security/nss/lib/freebl/ecl/ecp_521.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /* This Source Code Form is subject to the terms of the Mozilla Public
michael@0 2 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 4
michael@0 5 #include "ecp.h"
michael@0 6 #include "mpi.h"
michael@0 7 #include "mplogic.h"
michael@0 8 #include "mpi-priv.h"
michael@0 9
michael@0 10 #define ECP521_DIGITS ECL_CURVE_DIGITS(521)
michael@0 11
michael@0 12 /* Fast modular reduction for p521 = 2^521 - 1. a can be r. Uses
michael@0 13 * algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to
michael@0 14 * Elliptic Curve Cryptography. */
michael@0 15 static mp_err
michael@0 16 ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
michael@0 17 {
michael@0 18 mp_err res = MP_OKAY;
michael@0 19 int a_bits = mpl_significant_bits(a);
michael@0 20 int i;
michael@0 21
michael@0 22 /* m1, m2 are statically-allocated mp_int of exactly the size we need */
michael@0 23 mp_int m1;
michael@0 24
michael@0 25 mp_digit s1[ECP521_DIGITS] = { 0 };
michael@0 26
michael@0 27 MP_SIGN(&m1) = MP_ZPOS;
michael@0 28 MP_ALLOC(&m1) = ECP521_DIGITS;
michael@0 29 MP_USED(&m1) = ECP521_DIGITS;
michael@0 30 MP_DIGITS(&m1) = s1;
michael@0 31
michael@0 32 if (a_bits < 521) {
michael@0 33 if (a==r) return MP_OKAY;
michael@0 34 return mp_copy(a, r);
michael@0 35 }
michael@0 36 /* for polynomials larger than twice the field size or polynomials
michael@0 37 * not using all words, use regular reduction */
michael@0 38 if (a_bits > (521*2)) {
michael@0 39 MP_CHECKOK(mp_mod(a, &meth->irr, r));
michael@0 40 } else {
michael@0 41 #define FIRST_DIGIT (ECP521_DIGITS-1)
michael@0 42 for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) {
michael@0 43 s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9)
michael@0 44 | (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9));
michael@0 45 }
michael@0 46 s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9;
michael@0 47
michael@0 48 if ( a != r ) {
michael@0 49 MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS));
michael@0 50 for (i = 0; i < ECP521_DIGITS; i++) {
michael@0 51 MP_DIGIT(r,i) = MP_DIGIT(a, i);
michael@0 52 }
michael@0 53 }
michael@0 54 MP_USED(r) = ECP521_DIGITS;
michael@0 55 MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF;
michael@0 56
michael@0 57 MP_CHECKOK(s_mp_add(r, &m1));
michael@0 58 if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) {
michael@0 59 MP_CHECKOK(s_mp_add_d(r,1));
michael@0 60 MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF;
michael@0 61 } else if (s_mp_cmp(r, &meth->irr) == 0) {
michael@0 62 mp_zero(r);
michael@0 63 }
michael@0 64 s_mp_clamp(r);
michael@0 65 }
michael@0 66
michael@0 67 CLEANUP:
michael@0 68 return res;
michael@0 69 }
michael@0 70
michael@0 71 /* Compute the square of polynomial a, reduce modulo p521. Store the
michael@0 72 * result in r. r could be a. Uses optimized modular reduction for p521.
michael@0 73 */
michael@0 74 static mp_err
michael@0 75 ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
michael@0 76 {
michael@0 77 mp_err res = MP_OKAY;
michael@0 78
michael@0 79 MP_CHECKOK(mp_sqr(a, r));
michael@0 80 MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
michael@0 81 CLEANUP:
michael@0 82 return res;
michael@0 83 }
michael@0 84
michael@0 85 /* Compute the product of two polynomials a and b, reduce modulo p521.
michael@0 86 * Store the result in r. r could be a or b; a could be b. Uses
michael@0 87 * optimized modular reduction for p521. */
michael@0 88 static mp_err
michael@0 89 ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r,
michael@0 90 const GFMethod *meth)
michael@0 91 {
michael@0 92 mp_err res = MP_OKAY;
michael@0 93
michael@0 94 MP_CHECKOK(mp_mul(a, b, r));
michael@0 95 MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
michael@0 96 CLEANUP:
michael@0 97 return res;
michael@0 98 }
michael@0 99
michael@0 100 /* Divides two field elements. If a is NULL, then returns the inverse of
michael@0 101 * b. */
michael@0 102 static mp_err
michael@0 103 ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r,
michael@0 104 const GFMethod *meth)
michael@0 105 {
michael@0 106 mp_err res = MP_OKAY;
michael@0 107 mp_int t;
michael@0 108
michael@0 109 /* If a is NULL, then return the inverse of b, otherwise return a/b. */
michael@0 110 if (a == NULL) {
michael@0 111 return mp_invmod(b, &meth->irr, r);
michael@0 112 } else {
michael@0 113 /* MPI doesn't support divmod, so we implement it using invmod and
michael@0 114 * mulmod. */
michael@0 115 MP_CHECKOK(mp_init(&t));
michael@0 116 MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
michael@0 117 MP_CHECKOK(mp_mul(a, &t, r));
michael@0 118 MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
michael@0 119 CLEANUP:
michael@0 120 mp_clear(&t);
michael@0 121 return res;
michael@0 122 }
michael@0 123 }
michael@0 124
michael@0 125 /* Wire in fast field arithmetic and precomputation of base point for
michael@0 126 * named curves. */
michael@0 127 mp_err
michael@0 128 ec_group_set_gfp521(ECGroup *group, ECCurveName name)
michael@0 129 {
michael@0 130 if (name == ECCurve_NIST_P521) {
michael@0 131 group->meth->field_mod = &ec_GFp_nistp521_mod;
michael@0 132 group->meth->field_mul = &ec_GFp_nistp521_mul;
michael@0 133 group->meth->field_sqr = &ec_GFp_nistp521_sqr;
michael@0 134 group->meth->field_div = &ec_GFp_nistp521_div;
michael@0 135 }
michael@0 136 return MP_OKAY;
michael@0 137 }

mercurial