security/nss/lib/freebl/ecl/ecp_fp.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /* This Source Code Form is subject to the terms of the Mozilla Public
michael@0 2 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 4
michael@0 5 #ifndef __ecp_fp_h_
michael@0 6 #define __ecp_fp_h_
michael@0 7
michael@0 8 #include "mpi.h"
michael@0 9 #include "ecl.h"
michael@0 10 #include "ecp.h"
michael@0 11
michael@0 12 #include <sys/types.h>
michael@0 13 #include "mpi-priv.h"
michael@0 14
michael@0 15 #ifdef ECL_DEBUG
michael@0 16 #include <assert.h>
michael@0 17 #endif
michael@0 18
michael@0 19 /* Largest number of doubles to store one reduced number in floating
michael@0 20 * point. Used for memory allocation on the stack. */
michael@0 21 #define ECFP_MAXDOUBLES 10
michael@0 22
michael@0 23 /* For debugging purposes */
michael@0 24 #ifndef ECL_DEBUG
michael@0 25 #define ECFP_ASSERT(x)
michael@0 26 #else
michael@0 27 #define ECFP_ASSERT(x) assert(x)
michael@0 28 #endif
michael@0 29
michael@0 30 /* ECFP_Ti = 2^(i*24) Define as preprocessor constants so we can use in
michael@0 31 * multiple static constants */
michael@0 32 #define ECFP_T0 1.0
michael@0 33 #define ECFP_T1 16777216.0
michael@0 34 #define ECFP_T2 281474976710656.0
michael@0 35 #define ECFP_T3 4722366482869645213696.0
michael@0 36 #define ECFP_T4 79228162514264337593543950336.0
michael@0 37 #define ECFP_T5 1329227995784915872903807060280344576.0
michael@0 38 #define ECFP_T6 22300745198530623141535718272648361505980416.0
michael@0 39 #define ECFP_T7 374144419156711147060143317175368453031918731001856.0
michael@0 40 #define ECFP_T8 6277101735386680763835789423207666416102355444464034512896.0
michael@0 41 #define ECFP_T9 105312291668557186697918027683670432318895095400549111254310977536.0
michael@0 42 #define ECFP_T10 1766847064778384329583297500742918515827483896875618958121606201292619776.0
michael@0 43 #define ECFP_T11 29642774844752946028434172162224104410437116074403984394101141506025761187823616.0
michael@0 44 #define ECFP_T12 497323236409786642155382248146820840100456150797347717440463976893159497012533375533056.0
michael@0 45 #define ECFP_T13 8343699359066055009355553539724812947666814540455674882605631280555545803830627148527195652096.0
michael@0 46 #define ECFP_T14 139984046386112763159840142535527767382602843577165595931249318810236991948760059086304843329475444736.0
michael@0 47 #define ECFP_T15 2348542582773833227889480596789337027375682548908319870707290971532209025114608443463698998384768703031934976.0
michael@0 48 #define ECFP_T16 39402006196394479212279040100143613805079739270465446667948293404245\
michael@0 49 721771497210611414266254884915640806627990306816.0
michael@0 50 #define ECFP_T17 66105596879024859895191530803277103982840468296428121928464879527440\
michael@0 51 5791236311345825189210439715284847591212025023358304256.0
michael@0 52 #define ECFP_T18 11090678776483259438313656736572334813745748301503266300681918322458\
michael@0 53 485231222502492159897624416558312389564843845614287315896631296.0
michael@0 54 #define ECFP_T19 18607071341967536398062689481932916079453218833595342343206149099024\
michael@0 55 36577570298683715049089827234727835552055312041415509848580169253519\
michael@0 56 36.0
michael@0 57
michael@0 58 #define ECFP_TWO160 1461501637330902918203684832716283019655932542976.0
michael@0 59 #define ECFP_TWO192 6277101735386680763835789423207666416102355444464034512896.0
michael@0 60 #define ECFP_TWO224 26959946667150639794667015087019630673637144422540572481103610249216.0
michael@0 61
michael@0 62 /* Multiplicative constants */
michael@0 63 static const double ecfp_two32 = 4294967296.0;
michael@0 64 static const double ecfp_two64 = 18446744073709551616.0;
michael@0 65 static const double ecfp_twom16 = .0000152587890625;
michael@0 66 static const double ecfp_twom128 =
michael@0 67 .00000000000000000000000000000000000000293873587705571876992184134305561419454666389193021880377187926569604314863681793212890625;
michael@0 68 static const double ecfp_twom129 =
michael@0 69 .000000000000000000000000000000000000001469367938527859384960920671527807097273331945965109401885939632848021574318408966064453125;
michael@0 70 static const double ecfp_twom160 =
michael@0 71 .0000000000000000000000000000000000000000000000006842277657836020854119773355907793609766904013068924666782559979930620520927053718196475529111921787261962890625;
michael@0 72 static const double ecfp_twom192 =
michael@0 73 .000000000000000000000000000000000000000000000000000000000159309191113245227702888039776771180559110455519261878607388585338616290151305816094308987472018268594098344692611135542392730712890625;
michael@0 74 static const double ecfp_twom224 =
michael@0 75 .00000000000000000000000000000000000000000000000000000000000000000003709206150687421385731735261547639513367564778757791002453039058917581340095629358997312082723208437536338919136001159027049567384892725385725498199462890625;
michael@0 76
michael@0 77 /* ecfp_exp[i] = 2^(i*ECFP_DSIZE) */
michael@0 78 static const double ecfp_exp[2 * ECFP_MAXDOUBLES] = {
michael@0 79 ECFP_T0, ECFP_T1, ECFP_T2, ECFP_T3, ECFP_T4, ECFP_T5,
michael@0 80 ECFP_T6, ECFP_T7, ECFP_T8, ECFP_T9, ECFP_T10, ECFP_T11,
michael@0 81 ECFP_T12, ECFP_T13, ECFP_T14, ECFP_T15, ECFP_T16, ECFP_T17, ECFP_T18,
michael@0 82 ECFP_T19
michael@0 83 };
michael@0 84
michael@0 85 /* 1.1 * 2^52 Uses 2^52 to truncate, the .1 is an extra 2^51 to protect
michael@0 86 * the 2^52 bit, so that adding alphas to a negative number won't borrow
michael@0 87 * and empty the important 2^52 bit */
michael@0 88 #define ECFP_ALPHABASE_53 6755399441055744.0
michael@0 89 /* Special case: On some platforms, notably x86 Linux, there is an
michael@0 90 * extended-precision floating point representation with 64-bits of
michael@0 91 * precision in the mantissa. These extra bits of precision require a
michael@0 92 * larger value of alpha to truncate, i.e. 1.1 * 2^63. */
michael@0 93 #define ECFP_ALPHABASE_64 13835058055282163712.0
michael@0 94
michael@0 95 /*
michael@0 96 * ecfp_alpha[i] = 1.5 * 2^(52 + i*ECFP_DSIZE) we add and subtract alpha
michael@0 97 * to truncate floating point numbers to a certain number of bits for
michael@0 98 * tidying */
michael@0 99 static const double ecfp_alpha_53[2 * ECFP_MAXDOUBLES] = {
michael@0 100 ECFP_ALPHABASE_53 * ECFP_T0,
michael@0 101 ECFP_ALPHABASE_53 * ECFP_T1,
michael@0 102 ECFP_ALPHABASE_53 * ECFP_T2,
michael@0 103 ECFP_ALPHABASE_53 * ECFP_T3,
michael@0 104 ECFP_ALPHABASE_53 * ECFP_T4,
michael@0 105 ECFP_ALPHABASE_53 * ECFP_T5,
michael@0 106 ECFP_ALPHABASE_53 * ECFP_T6,
michael@0 107 ECFP_ALPHABASE_53 * ECFP_T7,
michael@0 108 ECFP_ALPHABASE_53 * ECFP_T8,
michael@0 109 ECFP_ALPHABASE_53 * ECFP_T9,
michael@0 110 ECFP_ALPHABASE_53 * ECFP_T10,
michael@0 111 ECFP_ALPHABASE_53 * ECFP_T11,
michael@0 112 ECFP_ALPHABASE_53 * ECFP_T12,
michael@0 113 ECFP_ALPHABASE_53 * ECFP_T13,
michael@0 114 ECFP_ALPHABASE_53 * ECFP_T14,
michael@0 115 ECFP_ALPHABASE_53 * ECFP_T15,
michael@0 116 ECFP_ALPHABASE_53 * ECFP_T16,
michael@0 117 ECFP_ALPHABASE_53 * ECFP_T17,
michael@0 118 ECFP_ALPHABASE_53 * ECFP_T18,
michael@0 119 ECFP_ALPHABASE_53 * ECFP_T19
michael@0 120 };
michael@0 121
michael@0 122 /*
michael@0 123 * ecfp_alpha[i] = 1.5 * 2^(63 + i*ECFP_DSIZE) we add and subtract alpha
michael@0 124 * to truncate floating point numbers to a certain number of bits for
michael@0 125 * tidying */
michael@0 126 static const double ecfp_alpha_64[2 * ECFP_MAXDOUBLES] = {
michael@0 127 ECFP_ALPHABASE_64 * ECFP_T0,
michael@0 128 ECFP_ALPHABASE_64 * ECFP_T1,
michael@0 129 ECFP_ALPHABASE_64 * ECFP_T2,
michael@0 130 ECFP_ALPHABASE_64 * ECFP_T3,
michael@0 131 ECFP_ALPHABASE_64 * ECFP_T4,
michael@0 132 ECFP_ALPHABASE_64 * ECFP_T5,
michael@0 133 ECFP_ALPHABASE_64 * ECFP_T6,
michael@0 134 ECFP_ALPHABASE_64 * ECFP_T7,
michael@0 135 ECFP_ALPHABASE_64 * ECFP_T8,
michael@0 136 ECFP_ALPHABASE_64 * ECFP_T9,
michael@0 137 ECFP_ALPHABASE_64 * ECFP_T10,
michael@0 138 ECFP_ALPHABASE_64 * ECFP_T11,
michael@0 139 ECFP_ALPHABASE_64 * ECFP_T12,
michael@0 140 ECFP_ALPHABASE_64 * ECFP_T13,
michael@0 141 ECFP_ALPHABASE_64 * ECFP_T14,
michael@0 142 ECFP_ALPHABASE_64 * ECFP_T15,
michael@0 143 ECFP_ALPHABASE_64 * ECFP_T16,
michael@0 144 ECFP_ALPHABASE_64 * ECFP_T17,
michael@0 145 ECFP_ALPHABASE_64 * ECFP_T18,
michael@0 146 ECFP_ALPHABASE_64 * ECFP_T19
michael@0 147 };
michael@0 148
michael@0 149 /* 0.011111111111111111111111 (binary) = 0.5 - 2^25 (24 ones) */
michael@0 150 #define ECFP_BETABASE 0.4999999701976776123046875
michael@0 151
michael@0 152 /*
michael@0 153 * We subtract beta prior to using alpha to simulate rounding down. We
michael@0 154 * make this close to 0.5 to round almost everything down, but exactly 0.5
michael@0 155 * would cause some incorrect rounding. */
michael@0 156 static const double ecfp_beta[2 * ECFP_MAXDOUBLES] = {
michael@0 157 ECFP_BETABASE * ECFP_T0,
michael@0 158 ECFP_BETABASE * ECFP_T1,
michael@0 159 ECFP_BETABASE * ECFP_T2,
michael@0 160 ECFP_BETABASE * ECFP_T3,
michael@0 161 ECFP_BETABASE * ECFP_T4,
michael@0 162 ECFP_BETABASE * ECFP_T5,
michael@0 163 ECFP_BETABASE * ECFP_T6,
michael@0 164 ECFP_BETABASE * ECFP_T7,
michael@0 165 ECFP_BETABASE * ECFP_T8,
michael@0 166 ECFP_BETABASE * ECFP_T9,
michael@0 167 ECFP_BETABASE * ECFP_T10,
michael@0 168 ECFP_BETABASE * ECFP_T11,
michael@0 169 ECFP_BETABASE * ECFP_T12,
michael@0 170 ECFP_BETABASE * ECFP_T13,
michael@0 171 ECFP_BETABASE * ECFP_T14,
michael@0 172 ECFP_BETABASE * ECFP_T15,
michael@0 173 ECFP_BETABASE * ECFP_T16,
michael@0 174 ECFP_BETABASE * ECFP_T17,
michael@0 175 ECFP_BETABASE * ECFP_T18,
michael@0 176 ECFP_BETABASE * ECFP_T19
michael@0 177 };
michael@0 178
michael@0 179 static const double ecfp_beta_160 = ECFP_BETABASE * ECFP_TWO160;
michael@0 180 static const double ecfp_beta_192 = ECFP_BETABASE * ECFP_TWO192;
michael@0 181 static const double ecfp_beta_224 = ECFP_BETABASE * ECFP_TWO224;
michael@0 182
michael@0 183 /* Affine EC Point. This is the basic representation (x, y) of an elliptic
michael@0 184 * curve point. */
michael@0 185 typedef struct {
michael@0 186 double x[ECFP_MAXDOUBLES];
michael@0 187 double y[ECFP_MAXDOUBLES];
michael@0 188 } ecfp_aff_pt;
michael@0 189
michael@0 190 /* Jacobian EC Point. This coordinate system uses X = x/z^2, Y = y/z^3,
michael@0 191 * which enables calculations with fewer inversions than affine
michael@0 192 * coordinates. */
michael@0 193 typedef struct {
michael@0 194 double x[ECFP_MAXDOUBLES];
michael@0 195 double y[ECFP_MAXDOUBLES];
michael@0 196 double z[ECFP_MAXDOUBLES];
michael@0 197 } ecfp_jac_pt;
michael@0 198
michael@0 199 /* Chudnovsky Jacobian EC Point. This coordinate system is the same as
michael@0 200 * Jacobian, except it keeps z^2, z^3 for faster additions. */
michael@0 201 typedef struct {
michael@0 202 double x[ECFP_MAXDOUBLES];
michael@0 203 double y[ECFP_MAXDOUBLES];
michael@0 204 double z[ECFP_MAXDOUBLES];
michael@0 205 double z2[ECFP_MAXDOUBLES];
michael@0 206 double z3[ECFP_MAXDOUBLES];
michael@0 207 } ecfp_chud_pt;
michael@0 208
michael@0 209 /* Modified Jacobian EC Point. This coordinate system is the same as
michael@0 210 * Jacobian, except it keeps a*z^4 for faster doublings. */
michael@0 211 typedef struct {
michael@0 212 double x[ECFP_MAXDOUBLES];
michael@0 213 double y[ECFP_MAXDOUBLES];
michael@0 214 double z[ECFP_MAXDOUBLES];
michael@0 215 double az4[ECFP_MAXDOUBLES];
michael@0 216 } ecfp_jm_pt;
michael@0 217
michael@0 218 struct EC_group_fp_str;
michael@0 219
michael@0 220 typedef struct EC_group_fp_str EC_group_fp;
michael@0 221 struct EC_group_fp_str {
michael@0 222 int fpPrecision; /* Set to number of bits in mantissa, 53
michael@0 223 * or 64 */
michael@0 224 int numDoubles;
michael@0 225 int primeBitSize;
michael@0 226 int orderBitSize;
michael@0 227 int doubleBitSize;
michael@0 228 int numInts;
michael@0 229 int aIsM3; /* True if curvea == -3 (mod p), then we
michael@0 230 * can optimize doubling */
michael@0 231 double curvea[ECFP_MAXDOUBLES];
michael@0 232 /* Used to truncate a double to the number of bits in the curve */
michael@0 233 double bitSize_alpha;
michael@0 234 /* Pointer to either ecfp_alpha_53 or ecfp_alpha_64 */
michael@0 235 const double *alpha;
michael@0 236
michael@0 237 void (*ecfp_singleReduce) (double *r, const EC_group_fp * group);
michael@0 238 void (*ecfp_reduce) (double *r, double *x, const EC_group_fp * group);
michael@0 239 /* Performs a "tidy" operation, which performs carrying, moving excess
michael@0 240 * bits from one double to the next double, so that the precision of
michael@0 241 * the doubles is reduced to the regular precision ECFP_DSIZE. This
michael@0 242 * might result in some float digits being negative. */
michael@0 243 void (*ecfp_tidy) (double *t, const double *alpha,
michael@0 244 const EC_group_fp * group);
michael@0 245 /* Perform a point addition using coordinate system Jacobian + Affine
michael@0 246 * -> Jacobian. Input and output should be multi-precision floating
michael@0 247 * point integers. */
michael@0 248 void (*pt_add_jac_aff) (const ecfp_jac_pt * p, const ecfp_aff_pt * q,
michael@0 249 ecfp_jac_pt * r, const EC_group_fp * group);
michael@0 250 /* Perform a point doubling in Jacobian coordinates. Input and output
michael@0 251 * should be multi-precision floating point integers. */
michael@0 252 void (*pt_dbl_jac) (const ecfp_jac_pt * dp, ecfp_jac_pt * dr,
michael@0 253 const EC_group_fp * group);
michael@0 254 /* Perform a point addition using Jacobian coordinate system. Input
michael@0 255 * and output should be multi-precision floating point integers. */
michael@0 256 void (*pt_add_jac) (const ecfp_jac_pt * p, const ecfp_jac_pt * q,
michael@0 257 ecfp_jac_pt * r, const EC_group_fp * group);
michael@0 258 /* Perform a point doubling in Modified Jacobian coordinates. Input
michael@0 259 * and output should be multi-precision floating point integers. */
michael@0 260 void (*pt_dbl_jm) (const ecfp_jm_pt * p, ecfp_jm_pt * r,
michael@0 261 const EC_group_fp * group);
michael@0 262 /* Perform a point doubling using coordinates Affine -> Chudnovsky
michael@0 263 * Jacobian. Input and output should be multi-precision floating point
michael@0 264 * integers. */
michael@0 265 void (*pt_dbl_aff2chud) (const ecfp_aff_pt * p, ecfp_chud_pt * r,
michael@0 266 const EC_group_fp * group);
michael@0 267 /* Perform a point addition using coordinates: Modified Jacobian +
michael@0 268 * Chudnovsky Jacobian -> Modified Jacobian. Input and output should
michael@0 269 * be multi-precision floating point integers. */
michael@0 270 void (*pt_add_jm_chud) (ecfp_jm_pt * p, ecfp_chud_pt * q,
michael@0 271 ecfp_jm_pt * r, const EC_group_fp * group);
michael@0 272 /* Perform a point addition using Chudnovsky Jacobian coordinates.
michael@0 273 * Input and output should be multi-precision floating point integers.
michael@0 274 */
michael@0 275 void (*pt_add_chud) (const ecfp_chud_pt * p, const ecfp_chud_pt * q,
michael@0 276 ecfp_chud_pt * r, const EC_group_fp * group);
michael@0 277 /* Expects out to be an array of size 16 of Chudnovsky Jacobian
michael@0 278 * points. Fills in Chudnovsky Jacobian form (x, y, z, z^2, z^3), for
michael@0 279 * -15P, -13P, -11P, -9P, -7P, -5P, -3P, -P, P, 3P, 5P, 7P, 9P, 11P,
michael@0 280 * 13P, 15P */
michael@0 281 void (*precompute_chud) (ecfp_chud_pt * out, const ecfp_aff_pt * p,
michael@0 282 const EC_group_fp * group);
michael@0 283 /* Expects out to be an array of size 16 of Jacobian points. Fills in
michael@0 284 * Chudnovsky Jacobian form (x, y, z), for O, P, 2P, ... 15P */
michael@0 285 void (*precompute_jac) (ecfp_jac_pt * out, const ecfp_aff_pt * p,
michael@0 286 const EC_group_fp * group);
michael@0 287
michael@0 288 };
michael@0 289
michael@0 290 /* Computes r = x*y.
michael@0 291 * r must be different (point to different memory) than x and y.
michael@0 292 * Does not tidy or reduce. */
michael@0 293 void ecfp_multiply(double *r, const double *x, const double *y);
michael@0 294
michael@0 295 /* Performs a "tidy" operation, which performs carrying, moving excess
michael@0 296 * bits from one double to the next double, so that the precision of the
michael@0 297 * doubles is reduced to the regular precision group->doubleBitSize. This
michael@0 298 * might result in some float digits being negative. */
michael@0 299 void ecfp_tidy(double *t, const double *alpha, const EC_group_fp * group);
michael@0 300
michael@0 301 /* Performs tidying on only the upper float digits of a multi-precision
michael@0 302 * floating point integer, i.e. the digits beyond the regular length which
michael@0 303 * are removed in the reduction step. */
michael@0 304 void ecfp_tidyUpper(double *t, const EC_group_fp * group);
michael@0 305
michael@0 306 /* Performs tidying on a short multi-precision floating point integer (the
michael@0 307 * lower group->numDoubles floats). */
michael@0 308 void ecfp_tidyShort(double *t, const EC_group_fp * group);
michael@0 309
michael@0 310 /* Performs a more mathematically precise "tidying" so that each term is
michael@0 311 * positive. This is slower than the regular tidying, and is used for
michael@0 312 * conversion from floating point to integer. */
michael@0 313 void ecfp_positiveTidy(double *t, const EC_group_fp * group);
michael@0 314
michael@0 315 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
michael@0 316 * a, b and p are the elliptic curve coefficients and the prime that
michael@0 317 * determines the field GFp. Elliptic curve points P and R can be
michael@0 318 * identical. Uses mixed Jacobian-affine coordinates. Uses 4-bit window
michael@0 319 * method. */
michael@0 320 mp_err
michael@0 321 ec_GFp_point_mul_jac_4w_fp(const mp_int *n, const mp_int *px,
michael@0 322 const mp_int *py, mp_int *rx, mp_int *ry,
michael@0 323 const ECGroup *ecgroup);
michael@0 324
michael@0 325 /* Computes R = nP where R is (rx, ry) and P is the base point. The
michael@0 326 * parameters a, b and p are the elliptic curve coefficients and the prime
michael@0 327 * that determines the field GFp. Elliptic curve points P and R can be
michael@0 328 * identical. Uses mixed Jacobian-affine coordinates (Jacobian
michael@0 329 * coordinates for doubles and affine coordinates for additions; based on
michael@0 330 * recommendation from Brown et al.). Uses window NAF method (algorithm
michael@0 331 * 11) for scalar-point multiplication from Brown, Hankerson, Lopez,
michael@0 332 * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
michael@0 333 * Fields. */
michael@0 334 mp_err ec_GFp_point_mul_wNAF_fp(const mp_int *n, const mp_int *px,
michael@0 335 const mp_int *py, mp_int *rx, mp_int *ry,
michael@0 336 const ECGroup *ecgroup);
michael@0 337
michael@0 338 /* Uses mixed Jacobian-affine coordinates to perform a point
michael@0 339 * multiplication: R = n * P, n scalar. Uses mixed Jacobian-affine
michael@0 340 * coordinates (Jacobian coordinates for doubles and affine coordinates
michael@0 341 * for additions; based on recommendation from Brown et al.). Not very
michael@0 342 * time efficient but quite space efficient, no precomputation needed.
michael@0 343 * group contains the elliptic curve coefficients and the prime that
michael@0 344 * determines the field GFp. Elliptic curve points P and R can be
michael@0 345 * identical. Performs calculations in floating point number format, since
michael@0 346 * this is faster than the integer operations on the ULTRASPARC III.
michael@0 347 * Uses left-to-right binary method (double & add) (algorithm 9) for
michael@0 348 * scalar-point multiplication from Brown, Hankerson, Lopez, Menezes.
michael@0 349 * Software Implementation of the NIST Elliptic Curves Over Prime Fields. */
michael@0 350 mp_err
michael@0 351 ec_GFp_pt_mul_jac_fp(const mp_int *n, const mp_int *px, const mp_int *py,
michael@0 352 mp_int *rx, mp_int *ry, const ECGroup *ecgroup);
michael@0 353
michael@0 354 /* Cleans up extra memory allocated in ECGroup for this implementation. */
michael@0 355 void ec_GFp_extra_free_fp(ECGroup *group);
michael@0 356
michael@0 357 /* Converts from a floating point representation into an mp_int. Expects
michael@0 358 * that d is already reduced. */
michael@0 359 void
michael@0 360 ecfp_fp2i(mp_int *mpout, double *d, const ECGroup *ecgroup);
michael@0 361
michael@0 362 /* Converts from an mpint into a floating point representation. */
michael@0 363 void
michael@0 364 ecfp_i2fp(double *out, const mp_int *x, const ECGroup *ecgroup);
michael@0 365
michael@0 366 /* Tests what precision floating point arithmetic is set to. This should
michael@0 367 * be either a 53-bit mantissa (IEEE standard) or a 64-bit mantissa
michael@0 368 * (extended precision on x86) and sets it into the EC_group_fp. Returns
michael@0 369 * either 53 or 64 accordingly. */
michael@0 370 int ec_set_fp_precision(EC_group_fp * group);
michael@0 371
michael@0 372 #endif

mercurial