 0, 0, 0xffff800, |
michael@0 | 48 | 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, |
michael@0 | 49 | 0 |
michael@0 | 50 | }; |
michael@0 | 51 | static const felem kZero = {0}; |
michael@0 | 52 | static const felem kP = { |
michael@0 | 53 | 0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, |
michael@0 | 54 | 0, 0, 0x200000, 0xf000000, |
michael@0 | 55 | 0xfffffff |
michael@0 | 56 | }; |
michael@0 | 57 | static const felem k2P = { |
michael@0 | 58 | 0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, |
michael@0 | 59 | 0, 0, 0x400000, 0xe000000, |
michael@0 | 60 | 0x1fffffff |
michael@0 | 61 | }; |
michael@0 | 62 | |
michael@0 | 63 | /* kPrecomputed contains precomputed values to aid the calculation of scalar |
michael@0 | 64 | * multiples of the base point, G. It's actually two, equal length, tables |
michael@0 | 65 | * concatenated. |
michael@0 | 66 | * |
michael@0 | 67 | * The first table contains (x,y) felem pairs for 16 multiples of the base |
michael@0 | 68 | * point, G. |
michael@0 | 69 | * |
michael@0 | 70 | * Index | Index (binary) | Value |
michael@0 | 71 | * 0 | 0000 | 0G (all zeros, omitted) |
michael@0 | 72 | * 1 | 0001 | G |
michael@0 | 73 | * 2 | 0010 | 2**64G |
michael@0 | 74 | * 3 | 0011 | 2**64G + G |
michael@0 | 75 | * 4 | 0100 | 2**128G |
michael@0 | 76 | * 5 | 0101 | 2**128G + G |
michael@0 | 77 | * 6 | 0110 | 2**128G + 2**64G |
michael@0 | 78 | * 7 | 0111 | 2**128G + 2**64G + G |
michael@0 | 79 | * 8 | 1000 | 2**192G |
michael@0 | 80 | * 9 | 1001 | 2**192G + G |
michael@0 | 81 | * 10 | 1010 | 2**192G + 2**64G |
michael@0 | 82 | * 11 | 1011 | 2**192G + 2**64G + G |
michael@0 | 83 | * 12 | 1100 | 2**192G + 2**128G |
michael@0 | 84 | * 13 | 1101 | 2**192G + 2**128G + G |
michael@0 | 85 | * 14 | 1110 | 2**192G + 2**128G + 2**64G |
michael@0 | 86 | * 15 | 1111 | 2**192G + 2**128G + 2**64G + G |
michael@0 | 87 | * |
michael@0 | 88 | * The second table follows the same style, but the terms are 2**32G, |
michael@0 | 89 | * 2**96G, 2**160G, 2**224G. |
michael@0 | 90 | * |
michael@0 | 91 | * This is ~2KB of data. |
michael@0 | 92 | */ |
michael@0 | 93 | static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = { |
michael@0 | 94 | 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee, |
michael@0 | 95 | 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3, |
michael@0 | 96 | 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c, |
michael@0 | 97 | 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22, |
michael@0 | 98 | 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050, |
michael@0 | 99 | 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b, |
michael@0 | 100 | 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa, |
michael@0 | 101 | 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2, |
michael@0 | 102 | 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609, |
michael@0 | 103 | 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581, |
michael@0 | 104 | 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca, |
michael@0 | 105 | 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33, |
michael@0 | 106 | 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6, |
michael@0 | 107 | 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd, |
michael@0 | 108 | 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0, |
michael@0 | 109 | 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881, |
michael@0 | 110 | 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a, |
michael@0 | 111 | 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26, |
michael@0 | 112 | 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b, |
michael@0 | 113 | 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023, |
michael@0 | 114 | 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133, |
michael@0 | 115 | 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa, |
michael@0 | 116 | 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29, |
michael@0 | 117 | 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc, |
michael@0 | 118 | 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8, |
michael@0 | 119 | 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59, |
michael@0 | 120 | 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39, |
michael@0 | 121 | 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689, |
michael@0 | 122 | 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa, |
michael@0 | 123 | 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3, |
michael@0 | 124 | 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1, |
michael@0 | 125 | 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f, |
michael@0 | 126 | 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72, |
michael@0 | 127 | 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d, |
michael@0 | 128 | 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b, |
michael@0 | 129 | 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a, |
michael@0 | 130 | 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a, |
michael@0 | 131 | 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f, |
michael@0 | 132 | 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb, |
michael@0 | 133 | 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc, |
michael@0 | 134 | 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9, |
michael@0 | 135 | 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce, |
michael@0 | 136 | 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2, |
michael@0 | 137 | 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca, |
michael@0 | 138 | 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229, |
michael@0 | 139 | 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57, |
michael@0 | 140 | 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c, |
michael@0 | 141 | 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa, |
michael@0 | 142 | 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651, |
michael@0 | 143 | 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec, |
michael@0 | 144 | 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7, |
michael@0 | 145 | 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c, |
michael@0 | 146 | 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927, |
michael@0 | 147 | 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298, |
michael@0 | 148 | 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8, |
michael@0 | 149 | 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2, |
michael@0 | 150 | 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d, |
michael@0 | 151 | 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4, |
michael@0 | 152 | 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8, |
michael@0 | 153 | 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78, |
michael@0 | 154 | }; |
michael@0 | 155 | |
michael@0 | 156 | /* Field element operations: |
michael@0 | 157 | */ |
michael@0 | 158 | |
michael@0 | 159 | /* NON_ZERO_TO_ALL_ONES returns: |
michael@0 | 160 | * 0xffffffff for 0 < x <= 2**31 |
michael@0 | 161 | * 0 for x == 0 or x > 2**31. |
michael@0 | 162 | * |
michael@0 | 163 | * x must be a u32 or an equivalent type such as limb. |
michael@0 | 164 | */ |
michael@0 | 165 | #define NON_ZERO_TO_ALL_ONES(x) ((((u32)(x) - 1) >> 31) - 1) |
michael@0 | 166 | |
michael@0 | 167 | /* felem_reduce_carry adds a multiple of p in order to cancel |carry|, |
michael@0 | 168 | * which is a term at 2**257. |
michael@0 | 169 | * |
michael@0 | 170 | * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28. |
michael@0 | 171 | * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. |
michael@0 | 172 | */ |
michael@0 | 173 | static void felem_reduce_carry(felem inout, limb carry) |
michael@0 | 174 | { |
michael@0 | 175 | const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry); |
michael@0 | 176 | |
michael@0 | 177 | inout[0] += carry << 1; |
michael@0 | 178 | inout[3] += 0x10000000 & carry_mask; |
michael@0 | 179 | /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the |
michael@0 | 180 | * previous line therefore this doesn't underflow. |
michael@0 | 181 | */ |
michael@0 | 182 | inout[3] -= carry << 11; |
michael@0 | 183 | inout[4] += (0x20000000 - 1) & carry_mask; |
michael@0 | 184 | inout[5] += (0x10000000 - 1) & carry_mask; |
michael@0 | 185 | inout[6] += (0x20000000 - 1) & carry_mask; |
michael@0 | 186 | inout[6] -= carry << 22; |
michael@0 | 187 | /* This may underflow if carry is non-zero but, if so, we'll fix it in the |
michael@0 | 188 | * next line. |
michael@0 | 189 | */ |
michael@0 | 190 | inout[7] -= 1 & carry_mask; |
michael@0 | 191 | inout[7] += carry << 25; |
michael@0 | 192 | } |
michael@0 | 193 | |
michael@0 | 194 | /* felem_sum sets out = in+in2. |
michael@0 | 195 | * |
michael@0 | 196 | * On entry, in[i]+in2[i] must not overflow a 32-bit word. |
michael@0 | 197 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 |
michael@0 | 198 | */ |
michael@0 | 199 | static void felem_sum(felem out, const felem in, const felem in2) |
michael@0 | 200 | { |
michael@0 | 201 | limb carry = 0; |
michael@0 | 202 | unsigned int i; |
michael@0 | 203 | for (i = 0;; i++) { |
michael@0 | 204 | out[i] = in[i] + in2[i]; |
michael@0 | 205 | out[i] += carry; |
michael@0 | 206 | carry = out[i] >> 29; |
michael@0 | 207 | out[i] &= kBottom29Bits; |
michael@0 | 208 | |
michael@0 | 209 | i++; |
michael@0 | 210 | if (i == NLIMBS) |
michael@0 | 211 | break; |
michael@0 | 212 | |
michael@0 | 213 | out[i] = in[i] + in2[i]; |
michael@0 | 214 | out[i] += carry; |
michael@0 | 215 | carry = out[i] >> 28; |
michael@0 | 216 | out[i] &= kBottom28Bits; |
michael@0 | 217 | } |
michael@0 | 218 | |
michael@0 | 219 | felem_reduce_carry(out, carry); |
michael@0 | 220 | } |
michael@0 | 221 | |
michael@0 | 222 | #define two31m3 (((limb)1) << 31) - (((limb)1) << 3) |
michael@0 | 223 | #define two30m2 (((limb)1) << 30) - (((limb)1) << 2) |
michael@0 | 224 | #define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2) |
michael@0 | 225 | #define two31m2 (((limb)1) << 31) - (((limb)1) << 2) |
michael@0 | 226 | #define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2) |
michael@0 | 227 | #define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2) |
michael@0 | 228 | |
michael@0 | 229 | /* zero31 is 0 mod p. |
michael@0 | 230 | */ |
michael@0 | 231 | static const felem zero31 = { |
michael@0 | 232 | two31m3, two30m2, two31m2, two30p13m2, |
michael@0 | 233 | two31m2, two30m2, two31p24m2, two30m27m2, |
michael@0 | 234 | two31m2 |
michael@0 | 235 | }; |
michael@0 | 236 | |
michael@0 | 237 | /* felem_diff sets out = in-in2. |
michael@0 | 238 | * |
michael@0 | 239 | * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and |
michael@0 | 240 | * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. |
michael@0 | 241 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
michael@0 | 242 | */ |
michael@0 | 243 | static void felem_diff(felem out, const felem in, const felem in2) |
michael@0 | 244 | { |
michael@0 | 245 | limb carry = 0; |
michael@0 | 246 | unsigned int i; |
michael@0 | 247 | |
michael@0 | 248 | for (i = 0;; i++) { |
michael@0 | 249 | out[i] = in[i] - in2[i]; |
michael@0 | 250 | out[i] += zero31[i]; |
michael@0 | 251 | out[i] += carry; |
michael@0 | 252 | carry = out[i] >> 29; |
michael@0 | 253 | out[i] &= kBottom29Bits; |
michael@0 | 254 | |
michael@0 | 255 | i++; |
michael@0 | 256 | if (i == NLIMBS) |
michael@0 | 257 | break; |
michael@0 | 258 | |
michael@0 | 259 | out[i] = in[i] - in2[i]; |
michael@0 | 260 | out[i] += zero31[i]; |
michael@0 | 261 | out[i] += carry; |
michael@0 | 262 | carry = out[i] >> 28; |
michael@0 | 263 | out[i] &= kBottom28Bits; |
michael@0 | 264 | } |
michael@0 | 265 | |
michael@0 | 266 | felem_reduce_carry(out, carry); |
michael@0 | 267 | } |
michael@0 | 268 | |
michael@0 | 269 | /* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words |
michael@0 | 270 | * with the same 29,28,... bit positions as an felem. |
michael@0 | 271 | * |
michael@0 | 272 | * The values in felems are in Montgomery form: x*R mod p where R = 2**257. |
michael@0 | 273 | * Since we just multiplied two Montgomery values together, the result is |
michael@0 | 274 | * x*y*R*R mod p. We wish to divide by R in order for the result also to be |
michael@0 | 275 | * in Montgomery form. |
michael@0 | 276 | * |
michael@0 | 277 | * On entry: tmp[i] < 2**64 |
michael@0 | 278 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 |
michael@0 | 279 | */ |
michael@0 | 280 | static void felem_reduce_degree(felem out, u64 tmp[17]) |
michael@0 | 281 | { |
michael@0 | 282 | /* The following table may be helpful when reading this code: |
michael@0 | 283 | * |
michael@0 | 284 | * Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10... |
michael@0 | 285 | * Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29 |
michael@0 | 286 | * Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285 |
michael@0 | 287 | * (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 |
michael@0 | 288 | */ |
michael@0 | 289 | limb tmp2[18], carry, x, xMask; |
michael@0 | 290 | unsigned int i; |
michael@0 | 291 | |
michael@0 | 292 | /* tmp contains 64-bit words with the same 29,28,29-bit positions as an |
michael@0 | 293 | * felem. So the top of an element of tmp might overlap with another |
michael@0 | 294 | * element two positions down. The following loop eliminates this |
michael@0 | 295 | * overlap. |
michael@0 | 296 | */ |
michael@0 | 297 | tmp2[0] = tmp[0] & kBottom29Bits; |
michael@0 | 298 | |
michael@0 | 299 | /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try |
michael@0 | 300 | * and hint to the compiler that it can do a single-word shift by selecting |
michael@0 | 301 | * the right register rather than doing a double-word shift and truncating |
michael@0 | 302 | * afterwards. |
michael@0 | 303 | */ |
michael@0 | 304 | tmp2[1] = ((limb) tmp[0]) >> 29; |
michael@0 | 305 | tmp2[1] |= (((limb) (tmp[0] >> 32)) << 3) & kBottom28Bits; |
michael@0 | 306 | tmp2[1] += ((limb) tmp[1]) & kBottom28Bits; |
michael@0 | 307 | carry = tmp2[1] >> 28; |
michael@0 | 308 | tmp2[1] &= kBottom28Bits; |
michael@0 | 309 | |
michael@0 | 310 | for (i = 2; i < 17; i++) { |
michael@0 | 311 | tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25; |
michael@0 | 312 | tmp2[i] += ((limb) (tmp[i - 1])) >> 28; |
michael@0 | 313 | tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 4) & kBottom29Bits; |
michael@0 | 314 | tmp2[i] += ((limb) tmp[i]) & kBottom29Bits; |
michael@0 | 315 | tmp2[i] += carry; |
michael@0 | 316 | carry = tmp2[i] >> 29; |
michael@0 | 317 | tmp2[i] &= kBottom29Bits; |
michael@0 | 318 | |
michael@0 | 319 | i++; |
michael@0 | 320 | if (i == 17) |
michael@0 | 321 | break; |
michael@0 | 322 | tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25; |
michael@0 | 323 | tmp2[i] += ((limb) (tmp[i - 1])) >> 29; |
michael@0 | 324 | tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 3) & kBottom28Bits; |
michael@0 | 325 | tmp2[i] += ((limb) tmp[i]) & kBottom28Bits; |
michael@0 | 326 | tmp2[i] += carry; |
michael@0 | 327 | carry = tmp2[i] >> 28; |
michael@0 | 328 | tmp2[i] &= kBottom28Bits; |
michael@0 | 329 | } |
michael@0 | 330 | |
michael@0 | 331 | tmp2[17] = ((limb) (tmp[15] >> 32)) >> 25; |
michael@0 | 332 | tmp2[17] += ((limb) (tmp[16])) >> 29; |
michael@0 | 333 | tmp2[17] += (((limb) (tmp[16] >> 32)) << 3); |
michael@0 | 334 | tmp2[17] += carry; |
michael@0 | 335 | |
michael@0 | 336 | /* Montgomery elimination of terms: |
michael@0 | 337 | * |
michael@0 | 338 | * Since R is 2**257, we can divide by R with a bitwise shift if we can |
michael@0 | 339 | * ensure that the right-most 257 bits are all zero. We can make that true |
michael@0 | 340 | * by adding multiplies of p without affecting the value. |
michael@0 | 341 | * |
michael@0 | 342 | * So we eliminate limbs from right to left. Since the bottom 29 bits of p |
michael@0 | 343 | * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0. |
michael@0 | 344 | * We can do that for 8 further limbs and then right shift to eliminate the |
michael@0 | 345 | * extra factor of R. |
michael@0 | 346 | */ |
michael@0 | 347 | for (i = 0;; i += 2) { |
michael@0 | 348 | tmp2[i + 1] += tmp2[i] >> 29; |
michael@0 | 349 | x = tmp2[i] & kBottom29Bits; |
michael@0 | 350 | xMask = NON_ZERO_TO_ALL_ONES(x); |
michael@0 | 351 | tmp2[i] = 0; |
michael@0 | 352 | |
michael@0 | 353 | /* The bounds calculations for this loop are tricky. Each iteration of |
michael@0 | 354 | * the loop eliminates two words by adding values to words to their |
michael@0 | 355 | * right. |
michael@0 | 356 | * |
michael@0 | 357 | * The following table contains the amounts added to each word (as an |
michael@0 | 358 | * offset from the value of i at the top of the loop). The amounts are |
michael@0 | 359 | * accounted for from the first and second half of the loop separately |
michael@0 | 360 | * and are written as, for example, 28 to mean a value <2**28. |
michael@0 | 361 | * |
michael@0 | 362 | * Word: 3 4 5 6 7 8 9 10 |
michael@0 | 363 | * Added in top half: 28 11 29 21 29 28 |
michael@0 | 364 | * 28 29 |
michael@0 | 365 | * 29 |
michael@0 | 366 | * Added in bottom half: 29 10 28 21 28 28 |
michael@0 | 367 | * 29 |
michael@0 | 368 | * |
michael@0 | 369 | * The value that is currently offset 7 will be offset 5 for the next |
michael@0 | 370 | * iteration and then offset 3 for the iteration after that. Therefore |
michael@0 | 371 | * the total value added will be the values added at 7, 5 and 3. |
michael@0 | 372 | * |
michael@0 | 373 | * The following table accumulates these values. The sums at the bottom |
michael@0 | 374 | * are written as, for example, 29+28, to mean a value < 2**29+2**28. |
michael@0 | 375 | * |
michael@0 | 376 | * Word: 3 4 5 6 7 8 9 10 11 12 13 |
michael@0 | 377 | * 28 11 10 29 21 29 28 28 28 28 28 |
michael@0 | 378 | * 29 28 11 28 29 28 29 28 29 28 |
michael@0 | 379 | * 29 28 21 21 29 21 29 21 |
michael@0 | 380 | * 10 29 28 21 28 21 28 |
michael@0 | 381 | * 28 29 28 29 28 29 28 |
michael@0 | 382 | * 11 10 29 10 29 10 |
michael@0 | 383 | * 29 28 11 28 11 |
michael@0 | 384 | * 29 29 |
michael@0 | 385 | * -------------------------------------------- |
michael@0 | 386 | * 30+ 31+ 30+ 31+ 30+ |
michael@0 | 387 | * 28+ 29+ 28+ 29+ 21+ |
michael@0 | 388 | * 21+ 28+ 21+ 28+ 10 |
michael@0 | 389 | * 10 21+ 10 21+ |
michael@0 | 390 | * 11 11 |
michael@0 | 391 | * |
michael@0 | 392 | * So the greatest amount is added to tmp2[10] and tmp2[12]. If |
michael@0 | 393 | * tmp2[10/12] has an initial value of <2**29, then the maximum value |
michael@0 | 394 | * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32, |
michael@0 | 395 | * as required. |
michael@0 | 396 | */ |
michael@0 | 397 | tmp2[i + 3] += (x << 10) & kBottom28Bits; |
michael@0 | 398 | tmp2[i + 4] += (x >> 18); |
michael@0 | 399 | |
michael@0 | 400 | tmp2[i + 6] += (x << 21) & kBottom29Bits; |
michael@0 | 401 | tmp2[i + 7] += x >> 8; |
michael@0 | 402 | |
michael@0 | 403 | /* At position 200, which is the starting bit position for word 7, we |
michael@0 | 404 | * have a factor of 0xf000000 = 2**28 - 2**24. |
michael@0 | 405 | */ |
michael@0 | 406 | tmp2[i + 7] += 0x10000000 & xMask; |
michael@0 | 407 | /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */ |
michael@0 | 408 | tmp2[i + 8] += (x - 1) & xMask; |
michael@0 | 409 | tmp2[i + 7] -= (x << 24) & kBottom28Bits; |
michael@0 | 410 | tmp2[i + 8] -= x >> 4; |
michael@0 | 411 | |
michael@0 | 412 | tmp2[i + 8] += 0x20000000 & xMask; |
michael@0 | 413 | tmp2[i + 8] -= x; |
michael@0 | 414 | tmp2[i + 8] += (x << 28) & kBottom29Bits; |
michael@0 | 415 | tmp2[i + 9] += ((x >> 1) - 1) & xMask; |
michael@0 | 416 | |
michael@0 | 417 | if (i+1 == NLIMBS) |
michael@0 | 418 | break; |
michael@0 | 419 | tmp2[i + 2] += tmp2[i + 1] >> 28; |
michael@0 | 420 | x = tmp2[i + 1] & kBottom28Bits; |
michael@0 | 421 | xMask = NON_ZERO_TO_ALL_ONES(x); |
michael@0 | 422 | tmp2[i + 1] = 0; |
michael@0 | 423 | |
michael@0 | 424 | tmp2[i + 4] += (x << 11) & kBottom29Bits; |
michael@0 | 425 | tmp2[i + 5] += (x >> 18); |
michael@0 | 426 | |
michael@0 | 427 | tmp2[i + 7] += (x << 21) & kBottom28Bits; |
michael@0 | 428 | tmp2[i + 8] += x >> 7; |
michael@0 | 429 | |
michael@0 | 430 | /* At position 199, which is the starting bit of the 8th word when |
michael@0 | 431 | * dealing with a context starting on an odd word, we have a factor of |
michael@0 | 432 | * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th |
michael@0 | 433 | * word from i+1 is i+8. |
michael@0 | 434 | */ |
michael@0 | 435 | tmp2[i + 8] += 0x20000000 & xMask; |
michael@0 | 436 | tmp2[i + 9] += (x - 1) & xMask; |
michael@0 | 437 | tmp2[i + 8] -= (x << 25) & kBottom29Bits; |
michael@0 | 438 | tmp2[i + 9] -= x >> 4; |
michael@0 | 439 | |
michael@0 | 440 | tmp2[i + 9] += 0x10000000 & xMask; |
michael@0 | 441 | tmp2[i + 9] -= x; |
michael@0 | 442 | tmp2[i + 10] += (x - 1) & xMask; |
michael@0 | 443 | } |
michael@0 | 444 | |
michael@0 | 445 | /* We merge the right shift with a carry chain. The words above 2**257 have |
michael@0 | 446 | * widths of 28,29,... which we need to correct when copying them down. |
michael@0 | 447 | */ |
michael@0 | 448 | carry = 0; |
michael@0 | 449 | for (i = 0; i < 8; i++) { |
michael@0 | 450 | /* The maximum value of tmp2[i + 9] occurs on the first iteration and |
michael@0 | 451 | * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is |
michael@0 | 452 | * therefore safe. |
michael@0 | 453 | */ |
michael@0 | 454 | out[i] = tmp2[i + 9]; |
michael@0 | 455 | out[i] += carry; |
michael@0 | 456 | out[i] += (tmp2[i + 10] << 28) & kBottom29Bits; |
michael@0 | 457 | carry = out[i] >> 29; |
michael@0 | 458 | out[i] &= kBottom29Bits; |
michael@0 | 459 | |
michael@0 | 460 | i++; |
michael@0 | 461 | out[i] = tmp2[i + 9] >> 1; |
michael@0 | 462 | out[i] += carry; |
michael@0 | 463 | carry = out[i] >> 28; |
michael@0 | 464 | out[i] &= kBottom28Bits; |
michael@0 | 465 | } |
michael@0 | 466 | |
michael@0 | 467 | out[8] = tmp2[17]; |
michael@0 | 468 | out[8] += carry; |
michael@0 | 469 | carry = out[8] >> 29; |
michael@0 | 470 | out[8] &= kBottom29Bits; |
michael@0 | 471 | |
michael@0 | 472 | felem_reduce_carry(out, carry); |
michael@0 | 473 | } |
michael@0 | 474 | |
michael@0 | 475 | /* felem_square sets out=in*in. |
michael@0 | 476 | * |
michael@0 | 477 | * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29. |
michael@0 | 478 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
michael@0 | 479 | */ |
michael@0 | 480 | static void felem_square(felem out, const felem in) |
michael@0 | 481 | { |
michael@0 | 482 | u64 tmp[17]; |
michael@0 | 483 | |
michael@0 | 484 | tmp[0] = ((u64) in[0]) * in[0]; |
michael@0 | 485 | tmp[1] = ((u64) in[0]) * (in[1] << 1); |
michael@0 | 486 | tmp[2] = ((u64) in[0]) * (in[2] << 1) + |
michael@0 | 487 | ((u64) in[1]) * (in[1] << 1); |
michael@0 | 488 | tmp[3] = ((u64) in[0]) * (in[3] << 1) + |
michael@0 | 489 | ((u64) in[1]) * (in[2] << 1); |
michael@0 | 490 | tmp[4] = ((u64) in[0]) * (in[4] << 1) + |
michael@0 | 491 | ((u64) in[1]) * (in[3] << 2) + |
michael@0 | 492 | ((u64) in[2]) * in[2]; |
michael@0 | 493 | tmp[5] = ((u64) in[0]) * (in[5] << 1) + |
michael@0 | 494 | ((u64) in[1]) * (in[4] << 1) + |
michael@0 | 495 | ((u64) in[2]) * (in[3] << 1); |
michael@0 | 496 | tmp[6] = ((u64) in[0]) * (in[6] << 1) + |
michael@0 | 497 | ((u64) in[1]) * (in[5] << 2) + |
michael@0 | 498 | ((u64) in[2]) * (in[4] << 1) + |
michael@0 | 499 | ((u64) in[3]) * (in[3] << 1); |
michael@0 | 500 | tmp[7] = ((u64) in[0]) * (in[7] << 1) + |
michael@0 | 501 | ((u64) in[1]) * (in[6] << 1) + |
michael@0 | 502 | ((u64) in[2]) * (in[5] << 1) + |
michael@0 | 503 | ((u64) in[3]) * (in[4] << 1); |
michael@0 | 504 | /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60, |
michael@0 | 505 | * which is < 2**64 as required. |
michael@0 | 506 | */ |
michael@0 | 507 | tmp[8] = ((u64) in[0]) * (in[8] << 1) + |
michael@0 | 508 | ((u64) in[1]) * (in[7] << 2) + |
michael@0 | 509 | ((u64) in[2]) * (in[6] << 1) + |
michael@0 | 510 | ((u64) in[3]) * (in[5] << 2) + |
michael@0 | 511 | ((u64) in[4]) * in[4]; |
michael@0 | 512 | tmp[9] = ((u64) in[1]) * (in[8] << 1) + |
michael@0 | 513 | ((u64) in[2]) * (in[7] << 1) + |
michael@0 | 514 | ((u64) in[3]) * (in[6] << 1) + |
michael@0 | 515 | ((u64) in[4]) * (in[5] << 1); |
michael@0 | 516 | tmp[10] = ((u64) in[2]) * (in[8] << 1) + |
michael@0 | 517 | ((u64) in[3]) * (in[7] << 2) + |
michael@0 | 518 | ((u64) in[4]) * (in[6] << 1) + |
michael@0 | 519 | ((u64) in[5]) * (in[5] << 1); |
michael@0 | 520 | tmp[11] = ((u64) in[3]) * (in[8] << 1) + |
michael@0 | 521 | ((u64) in[4]) * (in[7] << 1) + |
michael@0 | 522 | ((u64) in[5]) * (in[6] << 1); |
michael@0 | 523 | tmp[12] = ((u64) in[4]) * (in[8] << 1) + |
michael@0 | 524 | ((u64) in[5]) * (in[7] << 2) + |
michael@0 | 525 | ((u64) in[6]) * in[6]; |
michael@0 | 526 | tmp[13] = ((u64) in[5]) * (in[8] << 1) + |
michael@0 | 527 | ((u64) in[6]) * (in[7] << 1); |
michael@0 | 528 | tmp[14] = ((u64) in[6]) * (in[8] << 1) + |
michael@0 | 529 | ((u64) in[7]) * (in[7] << 1); |
michael@0 | 530 | tmp[15] = ((u64) in[7]) * (in[8] << 1); |
michael@0 | 531 | tmp[16] = ((u64) in[8]) * in[8]; |
michael@0 | 532 | |
michael@0 | 533 | felem_reduce_degree(out, tmp); |
michael@0 | 534 | } |
michael@0 | 535 | |
michael@0 | 536 | /* felem_mul sets out=in*in2. |
michael@0 | 537 | * |
michael@0 | 538 | * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and |
michael@0 | 539 | * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. |
michael@0 | 540 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
michael@0 | 541 | */ |
michael@0 | 542 | static void felem_mul(felem out, const felem in, const felem in2) |
michael@0 | 543 | { |
michael@0 | 544 | u64 tmp[17]; |
michael@0 | 545 | |
michael@0 | 546 | tmp[0] = ((u64) in[0]) * in2[0]; |
michael@0 | 547 | tmp[1] = ((u64) in[0]) * (in2[1] << 0) + |
michael@0 | 548 | ((u64) in[1]) * (in2[0] << 0); |
michael@0 | 549 | tmp[2] = ((u64) in[0]) * (in2[2] << 0) + |
michael@0 | 550 | ((u64) in[1]) * (in2[1] << 1) + |
michael@0 | 551 | ((u64) in[2]) * (in2[0] << 0); |
michael@0 | 552 | tmp[3] = ((u64) in[0]) * (in2[3] << 0) + |
michael@0 | 553 | ((u64) in[1]) * (in2[2] << 0) + |
michael@0 | 554 | ((u64) in[2]) * (in2[1] << 0) + |
michael@0 | 555 | ((u64) in[3]) * (in2[0] << 0); |
michael@0 | 556 | tmp[4] = ((u64) in[0]) * (in2[4] << 0) + |
michael@0 | 557 | ((u64) in[1]) * (in2[3] << 1) + |
michael@0 | 558 | ((u64) in[2]) * (in2[2] << 0) + |
michael@0 | 559 | ((u64) in[3]) * (in2[1] << 1) + |
michael@0 | 560 | ((u64) in[4]) * (in2[0] << 0); |
michael@0 | 561 | tmp[5] = ((u64) in[0]) * (in2[5] << 0) + |
michael@0 | 562 | ((u64) in[1]) * (in2[4] << 0) + |
michael@0 | 563 | ((u64) in[2]) * (in2[3] << 0) + |
michael@0 | 564 | ((u64) in[3]) * (in2[2] << 0) + |
michael@0 | 565 | ((u64) in[4]) * (in2[1] << 0) + |
michael@0 | 566 | ((u64) in[5]) * (in2[0] << 0); |
michael@0 | 567 | tmp[6] = ((u64) in[0]) * (in2[6] << 0) + |
michael@0 | 568 | ((u64) in[1]) * (in2[5] << 1) + |
michael@0 | 569 | ((u64) in[2]) * (in2[4] << 0) + |
michael@0 | 570 | ((u64) in[3]) * (in2[3] << 1) + |
michael@0 | 571 | ((u64) in[4]) * (in2[2] << 0) + |
michael@0 | 572 | ((u64) in[5]) * (in2[1] << 1) + |
michael@0 | 573 | ((u64) in[6]) * (in2[0] << 0); |
michael@0 | 574 | tmp[7] = ((u64) in[0]) * (in2[7] << 0) + |
michael@0 | 575 | ((u64) in[1]) * (in2[6] << 0) + |
michael@0 | 576 | ((u64) in[2]) * (in2[5] << 0) + |
michael@0 | 577 | ((u64) in[3]) * (in2[4] << 0) + |
michael@0 | 578 | ((u64) in[4]) * (in2[3] << 0) + |
michael@0 | 579 | ((u64) in[5]) * (in2[2] << 0) + |
michael@0 | 580 | ((u64) in[6]) * (in2[1] << 0) + |
michael@0 | 581 | ((u64) in[7]) * (in2[0] << 0); |
michael@0 | 582 | /* tmp[8] has the greatest value but doesn't overflow. See logic in |
michael@0 | 583 | * felem_square. |
michael@0 | 584 | */ |
michael@0 | 585 | tmp[8] = ((u64) in[0]) * (in2[8] << 0) + |
michael@0 | 586 | ((u64) in[1]) * (in2[7] << 1) + |
michael@0 | 587 | ((u64) in[2]) * (in2[6] << 0) + |
michael@0 | 588 | ((u64) in[3]) * (in2[5] << 1) + |
michael@0 | 589 | ((u64) in[4]) * (in2[4] << 0) + |
michael@0 | 590 | ((u64) in[5]) * (in2[3] << 1) + |
michael@0 | 591 | ((u64) in[6]) * (in2[2] << 0) + |
michael@0 | 592 | ((u64) in[7]) * (in2[1] << 1) + |
michael@0 | 593 | ((u64) in[8]) * (in2[0] << 0); |
michael@0 | 594 | tmp[9] = ((u64) in[1]) * (in2[8] << 0) + |
michael@0 | 595 | ((u64) in[2]) * (in2[7] << 0) + |
michael@0 | 596 | ((u64) in[3]) * (in2[6] << 0) + |
michael@0 | 597 | ((u64) in[4]) * (in2[5] << 0) + |
michael@0 | 598 | ((u64) in[5]) * (in2[4] << 0) + |
michael@0 | 599 | ((u64) in[6]) * (in2[3] << 0) + |
michael@0 | 600 | ((u64) in[7]) * (in2[2] << 0) + |
michael@0 | 601 | ((u64) in[8]) * (in2[1] << 0); |
michael@0 | 602 | tmp[10] = ((u64) in[2]) * (in2[8] << 0) + |
michael@0 | 603 | ((u64) in[3]) * (in2[7] << 1) + |
michael@0 | 604 | ((u64) in[4]) * (in2[6] << 0) + |
michael@0 | 605 | ((u64) in[5]) * (in2[5] << 1) + |
michael@0 | 606 | ((u64) in[6]) * (in2[4] << 0) + |
michael@0 | 607 | ((u64) in[7]) * (in2[3] << 1) + |
michael@0 | 608 | ((u64) in[8]) * (in2[2] << 0); |
michael@0 | 609 | tmp[11] = ((u64) in[3]) * (in2[8] << 0) + |
michael@0 | 610 | ((u64) in[4]) * (in2[7] << 0) + |
michael@0 | 611 | ((u64) in[5]) * (in2[6] << 0) + |
michael@0 | 612 | ((u64) in[6]) * (in2[5] << 0) + |
michael@0 | 613 | ((u64) in[7]) * (in2[4] << 0) + |
michael@0 | 614 | ((u64) in[8]) * (in2[3] << 0); |
michael@0 | 615 | tmp[12] = ((u64) in[4]) * (in2[8] << 0) + |
michael@0 | 616 | ((u64) in[5]) * (in2[7] << 1) + |
michael@0 | 617 | ((u64) in[6]) * (in2[6] << 0) + |
michael@0 | 618 | ((u64) in[7]) * (in2[5] << 1) + |
michael@0 | 619 | ((u64) in[8]) * (in2[4] << 0); |
michael@0 | 620 | tmp[13] = ((u64) in[5]) * (in2[8] << 0) + |
michael@0 | 621 | ((u64) in[6]) * (in2[7] << 0) + |
michael@0 | 622 | ((u64) in[7]) * (in2[6] << 0) + |
michael@0 | 623 | ((u64) in[8]) * (in2[5] << 0); |
michael@0 | 624 | tmp[14] = ((u64) in[6]) * (in2[8] << 0) + |
michael@0 | 625 | ((u64) in[7]) * (in2[7] << 1) + |
michael@0 | 626 | ((u64) in[8]) * (in2[6] << 0); |
michael@0 | 627 | tmp[15] = ((u64) in[7]) * (in2[8] << 0) + |
michael@0 | 628 | ((u64) in[8]) * (in2[7] << 0); |
michael@0 | 629 | tmp[16] = ((u64) in[8]) * (in2[8] << 0); |
michael@0 | 630 | |
michael@0 | 631 | felem_reduce_degree(out, tmp); |
michael@0 | 632 | } |
michael@0 | 633 | |
michael@0 | 634 | static void felem_assign(felem out, const felem in) |
michael@0 | 635 | { |
michael@0 | 636 | memcpy(out, in, sizeof(felem)); |
michael@0 | 637 | } |
michael@0 | 638 | |
michael@0 | 639 | /* felem_inv calculates |out| = |in|^{-1} |
michael@0 | 640 | * |
michael@0 | 641 | * Based on Fermat's Little Theorem: |
michael@0 | 642 | * a^p = a (mod p) |
michael@0 | 643 | * a^{p-1} = 1 (mod p) |
michael@0 | 644 | * a^{p-2} = a^{-1} (mod p) |
michael@0 | 645 | */ |
michael@0 | 646 | static void felem_inv(felem out, const felem in) |
michael@0 | 647 | { |
michael@0 | 648 | felem ftmp, ftmp2; |
michael@0 | 649 | /* each e_I will hold |in|^{2^I - 1} */ |
michael@0 | 650 | felem e2, e4, e8, e16, e32, e64; |
michael@0 | 651 | unsigned int i; |
michael@0 | 652 | |
michael@0 | 653 | felem_square(ftmp, in); /* 2^1 */ |
michael@0 | 654 | felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */ |
michael@0 | 655 | felem_assign(e2, ftmp); |
michael@0 | 656 | felem_square(ftmp, ftmp); /* 2^3 - 2^1 */ |
michael@0 | 657 | felem_square(ftmp, ftmp); /* 2^4 - 2^2 */ |
michael@0 | 658 | felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */ |
michael@0 | 659 | felem_assign(e4, ftmp); |
michael@0 | 660 | felem_square(ftmp, ftmp); /* 2^5 - 2^1 */ |
michael@0 | 661 | felem_square(ftmp, ftmp); /* 2^6 - 2^2 */ |
michael@0 | 662 | felem_square(ftmp, ftmp); /* 2^7 - 2^3 */ |
michael@0 | 663 | felem_square(ftmp, ftmp); /* 2^8 - 2^4 */ |
michael@0 | 664 | felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */ |
michael@0 | 665 | felem_assign(e8, ftmp); |
michael@0 | 666 | for (i = 0; i < 8; i++) { |
michael@0 | 667 | felem_square(ftmp, ftmp); |
michael@0 | 668 | } /* 2^16 - 2^8 */ |
michael@0 | 669 | felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */ |
michael@0 | 670 | felem_assign(e16, ftmp); |
michael@0 | 671 | for (i = 0; i < 16; i++) { |
michael@0 | 672 | felem_square(ftmp, ftmp); |
michael@0 | 673 | } /* 2^32 - 2^16 */ |
michael@0 | 674 | felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */ |
michael@0 | 675 | felem_assign(e32, ftmp); |
michael@0 | 676 | for (i = 0; i < 32; i++) { |
michael@0 | 677 | felem_square(ftmp, ftmp); |
michael@0 | 678 | } /* 2^64 - 2^32 */ |
michael@0 | 679 | felem_assign(e64, ftmp); |
michael@0 | 680 | felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */ |
michael@0 | 681 | for (i = 0; i < 192; i++) { |
michael@0 | 682 | felem_square(ftmp, ftmp); |
michael@0 | 683 | } /* 2^256 - 2^224 + 2^192 */ |
michael@0 | 684 | |
michael@0 | 685 | felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */ |
michael@0 | 686 | for (i = 0; i < 16; i++) { |
michael@0 | 687 | felem_square(ftmp2, ftmp2); |
michael@0 | 688 | } /* 2^80 - 2^16 */ |
michael@0 | 689 | felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */ |
michael@0 | 690 | for (i = 0; i < 8; i++) { |
michael@0 | 691 | felem_square(ftmp2, ftmp2); |
michael@0 | 692 | } /* 2^88 - 2^8 */ |
michael@0 | 693 | felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */ |
michael@0 | 694 | for (i = 0; i < 4; i++) { |
michael@0 | 695 | felem_square(ftmp2, ftmp2); |
michael@0 | 696 | } /* 2^92 - 2^4 */ |
michael@0 | 697 | felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */ |
michael@0 | 698 | felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */ |
michael@0 | 699 | felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */ |
michael@0 | 700 | felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */ |
michael@0 | 701 | felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */ |
michael@0 | 702 | felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */ |
michael@0 | 703 | felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */ |
michael@0 | 704 | |
michael@0 | 705 | felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ |
michael@0 | 706 | } |
michael@0 | 707 | |
michael@0 | 708 | /* felem_scalar_3 sets out=3*out. |
michael@0 | 709 | * |
michael@0 | 710 | * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
michael@0 | 711 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
michael@0 | 712 | */ |
michael@0 | 713 | static void felem_scalar_3(felem out) |
michael@0 | 714 | { |
michael@0 | 715 | limb carry = 0; |
michael@0 | 716 | unsigned int i; |
michael@0 | 717 | |
michael@0 | 718 | for (i = 0;; i++) { |
michael@0 | 719 | out[i] *= 3; |
michael@0 | 720 | out[i] += carry; |
michael@0 | 721 | carry = out[i] >> 29; |
michael@0 | 722 | out[i] &= kBottom29Bits; |
michael@0 | 723 | |
michael@0 | 724 | i++; |
michael@0 | 725 | if (i == NLIMBS) |
michael@0 | 726 | break; |
michael@0 | 727 | |
michael@0 | 728 | out[i] *= 3; |
michael@0 | 729 | out[i] += carry; |
michael@0 | 730 | carry = out[i] >> 28; |
michael@0 | 731 | out[i] &= kBottom28Bits; |
michael@0 | 732 | } |
michael@0 | 733 | |
michael@0 | 734 | felem_reduce_carry(out, carry); |
michael@0 | 735 | } |
michael@0 | 736 | |
michael@0 | 737 | /* felem_scalar_4 sets out=4*out. |
michael@0 | 738 | * |
michael@0 | 739 | * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
michael@0 | 740 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
michael@0 | 741 | */ |
michael@0 | 742 | static void felem_scalar_4(felem out) |
michael@0 | 743 | { |
michael@0 | 744 | limb carry = 0, next_carry; |
michael@0 | 745 | unsigned int i; |
michael@0 | 746 | |
michael@0 | 747 | for (i = 0;; i++) { |
michael@0 | 748 | next_carry = out[i] >> 27; |
michael@0 | 749 | out[i] <<= 2; |
michael@0 | 750 | out[i] &= kBottom29Bits; |
michael@0 | 751 | out[i] += carry; |
michael@0 | 752 | carry = next_carry + (out[i] >> 29); |
michael@0 | 753 | out[i] &= kBottom29Bits; |
michael@0 | 754 | |
michael@0 | 755 | i++; |
michael@0 | 756 | if (i == NLIMBS) |
michael@0 | 757 | break; |
michael@0 | 758 | next_carry = out[i] >> 26; |
michael@0 | 759 | out[i] <<= 2; |
michael@0 | 760 | out[i] &= kBottom28Bits; |
michael@0 | 761 | out[i] += carry; |
michael@0 | 762 | carry = next_carry + (out[i] >> 28); |
michael@0 | 763 | out[i] &= kBottom28Bits; |
michael@0 | 764 | } |
michael@0 | 765 | |
michael@0 | 766 | felem_reduce_carry(out, carry); |
michael@0 | 767 | } |
michael@0 | 768 | |
michael@0 | 769 | /* felem_scalar_8 sets out=8*out. |
michael@0 | 770 | * |
michael@0 | 771 | * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
michael@0 | 772 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. |
michael@0 | 773 | */ |
michael@0 | 774 | static void felem_scalar_8(felem out) |
michael@0 | 775 | { |
michael@0 | 776 | limb carry = 0, next_carry; |
michael@0 | 777 | unsigned int i; |
michael@0 | 778 | |
michael@0 | 779 | for (i = 0;; i++) { |
michael@0 | 780 | next_carry = out[i] >> 26; |
michael@0 | 781 | out[i] <<= 3; |
michael@0 | 782 | out[i] &= kBottom29Bits; |
michael@0 | 783 | out[i] += carry; |
michael@0 | 784 | carry = next_carry + (out[i] >> 29); |
michael@0 | 785 | out[i] &= kBottom29Bits; |
michael@0 | 786 | |
michael@0 | 787 | i++; |
michael@0 | 788 | if (i == NLIMBS) |
michael@0 | 789 | break; |
michael@0 | 790 | next_carry = out[i] >> 25; |
michael@0 | 791 | out[i] <<= 3; |
michael@0 | 792 | out[i] &= kBottom28Bits; |
michael@0 | 793 | out[i] += carry; |
michael@0 | 794 | carry = next_carry + (out[i] >> 28); |
michael@0 | 795 | out[i] &= kBottom28Bits; |
michael@0 | 796 | } |
michael@0 | 797 | |
michael@0 | 798 | felem_reduce_carry(out, carry); |
michael@0 | 799 | } |
michael@0 | 800 | |
michael@0 | 801 | /* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of |
michael@0 | 802 | * time depending on the value of |in|. |
michael@0 | 803 | */ |
michael@0 | 804 | static char felem_is_zero_vartime(const felem in) |
michael@0 | 805 | { |
michael@0 | 806 | limb carry; |
michael@0 | 807 | int i; |
michael@0 | 808 | limb tmp[NLIMBS]; |
michael@0 | 809 | felem_assign(tmp, in); |
michael@0 | 810 | |
michael@0 | 811 | /* First, reduce tmp to a minimal form. |
michael@0 | 812 | */ |
michael@0 | 813 | do { |
michael@0 | 814 | carry = 0; |
michael@0 | 815 | for (i = 0;; i++) { |
michael@0 | 816 | tmp[i] += carry; |
michael@0 | 817 | carry = tmp[i] >> 29; |
michael@0 | 818 | tmp[i] &= kBottom29Bits; |
michael@0 | 819 | |
michael@0 | 820 | i++; |
michael@0 | 821 | if (i == NLIMBS) |
michael@0 | 822 | break; |
michael@0 | 823 | |
michael@0 | 824 | tmp[i] += carry; |
michael@0 | 825 | carry = tmp[i] >> 28; |
michael@0 | 826 | tmp[i] &= kBottom28Bits; |
michael@0 | 827 | } |
michael@0 | 828 | |
michael@0 | 829 | felem_reduce_carry(tmp, carry); |
michael@0 | 830 | } while (carry); |
michael@0 | 831 | |
michael@0 | 832 | /* tmp < 2**257, so the only possible zero values are 0, p and 2p. |
michael@0 | 833 | */ |
michael@0 | 834 | return memcmp(tmp, kZero, sizeof(tmp)) == 0 || |
michael@0 | 835 | memcmp(tmp, kP, sizeof(tmp)) == 0 || |
michael@0 | 836 | memcmp(tmp, k2P, sizeof(tmp)) == 0; |
michael@0 | 837 | } |
michael@0 | 838 | |
michael@0 | 839 | /* Group operations: |
michael@0 | 840 | * |
michael@0 | 841 | * Elements of the elliptic curve group are represented in Jacobian |
michael@0 | 842 | * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in |
michael@0 | 843 | * Jacobian form. |
michael@0 | 844 | */ |
michael@0 | 845 | |
michael@0 | 846 | /* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}. |
michael@0 | 847 | * |
michael@0 | 848 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l |
michael@0 | 849 | */ |
michael@0 | 850 | static void point_double(felem x_out, felem y_out, felem z_out, |
michael@0 | 851 | const felem x, const felem y, const felem z) |
michael@0 | 852 | { |
michael@0 | 853 | felem delta, gamma, alpha, beta, tmp, tmp2; |
michael@0 | 854 | |
michael@0 | 855 | felem_square(delta, z); |
michael@0 | 856 | felem_square(gamma, y); |
michael@0 | 857 | felem_mul(beta, x, gamma); |
michael@0 | 858 | |
michael@0 | 859 | felem_sum(tmp, x, delta); |
michael@0 | 860 | felem_diff(tmp2, x, delta); |
michael@0 | 861 | felem_mul(alpha, tmp, tmp2); |
michael@0 | 862 | felem_scalar_3(alpha); |
michael@0 | 863 | |
michael@0 | 864 | felem_sum(tmp, y, z); |
michael@0 | 865 | felem_square(tmp, tmp); |
michael@0 | 866 | felem_diff(tmp, tmp, gamma); |
michael@0 | 867 | felem_diff(z_out, tmp, delta); |
michael@0 | 868 | |
michael@0 | 869 | felem_scalar_4(beta); |
michael@0 | 870 | felem_square(x_out, alpha); |
michael@0 | 871 | felem_diff(x_out, x_out, beta); |
michael@0 | 872 | felem_diff(x_out, x_out, beta); |
michael@0 | 873 | |
michael@0 | 874 | felem_diff(tmp, beta, x_out); |
michael@0 | 875 | felem_mul(tmp, alpha, tmp); |
michael@0 | 876 | felem_square(tmp2, gamma); |
michael@0 | 877 | felem_scalar_8(tmp2); |
michael@0 | 878 | felem_diff(y_out, tmp, tmp2); |
michael@0 | 879 | } |
michael@0 | 880 | |
michael@0 | 881 | /* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}. |
michael@0 | 882 | * (i.e. the second point is affine.) |
michael@0 | 883 | * |
michael@0 | 884 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl |
michael@0 | 885 | * |
michael@0 | 886 | * Note that this function does not handle P+P, infinity+P nor P+infinity |
michael@0 | 887 | * correctly. |
michael@0 | 888 | */ |
michael@0 | 889 | static void point_add_mixed(felem x_out, felem y_out, felem z_out, |
michael@0 | 890 | const felem x1, const felem y1, const felem z1, |
michael@0 | 891 | const felem x2, const felem y2) |
michael@0 | 892 | { |
michael@0 | 893 | felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp; |
michael@0 | 894 | |
michael@0 | 895 | felem_square(z1z1, z1); |
michael@0 | 896 | felem_sum(tmp, z1, z1); |
michael@0 | 897 | |
michael@0 | 898 | felem_mul(u2, x2, z1z1); |
michael@0 | 899 | felem_mul(z1z1z1, z1, z1z1); |
michael@0 | 900 | felem_mul(s2, y2, z1z1z1); |
michael@0 | 901 | felem_diff(h, u2, x1); |
michael@0 | 902 | felem_sum(i, h, h); |
michael@0 | 903 | felem_square(i, i); |
michael@0 | 904 | felem_mul(j, h, i); |
michael@0 | 905 | felem_diff(r, s2, y1); |
michael@0 | 906 | felem_sum(r, r, r); |
michael@0 | 907 | felem_mul(v, x1, i); |
michael@0 | 908 | |
michael@0 | 909 | felem_mul(z_out, tmp, h); |
michael@0 | 910 | felem_square(rr, r); |
michael@0 | 911 | felem_diff(x_out, rr, j); |
michael@0 | 912 | felem_diff(x_out, x_out, v); |
michael@0 | 913 | felem_diff(x_out, x_out, v); |
michael@0 | 914 | |
michael@0 | 915 | felem_diff(tmp, v, x_out); |
michael@0 | 916 | felem_mul(y_out, tmp, r); |
michael@0 | 917 | felem_mul(tmp, y1, j); |
michael@0 | 918 | felem_diff(y_out, y_out, tmp); |
michael@0 | 919 | felem_diff(y_out, y_out, tmp); |
michael@0 | 920 | } |
michael@0 | 921 | |
michael@0 | 922 | /* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}. |
michael@0 | 923 | * |
michael@0 | 924 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl |
michael@0 | 925 | * |
michael@0 | 926 | * Note that this function does not handle P+P, infinity+P nor P+infinity |
michael@0 | 927 | * correctly. |
michael@0 | 928 | */ |
michael@0 | 929 | static void point_add(felem x_out, felem y_out, felem z_out, |
michael@0 | 930 | const felem x1, const felem y1, const felem z1, |
michael@0 | 931 | const felem x2, const felem y2, const felem z2) |
michael@0 | 932 | { |
michael@0 | 933 | felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; |
michael@0 | 934 | |
michael@0 | 935 | felem_square(z1z1, z1); |
michael@0 | 936 | felem_square(z2z2, z2); |
michael@0 | 937 | felem_mul(u1, x1, z2z2); |
michael@0 | 938 | |
michael@0 | 939 | felem_sum(tmp, z1, z2); |
michael@0 | 940 | felem_square(tmp, tmp); |
michael@0 | 941 | felem_diff(tmp, tmp, z1z1); |
michael@0 | 942 | felem_diff(tmp, tmp, z2z2); |
michael@0 | 943 | |
michael@0 | 944 | felem_mul(z2z2z2, z2, z2z2); |
michael@0 | 945 | felem_mul(s1, y1, z2z2z2); |
michael@0 | 946 | |
michael@0 | 947 | felem_mul(u2, x2, z1z1); |
michael@0 | 948 | felem_mul(z1z1z1, z1, z1z1); |
michael@0 | 949 | felem_mul(s2, y2, z1z1z1); |
michael@0 | 950 | felem_diff(h, u2, u1); |
michael@0 | 951 | felem_sum(i, h, h); |
michael@0 | 952 | felem_square(i, i); |
michael@0 | 953 | felem_mul(j, h, i); |
michael@0 | 954 | felem_diff(r, s2, s1); |
michael@0 | 955 | felem_sum(r, r, r); |
michael@0 | 956 | felem_mul(v, u1, i); |
michael@0 | 957 | |
michael@0 | 958 | felem_mul(z_out, tmp, h); |
michael@0 | 959 | felem_square(rr, r); |
michael@0 | 960 | felem_diff(x_out, rr, j); |
michael@0 | 961 | felem_diff(x_out, x_out, v); |
michael@0 | 962 | felem_diff(x_out, x_out, v); |
michael@0 | 963 | |
michael@0 | 964 | felem_diff(tmp, v, x_out); |
michael@0 | 965 | felem_mul(y_out, tmp, r); |
michael@0 | 966 | felem_mul(tmp, s1, j); |
michael@0 | 967 | felem_diff(y_out, y_out, tmp); |
michael@0 | 968 | felem_diff(y_out, y_out, tmp); |
michael@0 | 969 | } |
michael@0 | 970 | |
michael@0 | 971 | /* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} + |
michael@0 | 972 | * {x2,y2,z2}. |
michael@0 | 973 | * |
michael@0 | 974 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl |
michael@0 | 975 | * |
michael@0 | 976 | * This function handles the case where {x1,y1,z1}={x2,y2,z2}. |
michael@0 | 977 | */ |
michael@0 | 978 | static void point_add_or_double_vartime( |
michael@0 | 979 | felem x_out, felem y_out, felem z_out, |
michael@0 | 980 | const felem x1, const felem y1, const felem z1, |
michael@0 | 981 | const felem x2, const felem y2, const felem z2) |
michael@0 | 982 | { |
michael@0 | 983 | felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; |
michael@0 | 984 | char x_equal, y_equal; |
michael@0 | 985 | |
michael@0 | 986 | felem_square(z1z1, z1); |
michael@0 | 987 | felem_square(z2z2, z2); |
michael@0 | 988 | felem_mul(u1, x1, z2z2); |
michael@0 | 989 | |
michael@0 | 990 | felem_sum(tmp, z1, z2); |
michael@0 | 991 | felem_square(tmp, tmp); |
michael@0 | 992 | felem_diff(tmp, tmp, z1z1); |
michael@0 | 993 | felem_diff(tmp, tmp, z2z2); |
michael@0 | 994 | |
michael@0 | 995 | felem_mul(z2z2z2, z2, z2z2); |
michael@0 | 996 | felem_mul(s1, y1, z2z2z2); |
michael@0 | 997 | |
michael@0 | 998 | felem_mul(u2, x2, z1z1); |
michael@0 | 999 | felem_mul(z1z1z1, z1, z1z1); |
michael@0 | 1000 | felem_mul(s2, y2, z1z1z1); |
michael@0 | 1001 | felem_diff(h, u2, u1); |
michael@0 | 1002 | x_equal = felem_is_zero_vartime(h); |
michael@0 | 1003 | felem_sum(i, h, h); |
michael@0 | 1004 | felem_square(i, i); |
michael@0 | 1005 | felem_mul(j, h, i); |
michael@0 | 1006 | felem_diff(r, s2, s1); |
michael@0 | 1007 | y_equal = felem_is_zero_vartime(r); |
michael@0 | 1008 | if (x_equal && y_equal) { |
michael@0 | 1009 | point_double(x_out, y_out, z_out, x1, y1, z1); |
michael@0 | 1010 | return; |
michael@0 | 1011 | } |
michael@0 | 1012 | felem_sum(r, r, r); |
michael@0 | 1013 | felem_mul(v, u1, i); |
michael@0 | 1014 | |
michael@0 | 1015 | felem_mul(z_out, tmp, h); |
michael@0 | 1016 | felem_square(rr, r); |
michael@0 | 1017 | felem_diff(x_out, rr, j); |
michael@0 | 1018 | felem_diff(x_out, x_out, v); |
michael@0 | 1019 | felem_diff(x_out, x_out, v); |
michael@0 | 1020 | |
michael@0 | 1021 | felem_diff(tmp, v, x_out); |
michael@0 | 1022 | felem_mul(y_out, tmp, r); |
michael@0 | 1023 | felem_mul(tmp, s1, j); |
michael@0 | 1024 | felem_diff(y_out, y_out, tmp); |
michael@0 | 1025 | felem_diff(y_out, y_out, tmp); |
michael@0 | 1026 | } |
michael@0 | 1027 | |
michael@0 | 1028 | /* copy_conditional sets out=in if mask = 0xffffffff in constant time. |
michael@0 | 1029 | * |
michael@0 | 1030 | * On entry: mask is either 0 or 0xffffffff. |
michael@0 | 1031 | */ |
michael@0 | 1032 | static void copy_conditional(felem out, const felem in, limb mask) |
michael@0 | 1033 | { |
michael@0 | 1034 | int i; |
michael@0 | 1035 | |
michael@0 | 1036 | for (i = 0; i < NLIMBS; i++) { |
michael@0 | 1037 | const limb tmp = mask & (in[i] ^ out[i]); |
michael@0 | 1038 | out[i] ^= tmp; |
michael@0 | 1039 | } |
michael@0 | 1040 | } |
michael@0 | 1041 | |
michael@0 | 1042 | /* select_affine_point sets {out_x,out_y} to the index'th entry of table. |
michael@0 | 1043 | * On entry: index < 16, table[0] must be zero. |
michael@0 | 1044 | */ |
michael@0 | 1045 | static void select_affine_point(felem out_x, felem out_y, |
michael@0 | 1046 | const limb *table, limb index) |
michael@0 | 1047 | { |
michael@0 | 1048 | limb i, j; |
michael@0 | 1049 | |
michael@0 | 1050 | memset(out_x, 0, sizeof(felem)); |
michael@0 | 1051 | memset(out_y, 0, sizeof(felem)); |
michael@0 | 1052 | |
michael@0 | 1053 | for (i = 1; i < 16; i++) { |
michael@0 | 1054 | limb mask = i ^ index; |
michael@0 | 1055 | mask |= mask >> 2; |
michael@0 | 1056 | mask |= mask >> 1; |
michael@0 | 1057 | mask &= 1; |
michael@0 | 1058 | mask--; |
michael@0 | 1059 | for (j = 0; j < NLIMBS; j++, table++) { |
michael@0 | 1060 | out_x[j] |= *table & mask; |
michael@0 | 1061 | } |
michael@0 | 1062 | for (j = 0; j < NLIMBS; j++, table++) { |
michael@0 | 1063 | out_y[j] |= *table & mask; |
michael@0 | 1064 | } |
michael@0 | 1065 | } |
michael@0 | 1066 | } |
michael@0 | 1067 | |
michael@0 | 1068 | /* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of |
michael@0 | 1069 | * table. On entry: index < 16, table[0] must be zero. |
michael@0 | 1070 | */ |
michael@0 | 1071 | static void select_jacobian_point(felem out_x, felem out_y, felem out_z, |
michael@0 | 1072 | const limb *table, limb index) |
michael@0 | 1073 | { |
michael@0 | 1074 | limb i, j; |
michael@0 | 1075 | |
michael@0 | 1076 | memset(out_x, 0, sizeof(felem)); |
michael@0 | 1077 | memset(out_y, 0, sizeof(felem)); |
michael@0 | 1078 | memset(out_z, 0, sizeof(felem)); |
michael@0 | 1079 | |
michael@0 | 1080 | /* The implicit value at index 0 is all zero. We don't need to perform that |
michael@0 | 1081 | * iteration of the loop because we already set out_* to zero. |
michael@0 | 1082 | */ |
michael@0 | 1083 | table += 3*NLIMBS; |
michael@0 | 1084 | |
michael@0 | 1085 | for (i = 1; i < 16; i++) { |
michael@0 | 1086 | limb mask = i ^ index; |
michael@0 | 1087 | mask |= mask >> 2; |
michael@0 | 1088 | mask |= mask >> 1; |
michael@0 | 1089 | mask &= 1; |
michael@0 | 1090 | mask--; |
michael@0 | 1091 | for (j = 0; j < NLIMBS; j++, table++) { |
michael@0 | 1092 | out_x[j] |= *table & mask; |
michael@0 | 1093 | } |
michael@0 | 1094 | for (j = 0; j < NLIMBS; j++, table++) { |
michael@0 | 1095 | out_y[j] |= *table & mask; |
michael@0 | 1096 | } |
michael@0 | 1097 | for (j = 0; j < NLIMBS; j++, table++) { |
michael@0 | 1098 | out_z[j] |= *table & mask; |
michael@0 | 1099 | } |
michael@0 | 1100 | } |
michael@0 | 1101 | } |
michael@0 | 1102 | |
michael@0 | 1103 | /* get_bit returns the bit'th bit of scalar. */ |
michael@0 | 1104 | static char get_bit(const u8 scalar[32], int bit) |
michael@0 | 1105 | { |
michael@0 | 1106 | return ((scalar[bit >> 3]) >> (bit & 7)) & 1; |
michael@0 | 1107 | } |
michael@0 | 1108 | |
michael@0 | 1109 | /* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian |
michael@0 | 1110 | * number. Note that the value of scalar must be less than the order of the |
michael@0 | 1111 | * group. |
michael@0 | 1112 | */ |
michael@0 | 1113 | static void scalar_base_mult(felem nx, felem ny, felem nz, const u8 scalar[32]) |
michael@0 | 1114 | { |
michael@0 | 1115 | int i, j; |
michael@0 | 1116 | limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask; |
michael@0 | 1117 | u32 table_offset; |
michael@0 | 1118 | |
michael@0 | 1119 | felem px, py; |
michael@0 | 1120 | felem tx, ty, tz; |
michael@0 | 1121 | |
michael@0 | 1122 | memset(nx, 0, sizeof(felem)); |
michael@0 | 1123 | memset(ny, 0, sizeof(felem)); |
michael@0 | 1124 | memset(nz, 0, sizeof(felem)); |
michael@0 | 1125 | |
michael@0 | 1126 | /* The loop adds bits at positions 0, 64, 128 and 192, followed by |
michael@0 | 1127 | * positions 32,96,160 and 224 and does this 32 times. |
michael@0 | 1128 | */ |
michael@0 | 1129 | for (i = 0; i < 32; i++) { |
michael@0 | 1130 | if (i) { |
michael@0 | 1131 | point_double(nx, ny, nz, nx, ny, nz); |
michael@0 | 1132 | } |
michael@0 | 1133 | table_offset = 0; |
michael@0 | 1134 | for (j = 0; j <= 32; j += 32) { |
michael@0 | 1135 | char bit0 = get_bit(scalar, 31 - i + j); |
michael@0 | 1136 | char bit1 = get_bit(scalar, 95 - i + j); |
michael@0 | 1137 | char bit2 = get_bit(scalar, 159 - i + j); |
michael@0 | 1138 | char bit3 = get_bit(scalar, 223 - i + j); |
michael@0 | 1139 | limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3); |
michael@0 | 1140 | |
michael@0 | 1141 | select_affine_point(px, py, kPrecomputed + table_offset, index); |
michael@0 | 1142 | table_offset += 30 * NLIMBS; |
michael@0 | 1143 | |
michael@0 | 1144 | /* Since scalar is less than the order of the group, we know that |
michael@0 | 1145 | * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle |
michael@0 | 1146 | * below. |
michael@0 | 1147 | */ |
michael@0 | 1148 | point_add_mixed(tx, ty, tz, nx, ny, nz, px, py); |
michael@0 | 1149 | /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero |
michael@0 | 1150 | * (a.k.a. the point at infinity). We handle that situation by |
michael@0 | 1151 | * copying the point from the table. |
michael@0 | 1152 | */ |
michael@0 | 1153 | copy_conditional(nx, px, n_is_infinity_mask); |
michael@0 | 1154 | copy_conditional(ny, py, n_is_infinity_mask); |
michael@0 | 1155 | copy_conditional(nz, kOne, n_is_infinity_mask); |
michael@0 | 1156 | |
michael@0 | 1157 | /* Equally, the result is also wrong if the point from the table is |
michael@0 | 1158 | * zero, which happens when the index is zero. We handle that by |
michael@0 | 1159 | * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0. |
michael@0 | 1160 | */ |
michael@0 | 1161 | p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); |
michael@0 | 1162 | mask = p_is_noninfinite_mask & ~n_is_infinity_mask; |
michael@0 | 1163 | copy_conditional(nx, tx, mask); |
michael@0 | 1164 | copy_conditional(ny, ty, mask); |
michael@0 | 1165 | copy_conditional(nz, tz, mask); |
michael@0 | 1166 | /* If p was not zero, then n is now non-zero. */ |
michael@0 | 1167 | n_is_infinity_mask &= ~p_is_noninfinite_mask; |
michael@0 | 1168 | } |
michael@0 | 1169 | } |
michael@0 | 1170 | } |
michael@0 | 1171 | |
michael@0 | 1172 | /* point_to_affine converts a Jacobian point to an affine point. If the input |
michael@0 | 1173 | * is the point at infinity then it returns (0, 0) in constant time. |
michael@0 | 1174 | */ |
michael@0 | 1175 | static void point_to_affine(felem x_out, felem y_out, |
michael@0 | 1176 | const felem nx, const felem ny, const felem nz) { |
michael@0 | 1177 | felem z_inv, z_inv_sq; |
michael@0 | 1178 | felem_inv(z_inv, nz); |
michael@0 | 1179 | felem_square(z_inv_sq, z_inv); |
michael@0 | 1180 | felem_mul(x_out, nx, z_inv_sq); |
michael@0 | 1181 | felem_mul(z_inv, z_inv, z_inv_sq); |
michael@0 | 1182 | felem_mul(y_out, ny, z_inv); |
michael@0 | 1183 | } |
michael@0 | 1184 | |
michael@0 | 1185 | /* scalar_mult sets {nx,ny,nz} = scalar*{x,y}. */ |
michael@0 | 1186 | static void scalar_mult(felem nx, felem ny, felem nz, |
michael@0 | 1187 | const felem x, const felem y, const u8 scalar[32]) |
michael@0 | 1188 | { |
michael@0 | 1189 | int i; |
michael@0 | 1190 | felem px, py, pz, tx, ty, tz; |
michael@0 | 1191 | felem precomp[16][3]; |
michael@0 | 1192 | limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask; |
michael@0 | 1193 | |
michael@0 | 1194 | /* We precompute 0,1,2,... times {x,y}. */ |
michael@0 | 1195 | memset(precomp, 0, sizeof(felem) * 3); |
michael@0 | 1196 | memcpy(&precomp[1][0], x, sizeof(felem)); |
michael@0 | 1197 | memcpy(&precomp[1][1], y, sizeof(felem)); |
michael@0 | 1198 | memcpy(&precomp[1][2], kOne, sizeof(felem)); |
michael@0 | 1199 | |
michael@0 | 1200 | for (i = 2; i < 16; i += 2) { |
michael@0 | 1201 | point_double(precomp[i][0], precomp[i][1], precomp[i][2], |
michael@0 | 1202 | precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]); |
michael@0 | 1203 | |
michael@0 | 1204 | point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2], |
michael@0 | 1205 | precomp[i][0], precomp[i][1], precomp[i][2], x, y); |
michael@0 | 1206 | } |
michael@0 | 1207 | |
michael@0 | 1208 | memset(nx, 0, sizeof(felem)); |
michael@0 | 1209 | memset(ny, 0, sizeof(felem)); |
michael@0 | 1210 | memset(nz, 0, sizeof(felem)); |
michael@0 | 1211 | n_is_infinity_mask = -1; |
michael@0 | 1212 | |
michael@0 | 1213 | /* We add in a window of four bits each iteration and do this 64 times. */ |
michael@0 | 1214 | for (i = 0; i < 64; i++) { |
michael@0 | 1215 | if (i) { |
michael@0 | 1216 | point_double(nx, ny, nz, nx, ny, nz); |
michael@0 | 1217 | point_double(nx, ny, nz, nx, ny, nz); |
michael@0 | 1218 | point_double(nx, ny, nz, nx, ny, nz); |
michael@0 | 1219 | point_double(nx, ny, nz, nx, ny, nz); |
michael@0 | 1220 | } |
michael@0 | 1221 | |
michael@0 | 1222 | index = scalar[31 - i / 2]; |
michael@0 | 1223 | if ((i & 1) == 1) { |
michael@0 | 1224 | index &= 15; |
michael@0 | 1225 | } else { |
michael@0 | 1226 | index >>= 4; |
michael@0 | 1227 | } |
michael@0 | 1228 | |
michael@0 | 1229 | /* See the comments in scalar_base_mult about handling infinities. */ |
michael@0 | 1230 | select_jacobian_point(px, py, pz, precomp[0][0], index); |
michael@0 | 1231 | point_add(tx, ty, tz, nx, ny, nz, px, py, pz); |
michael@0 | 1232 | copy_conditional(nx, px, n_is_infinity_mask); |
michael@0 | 1233 | copy_conditional(ny, py, n_is_infinity_mask); |
michael@0 | 1234 | copy_conditional(nz, pz, n_is_infinity_mask); |
michael@0 | 1235 | |
michael@0 | 1236 | p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); |
michael@0 | 1237 | mask = p_is_noninfinite_mask & ~n_is_infinity_mask; |
michael@0 | 1238 | copy_conditional(nx, tx, mask); |
michael@0 | 1239 | copy_conditional(ny, ty, mask); |
michael@0 | 1240 | copy_conditional(nz, tz, mask); |
michael@0 | 1241 | n_is_infinity_mask &= ~p_is_noninfinite_mask; |
michael@0 | 1242 | } |
michael@0 | 1243 | } |
michael@0 | 1244 | |
michael@0 | 1245 | /* Interface with Freebl: */ |
michael@0 | 1246 | |
michael@0 | 1247 | /* BYTESWAP_MP_DIGIT_TO_LE swaps the bytes of a mp_digit to |
michael@0 | 1248 | * little-endian order. |
michael@0 | 1249 | */ |
michael@0 | 1250 | #ifdef IS_BIG_ENDIAN |
michael@0 | 1251 | #ifdef __APPLE__ |
michael@0 | 1252 | #include <libkern/OSByteOrder.h> |
michael@0 | 1253 | #define BYTESWAP32(x) OSSwapInt32(x) |
michael@0 | 1254 | #define BYTESWAP64(x) OSSwapInt64(x) |
michael@0 | 1255 | #else |
michael@0 | 1256 | #define BYTESWAP32(x) \ |
michael@0 | 1257 | ((x) >> 24 | (x) >> 8 & 0xff00 | ((x) & 0xff00) << 8 | (x) << 24) |
michael@0 | 1258 | #define BYTESWAP64(x) \ |
michael@0 | 1259 | ((x) >> 56 | (x) >> 40 & 0xff00 | \ |
michael@0 | 1260 | (x) >> 24 & 0xff0000 | (x) >> 8 & 0xff000000 | \ |
michael@0 | 1261 | ((x) & 0xff000000) << 8 | ((x) & 0xff0000) << 24 | \ |
michael@0 | 1262 | ((x) & 0xff00) << 40 | (x) << 56) |
michael@0 | 1263 | #endif |
michael@0 | 1264 | |
michael@0 | 1265 | #ifdef MP_USE_UINT_DIGIT |
michael@0 | 1266 | #define BYTESWAP_MP_DIGIT_TO_LE(x) BYTESWAP32(x) |
michael@0 | 1267 | #else |
michael@0 | 1268 | #define BYTESWAP_MP_DIGIT_TO_LE(x) BYTESWAP64(x) |
michael@0 | 1269 | #endif |
michael@0 | 1270 | #endif /* IS_BIG_ENDIAN */ |
michael@0 | 1271 | |
michael@0 | 1272 | #ifdef MP_USE_UINT_DIGIT |
michael@0 | 1273 | static const mp_digit kRInvDigits[8] = { |
michael@0 | 1274 | 0x80000000, 1, 0xffffffff, 0, |
michael@0 | 1275 | 0x80000001, 0xfffffffe, 1, 0x7fffffff |
michael@0 | 1276 | }; |
michael@0 | 1277 | #else |
michael@0 | 1278 | static const mp_digit kRInvDigits[4] = { |
michael@0 | 1279 | PR_UINT64(0x180000000), 0xffffffff, |
michael@0 | 1280 | PR_UINT64(0xfffffffe80000001), PR_UINT64(0x7fffffff00000001) |
michael@0 | 1281 | }; |
michael@0 | 1282 | #endif |
michael@0 | 1283 | #define MP_DIGITS_IN_256_BITS (32/sizeof(mp_digit)) |
michael@0 | 1284 | static const mp_int kRInv = { |
michael@0 | 1285 | MP_ZPOS, |
michael@0 | 1286 | MP_DIGITS_IN_256_BITS, |
michael@0 | 1287 | MP_DIGITS_IN_256_BITS, |
michael@0 | 1288 | (mp_digit*) kRInvDigits |
michael@0 | 1289 | }; |
michael@0 | 1290 | |
michael@0 | 1291 | static const limb kTwo28 = 0x10000000; |
michael@0 | 1292 | static const limb kTwo29 = 0x20000000; |
michael@0 | 1293 | |
michael@0 | 1294 | /* to_montgomery sets out = R*in. */ |
michael@0 | 1295 | static mp_err to_montgomery(felem out, const mp_int *in, const ECGroup *group) |
michael@0 | 1296 | { |
michael@0 | 1297 | /* There are no MPI functions for bitshift operations and we wish to shift |
michael@0 | 1298 | * in 257 bits left so we move the digits 256-bits left and then multiply |
michael@0 | 1299 | * by two. |
michael@0 | 1300 | */ |
michael@0 | 1301 | mp_int in_shifted; |
michael@0 | 1302 | int i; |
michael@0 | 1303 | mp_err res; |
michael@0 | 1304 | |
michael@0 | 1305 | mp_init(&in_shifted); |
michael@0 | 1306 | s_mp_pad(&in_shifted, MP_USED(in) + MP_DIGITS_IN_256_BITS); |
michael@0 | 1307 | memcpy(&MP_DIGIT(&in_shifted, MP_DIGITS_IN_256_BITS), |
michael@0 | 1308 | MP_DIGITS(in), |
michael@0 | 1309 | MP_USED(in)*sizeof(mp_digit)); |
michael@0 | 1310 | mp_mul_2(&in_shifted, &in_shifted); |
michael@0 | 1311 | MP_CHECKOK(group->meth->field_mod(&in_shifted, &in_shifted, group->meth)); |
michael@0 | 1312 | |
michael@0 | 1313 | for (i = 0;; i++) { |
michael@0 | 1314 | out[i] = MP_DIGIT(&in_shifted, 0) & kBottom29Bits; |
michael@0 | 1315 | mp_div_d(&in_shifted, kTwo29, &in_shifted, NULL); |
michael@0 | 1316 | |
michael@0 | 1317 | i++; |
michael@0 | 1318 | if (i == NLIMBS) |
michael@0 | 1319 | break; |
michael@0 | 1320 | out[i] = MP_DIGIT(&in_shifted, 0) & kBottom28Bits; |
michael@0 | 1321 | mp_div_d(&in_shifted, kTwo28, &in_shifted, NULL); |
michael@0 | 1322 | } |
michael@0 | 1323 | |
michael@0 | 1324 | CLEANUP: |
michael@0 | 1325 | mp_clear(&in_shifted); |
michael@0 | 1326 | return res; |
michael@0 | 1327 | } |
michael@0 | 1328 | |
michael@0 | 1329 | /* from_montgomery sets out=in/R. */ |
michael@0 | 1330 | static mp_err from_montgomery(mp_int *out, const felem in, |
michael@0 | 1331 | const ECGroup *group) |
michael@0 | 1332 | { |
michael@0 | 1333 | mp_int result, tmp; |
michael@0 | 1334 | mp_err res; |
michael@0 | 1335 | int i; |
michael@0 | 1336 | |
michael@0 | 1337 | mp_init(&result); |
michael@0 | 1338 | mp_init(&tmp); |
michael@0 | 1339 | |
michael@0 | 1340 | MP_CHECKOK(mp_add_d(&tmp, in[NLIMBS-1], &result)); |
michael@0 | 1341 | for (i = NLIMBS-2; i >= 0; i--) { |
michael@0 | 1342 | if ((i & 1) == 0) { |
michael@0 | 1343 | MP_CHECKOK(mp_mul_d(&result, kTwo29, &tmp)); |
michael@0 | 1344 | } else { |
michael@0 | 1345 | MP_CHECKOK(mp_mul_d(&result, kTwo28, &tmp)); |
michael@0 | 1346 | } |
michael@0 | 1347 | MP_CHECKOK(mp_add_d(&tmp, in[i], &result)); |
michael@0 | 1348 | } |
michael@0 | 1349 | |
michael@0 | 1350 | MP_CHECKOK(mp_mul(&result, &kRInv, out)); |
michael@0 | 1351 | MP_CHECKOK(group->meth->field_mod(out, out, group->meth)); |
michael@0 | 1352 | |
michael@0 | 1353 | CLEANUP: |
michael@0 | 1354 | mp_clear(&result); |
michael@0 | 1355 | mp_clear(&tmp); |
michael@0 | 1356 | return res; |
michael@0 | 1357 | } |
michael@0 | 1358 | |
michael@0 | 1359 | /* scalar_from_mp_int sets out_scalar=n, where n < the group order. */ |
michael@0 | 1360 | static void scalar_from_mp_int(u8 out_scalar[32], const mp_int *n) |
michael@0 | 1361 | { |
michael@0 | 1362 | /* We require that |n| is less than the order of the group and therefore it |
michael@0 | 1363 | * will fit into |out_scalar|. However, these is a timing side-channel here |
michael@0 | 1364 | * that we cannot avoid: if |n| is sufficiently small it may be one or more |
michael@0 | 1365 | * words too short and we'll copy less data. |
michael@0 | 1366 | */ |
michael@0 | 1367 | memset(out_scalar, 0, 32); |
michael@0 | 1368 | #ifdef IS_LITTLE_ENDIAN |
michael@0 | 1369 | memcpy(out_scalar, MP_DIGITS(n), MP_USED(n) * sizeof(mp_digit)); |
michael@0 | 1370 | #else |
michael@0 | 1371 | { |
michael@0 | 1372 | mp_size i; |
michael@0 | 1373 | mp_digit swapped[MP_DIGITS_IN_256_BITS]; |
michael@0 | 1374 | for (i = 0; i < MP_USED(n); i++) { |
michael@0 | 1375 | swapped[i] = BYTESWAP_MP_DIGIT_TO_LE(MP_DIGIT(n, i)); |
michael@0 | 1376 | } |
michael@0 | 1377 | memcpy(out_scalar, swapped, MP_USED(n) * sizeof(mp_digit)); |
michael@0 | 1378 | } |
michael@0 | 1379 | #endif |
michael@0 | 1380 | } |
michael@0 | 1381 | |
michael@0 | 1382 | /* ec_GFp_nistp256_base_point_mul sets {out_x,out_y} = nG, where n is < the |
michael@0 | 1383 | * order of the group. |
michael@0 | 1384 | */ |
michael@0 | 1385 | static mp_err ec_GFp_nistp256_base_point_mul(const mp_int *n, |
michael@0 | 1386 | mp_int *out_x, mp_int *out_y, |
michael@0 | 1387 | const ECGroup *group) |
michael@0 | 1388 | { |
michael@0 | 1389 | u8 scalar[32]; |
michael@0 | 1390 | felem x, y, z, x_affine, y_affine; |
michael@0 | 1391 | mp_err res; |
michael@0 | 1392 | |
michael@0 | 1393 | /* FIXME(agl): test that n < order. */ |
michael@0 | 1394 | |
michael@0 | 1395 | scalar_from_mp_int(scalar, n); |
michael@0 | 1396 | scalar_base_mult(x, y, z, scalar); |
michael@0 | 1397 | point_to_affine(x_affine, y_affine, x, y, z); |
michael@0 | 1398 | MP_CHECKOK(from_montgomery(out_x, x_affine, group)); |
michael@0 | 1399 | MP_CHECKOK(from_montgomery(out_y, y_affine, group)); |
michael@0 | 1400 | |
michael@0 | 1401 | CLEANUP: |
michael@0 | 1402 | return res; |
michael@0 | 1403 | } |
michael@0 | 1404 | |
michael@0 | 1405 | /* ec_GFp_nistp256_point_mul sets {out_x,out_y} = n*{in_x,in_y}, where n is < |
michael@0 | 1406 | * the order of the group. |
michael@0 | 1407 | */ |
michael@0 | 1408 | static mp_err ec_GFp_nistp256_point_mul(const mp_int *n, |
michael@0 | 1409 | const mp_int *in_x, const mp_int *in_y, |
michael@0 | 1410 | mp_int *out_x, mp_int *out_y, |
michael@0 | 1411 | const ECGroup *group) |
michael@0 | 1412 | { |
michael@0 | 1413 | u8 scalar[32]; |
michael@0 | 1414 | felem x, y, z, x_affine, y_affine, px, py; |
michael@0 | 1415 | mp_err res; |
michael@0 | 1416 | |
michael@0 | 1417 | scalar_from_mp_int(scalar, n); |
michael@0 | 1418 | |
michael@0 | 1419 | MP_CHECKOK(to_montgomery(px, in_x, group)); |
michael@0 | 1420 | MP_CHECKOK(to_montgomery(py, in_y, group)); |
michael@0 | 1421 | |
michael@0 | 1422 | scalar_mult(x, y, z, px, py, scalar); |
michael@0 | 1423 | point_to_affine(x_affine, y_affine, x, y, z); |
michael@0 | 1424 | MP_CHECKOK(from_montgomery(out_x, x_affine, group)); |
michael@0 | 1425 | MP_CHECKOK(from_montgomery(out_y, y_affine, group)); |
michael@0 | 1426 | |
michael@0 | 1427 | CLEANUP: |
michael@0 | 1428 | return res; |
michael@0 | 1429 | } |
michael@0 | 1430 | |
michael@0 | 1431 | /* ec_GFp_nistp256_point_mul_vartime sets {out_x,out_y} = n1*G + |
michael@0 | 1432 | * n2*{in_x,in_y}, where n1 and n2 are < the order of the group. |
michael@0 | 1433 | * |
michael@0 | 1434 | * As indicated by the name, this function operates in variable time. This |
michael@0 | 1435 | * is safe because it's used for signature validation which doesn't deal |
michael@0 | 1436 | * with secrets. |
michael@0 | 1437 | */ |
michael@0 | 1438 | static mp_err ec_GFp_nistp256_points_mul_vartime( |
michael@0 | 1439 | const mp_int *n1, const mp_int *n2, |
michael@0 | 1440 | const mp_int *in_x, const mp_int *in_y, |
michael@0 | 1441 | mp_int *out_x, mp_int *out_y, |
michael@0 | 1442 | const ECGroup *group) |
michael@0 | 1443 | { |
michael@0 | 1444 | u8 scalar1[32], scalar2[32]; |
michael@0 | 1445 | felem x1, y1, z1, x2, y2, z2, x_affine, y_affine, px, py; |
michael@0 | 1446 | mp_err res = MP_OKAY; |
michael@0 | 1447 | |
michael@0 | 1448 | /* If n2 == NULL, this is just a base-point multiplication. */ |
michael@0 | 1449 | if (n2 == NULL) { |
michael@0 | 1450 | return ec_GFp_nistp256_base_point_mul(n1, out_x, out_y, group); |
michael@0 | 1451 | } |
michael@0 | 1452 | |
michael@0 | 1453 | /* If n1 == nULL, this is just an arbitary-point multiplication. */ |
michael@0 | 1454 | if (n1 == NULL) { |
michael@0 | 1455 | return ec_GFp_nistp256_point_mul(n2, in_x, in_y, out_x, out_y, group); |
michael@0 | 1456 | } |
michael@0 | 1457 | |
michael@0 | 1458 | /* If both scalars are zero, then the result is the point at infinity. */ |
michael@0 | 1459 | if (mp_cmp_z(n1) == 0 && mp_cmp_z(n2) == 0) { |
michael@0 | 1460 | mp_zero(out_x); |
michael@0 | 1461 | mp_zero(out_y); |
michael@0 | 1462 | return res; |
michael@0 | 1463 | } |
michael@0 | 1464 | |
michael@0 | 1465 | scalar_from_mp_int(scalar1, n1); |
michael@0 | 1466 | scalar_from_mp_int(scalar2, n2); |
michael@0 | 1467 | |
michael@0 | 1468 | MP_CHECKOK(to_montgomery(px, in_x, group)); |
michael@0 | 1469 | MP_CHECKOK(to_montgomery(py, in_y, group)); |
michael@0 | 1470 | scalar_base_mult(x1, y1, z1, scalar1); |
michael@0 | 1471 | scalar_mult(x2, y2, z2, px, py, scalar2); |
michael@0 | 1472 | |
michael@0 | 1473 | if (mp_cmp_z(n2) == 0) { |
michael@0 | 1474 | /* If n2 == 0, then {x2,y2,z2} is zero and the result is just |
michael@0 | 1475 | * {x1,y1,z1}. */ |
michael@0 | 1476 | } else if (mp_cmp_z(n1) == 0) { |
michael@0 | 1477 | /* If n1 == 0, then {x1,y1,z1} is zero and the result is just |
michael@0 | 1478 | * {x2,y2,z2}. */ |
michael@0 | 1479 | memcpy(x1, x2, sizeof(x2)); |
michael@0 | 1480 | memcpy(y1, y2, sizeof(y2)); |
michael@0 | 1481 | memcpy(z1, z2, sizeof(z2)); |
michael@0 | 1482 | } else { |
michael@0 | 1483 | /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */ |
michael@0 | 1484 | point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2); |
michael@0 | 1485 | } |
michael@0 | 1486 | |
michael@0 | 1487 | point_to_affine(x_affine, y_affine, x1, y1, z1); |
michael@0 | 1488 | MP_CHECKOK(from_montgomery(out_x, x_affine, group)); |
michael@0 | 1489 | MP_CHECKOK(from_montgomery(out_y, y_affine, group)); |
michael@0 | 1490 | |
michael@0 | 1491 | CLEANUP: |
michael@0 | 1492 | return res; |
michael@0 | 1493 | } |
michael@0 | 1494 | |
michael@0 | 1495 | /* Wire in fast point multiplication for named curves. */ |
michael@0 | 1496 | mp_err ec_group_set_gfp256_32(ECGroup *group, ECCurveName name) |
michael@0 | 1497 | { |
michael@0 | 1498 | if (name == ECCurve_NIST_P256) { |
michael@0 | 1499 | group->base_point_mul = &ec_GFp_nistp256_base_point_mul; |
michael@0 | 1500 | group->point_mul = &ec_GFp_nistp256_point_mul; |
michael@0 | 1501 | group->points_mul = &ec_GFp_nistp256_points_mul_vartime; |
michael@0 | 1502 | } |
michael@0 | 1503 | return MP_OKAY; |
michael@0 | 1504 | } |