toolkit/crashreporter/google-breakpad/src/processor/stackwalker_x86.cc

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 // Copyright (c) 2010 Google Inc.
michael@0 2 // All rights reserved.
michael@0 3 //
michael@0 4 // Redistribution and use in source and binary forms, with or without
michael@0 5 // modification, are permitted provided that the following conditions are
michael@0 6 // met:
michael@0 7 //
michael@0 8 // * Redistributions of source code must retain the above copyright
michael@0 9 // notice, this list of conditions and the following disclaimer.
michael@0 10 // * Redistributions in binary form must reproduce the above
michael@0 11 // copyright notice, this list of conditions and the following disclaimer
michael@0 12 // in the documentation and/or other materials provided with the
michael@0 13 // distribution.
michael@0 14 // * Neither the name of Google Inc. nor the names of its
michael@0 15 // contributors may be used to endorse or promote products derived from
michael@0 16 // this software without specific prior written permission.
michael@0 17 //
michael@0 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
michael@0 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
michael@0 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
michael@0 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
michael@0 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
michael@0 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
michael@0 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
michael@0 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
michael@0 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
michael@0 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
michael@0 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
michael@0 29
michael@0 30 // stackwalker_x86.cc: x86-specific stackwalker.
michael@0 31 //
michael@0 32 // See stackwalker_x86.h for documentation.
michael@0 33 //
michael@0 34 // Author: Mark Mentovai
michael@0 35
michael@0 36 #include <assert.h>
michael@0 37 #include <string>
michael@0 38
michael@0 39 #include "common/scoped_ptr.h"
michael@0 40 #include "google_breakpad/processor/call_stack.h"
michael@0 41 #include "google_breakpad/processor/code_modules.h"
michael@0 42 #include "google_breakpad/processor/memory_region.h"
michael@0 43 #include "google_breakpad/processor/source_line_resolver_interface.h"
michael@0 44 #include "google_breakpad/processor/stack_frame_cpu.h"
michael@0 45 #include "common/logging.h"
michael@0 46 #include "processor/postfix_evaluator-inl.h"
michael@0 47 #include "processor/stackwalker_x86.h"
michael@0 48 #include "processor/windows_frame_info.h"
michael@0 49 #include "processor/cfi_frame_info.h"
michael@0 50
michael@0 51 namespace google_breakpad {
michael@0 52
michael@0 53
michael@0 54 const StackwalkerX86::CFIWalker::RegisterSet
michael@0 55 StackwalkerX86::cfi_register_map_[] = {
michael@0 56 // It may seem like $eip and $esp are callee-saves, because (with Unix or
michael@0 57 // cdecl calling conventions) the callee is responsible for having them
michael@0 58 // restored upon return. But the callee_saves flags here really means
michael@0 59 // that the walker should assume they're unchanged if the CFI doesn't
michael@0 60 // mention them, which is clearly wrong for $eip and $esp.
michael@0 61 { ToUniqueString("$eip"), ToUniqueString(".ra"), false,
michael@0 62 StackFrameX86::CONTEXT_VALID_EIP, &MDRawContextX86::eip },
michael@0 63 { ToUniqueString("$esp"), ToUniqueString(".cfa"), false,
michael@0 64 StackFrameX86::CONTEXT_VALID_ESP, &MDRawContextX86::esp },
michael@0 65 { ToUniqueString("$ebp"), NULL, true,
michael@0 66 StackFrameX86::CONTEXT_VALID_EBP, &MDRawContextX86::ebp },
michael@0 67 { ToUniqueString("$eax"), NULL, false,
michael@0 68 StackFrameX86::CONTEXT_VALID_EAX, &MDRawContextX86::eax },
michael@0 69 { ToUniqueString("$ebx"), NULL, true,
michael@0 70 StackFrameX86::CONTEXT_VALID_EBX, &MDRawContextX86::ebx },
michael@0 71 { ToUniqueString("$ecx"), NULL, false,
michael@0 72 StackFrameX86::CONTEXT_VALID_ECX, &MDRawContextX86::ecx },
michael@0 73 { ToUniqueString("$edx"), NULL, false,
michael@0 74 StackFrameX86::CONTEXT_VALID_EDX, &MDRawContextX86::edx },
michael@0 75 { ToUniqueString("$esi"), NULL, true,
michael@0 76 StackFrameX86::CONTEXT_VALID_ESI, &MDRawContextX86::esi },
michael@0 77 { ToUniqueString("$edi"), NULL, true,
michael@0 78 StackFrameX86::CONTEXT_VALID_EDI, &MDRawContextX86::edi },
michael@0 79 };
michael@0 80
michael@0 81 StackwalkerX86::StackwalkerX86(const SystemInfo* system_info,
michael@0 82 const MDRawContextX86* context,
michael@0 83 MemoryRegion* memory,
michael@0 84 const CodeModules* modules,
michael@0 85 StackFrameSymbolizer* resolver_helper)
michael@0 86 : Stackwalker(system_info, memory, modules, resolver_helper),
michael@0 87 context_(context),
michael@0 88 cfi_walker_(cfi_register_map_,
michael@0 89 (sizeof(cfi_register_map_) / sizeof(cfi_register_map_[0]))) {
michael@0 90 if (memory_ && memory_->GetBase() + memory_->GetSize() - 1 > 0xffffffff) {
michael@0 91 // The x86 is a 32-bit CPU, the limits of the supplied stack are invalid.
michael@0 92 // Mark memory_ = NULL, which will cause stackwalking to fail.
michael@0 93 BPLOG(ERROR) << "Memory out of range for stackwalking: " <<
michael@0 94 HexString(memory_->GetBase()) << "+" <<
michael@0 95 HexString(memory_->GetSize());
michael@0 96 memory_ = NULL;
michael@0 97 }
michael@0 98 }
michael@0 99
michael@0 100 StackFrameX86::~StackFrameX86() {
michael@0 101 if (windows_frame_info)
michael@0 102 delete windows_frame_info;
michael@0 103 windows_frame_info = NULL;
michael@0 104 if (cfi_frame_info)
michael@0 105 delete cfi_frame_info;
michael@0 106 cfi_frame_info = NULL;
michael@0 107 }
michael@0 108
michael@0 109 uint64_t StackFrameX86::ReturnAddress() const
michael@0 110 {
michael@0 111 assert(context_validity & StackFrameX86::CONTEXT_VALID_EIP);
michael@0 112 return context.eip;
michael@0 113 }
michael@0 114
michael@0 115 StackFrame* StackwalkerX86::GetContextFrame() {
michael@0 116 if (!context_) {
michael@0 117 BPLOG(ERROR) << "Can't get context frame without context";
michael@0 118 return NULL;
michael@0 119 }
michael@0 120
michael@0 121 StackFrameX86* frame = new StackFrameX86();
michael@0 122
michael@0 123 // The instruction pointer is stored directly in a register, so pull it
michael@0 124 // straight out of the CPU context structure.
michael@0 125 frame->context = *context_;
michael@0 126 frame->context_validity = StackFrameX86::CONTEXT_VALID_ALL;
michael@0 127 frame->trust = StackFrame::FRAME_TRUST_CONTEXT;
michael@0 128 frame->instruction = frame->context.eip;
michael@0 129
michael@0 130 return frame;
michael@0 131 }
michael@0 132
michael@0 133 StackFrameX86* StackwalkerX86::GetCallerByWindowsFrameInfo(
michael@0 134 const vector<StackFrame*> &frames,
michael@0 135 WindowsFrameInfo* last_frame_info,
michael@0 136 bool stack_scan_allowed) {
michael@0 137 StackFrame::FrameTrust trust = StackFrame::FRAME_TRUST_NONE;
michael@0 138
michael@0 139 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
michael@0 140
michael@0 141 // Save the stack walking info we found, in case we need it later to
michael@0 142 // find the callee of the frame we're constructing now.
michael@0 143 last_frame->windows_frame_info = last_frame_info;
michael@0 144
michael@0 145 // This function only covers the full STACK WIN case. If
michael@0 146 // last_frame_info is VALID_PARAMETER_SIZE-only, then we should
michael@0 147 // assume the traditional frame format or use some other strategy.
michael@0 148 if (last_frame_info->valid != WindowsFrameInfo::VALID_ALL)
michael@0 149 return NULL;
michael@0 150
michael@0 151 // This stackwalker sets each frame's %esp to its value immediately prior
michael@0 152 // to the CALL into the callee. This means that %esp points to the last
michael@0 153 // callee argument pushed onto the stack, which may not be where %esp points
michael@0 154 // after the callee returns. Specifically, the value is correct for the
michael@0 155 // cdecl calling convention, but not other conventions. The cdecl
michael@0 156 // convention requires a caller to pop its callee's arguments from the
michael@0 157 // stack after the callee returns. This is usually accomplished by adding
michael@0 158 // the known size of the arguments to %esp. Other calling conventions,
michael@0 159 // including stdcall, thiscall, and fastcall, require the callee to pop any
michael@0 160 // parameters stored on the stack before returning. This is usually
michael@0 161 // accomplished by using the RET n instruction, which pops n bytes off
michael@0 162 // the stack after popping the return address.
michael@0 163 //
michael@0 164 // Because each frame's %esp will point to a location on the stack after
michael@0 165 // callee arguments have been PUSHed, when locating things in a stack frame
michael@0 166 // relative to %esp, the size of the arguments to the callee need to be
michael@0 167 // taken into account. This seems a little bit unclean, but it's better
michael@0 168 // than the alternative, which would need to take these same things into
michael@0 169 // account, but only for cdecl functions. With this implementation, we get
michael@0 170 // to be agnostic about each function's calling convention. Furthermore,
michael@0 171 // this is how Windows debugging tools work, so it means that the %esp
michael@0 172 // values produced by this stackwalker directly correspond to the %esp
michael@0 173 // values you'll see there.
michael@0 174 //
michael@0 175 // If the last frame has no callee (because it's the context frame), just
michael@0 176 // set the callee parameter size to 0: the stack pointer can't point to
michael@0 177 // callee arguments because there's no callee. This is correct as long
michael@0 178 // as the context wasn't captured while arguments were being pushed for
michael@0 179 // a function call. Note that there may be functions whose parameter sizes
michael@0 180 // are unknown, 0 is also used in that case. When that happens, it should
michael@0 181 // be possible to walk to the next frame without reference to %esp.
michael@0 182
michael@0 183 uint32_t last_frame_callee_parameter_size = 0;
michael@0 184 int frames_already_walked = frames.size();
michael@0 185 if (frames_already_walked >= 2) {
michael@0 186 const StackFrameX86* last_frame_callee
michael@0 187 = static_cast<StackFrameX86*>(frames[frames_already_walked - 2]);
michael@0 188 WindowsFrameInfo* last_frame_callee_info
michael@0 189 = last_frame_callee->windows_frame_info;
michael@0 190 if (last_frame_callee_info &&
michael@0 191 (last_frame_callee_info->valid
michael@0 192 & WindowsFrameInfo::VALID_PARAMETER_SIZE)) {
michael@0 193 last_frame_callee_parameter_size =
michael@0 194 last_frame_callee_info->parameter_size;
michael@0 195 }
michael@0 196 }
michael@0 197
michael@0 198 // Set up the dictionary for the PostfixEvaluator. %ebp and %esp are used
michael@0 199 // in each program string, and their previous values are known, so set them
michael@0 200 // here.
michael@0 201 PostfixEvaluator<uint32_t>::DictionaryType dictionary;
michael@0 202 // Provide the current register values.
michael@0 203 dictionary.set(ustr__ZSebp(), last_frame->context.ebp);
michael@0 204 dictionary.set(ustr__ZSesp(), last_frame->context.esp);
michael@0 205 // Provide constants from the debug info for last_frame and its callee.
michael@0 206 // .cbCalleeParams is a Breakpad extension that allows us to use the
michael@0 207 // PostfixEvaluator engine when certain types of debugging information
michael@0 208 // are present without having to write the constants into the program
michael@0 209 // string as literals.
michael@0 210 dictionary.set(ustr__ZDcbCalleeParams(), last_frame_callee_parameter_size);
michael@0 211 dictionary.set(ustr__ZDcbSavedRegs(), last_frame_info->saved_register_size);
michael@0 212 dictionary.set(ustr__ZDcbLocals(), last_frame_info->local_size);
michael@0 213
michael@0 214 uint32_t raSearchStart = last_frame->context.esp +
michael@0 215 last_frame_callee_parameter_size +
michael@0 216 last_frame_info->local_size +
michael@0 217 last_frame_info->saved_register_size;
michael@0 218
michael@0 219 uint32_t raSearchStartOld = raSearchStart;
michael@0 220 uint32_t found = 0; // dummy value
michael@0 221 // Scan up to three words above the calculated search value, in case
michael@0 222 // the stack was aligned to a quadword boundary.
michael@0 223 if (ScanForReturnAddress(raSearchStart, &raSearchStart, &found, 3) &&
michael@0 224 last_frame->trust == StackFrame::FRAME_TRUST_CONTEXT &&
michael@0 225 last_frame->windows_frame_info != NULL &&
michael@0 226 last_frame_info->type_ == WindowsFrameInfo::STACK_INFO_FPO &&
michael@0 227 raSearchStartOld == raSearchStart &&
michael@0 228 found == last_frame->context.eip) {
michael@0 229 // The context frame represents an FPO-optimized Windows system call.
michael@0 230 // On the top of the stack we have a pointer to the current instruction.
michael@0 231 // This means that the callee has returned but the return address is still
michael@0 232 // on the top of the stack which is very atypical situaltion.
michael@0 233 // Skip one slot from the stack and do another scan in order to get the
michael@0 234 // actual return address.
michael@0 235 raSearchStart += 4;
michael@0 236 ScanForReturnAddress(raSearchStart, &raSearchStart, &found, 3);
michael@0 237 }
michael@0 238
michael@0 239 // The difference between raSearch and raSearchStart is unknown,
michael@0 240 // but making them the same seems to work well in practice.
michael@0 241 dictionary.set(ustr__ZDraSearchStart(), raSearchStart);
michael@0 242 dictionary.set(ustr__ZDraSearch(), raSearchStart);
michael@0 243
michael@0 244 dictionary.set(ustr__ZDcbParams(), last_frame_info->parameter_size);
michael@0 245
michael@0 246 // Decide what type of program string to use. The program string is in
michael@0 247 // postfix notation and will be passed to PostfixEvaluator::Evaluate.
michael@0 248 // Given the dictionary and the program string, it is possible to compute
michael@0 249 // the return address and the values of other registers in the calling
michael@0 250 // function. Because of bugs described below, the stack may need to be
michael@0 251 // scanned for these values. The results of program string evaluation
michael@0 252 // will be used to determine whether to scan for better values.
michael@0 253 string program_string;
michael@0 254 bool recover_ebp = true;
michael@0 255
michael@0 256 trust = StackFrame::FRAME_TRUST_CFI;
michael@0 257 if (!last_frame_info->program_string.empty()) {
michael@0 258 // The FPO data has its own program string, which will tell us how to
michael@0 259 // get to the caller frame, and may even fill in the values of
michael@0 260 // nonvolatile registers and provide pointers to local variables and
michael@0 261 // parameters. In some cases, particularly with program strings that use
michael@0 262 // .raSearchStart, the stack may need to be scanned afterward.
michael@0 263 program_string = last_frame_info->program_string;
michael@0 264 } else if (last_frame_info->allocates_base_pointer) {
michael@0 265 // The function corresponding to the last frame doesn't use the frame
michael@0 266 // pointer for conventional purposes, but it does allocate a new
michael@0 267 // frame pointer and use it for its own purposes. Its callee's
michael@0 268 // information is still accessed relative to %esp, and the previous
michael@0 269 // value of %ebp can be recovered from a location in its stack frame,
michael@0 270 // within the saved-register area.
michael@0 271 //
michael@0 272 // Functions that fall into this category use the %ebp register for
michael@0 273 // a purpose other than the frame pointer. They restore the caller's
michael@0 274 // %ebp before returning. These functions create their stack frame
michael@0 275 // after a CALL by decrementing the stack pointer in an amount
michael@0 276 // sufficient to store local variables, and then PUSHing saved
michael@0 277 // registers onto the stack. Arguments to a callee function, if any,
michael@0 278 // are PUSHed after that. Walking up to the caller, therefore,
michael@0 279 // can be done solely with calculations relative to the stack pointer
michael@0 280 // (%esp). The return address is recovered from the memory location
michael@0 281 // above the known sizes of the callee's parameters, saved registers,
michael@0 282 // and locals. The caller's stack pointer (the value of %esp when
michael@0 283 // the caller executed CALL) is the location immediately above the
michael@0 284 // saved return address. The saved value of %ebp to be restored for
michael@0 285 // the caller is at a known location in the saved-register area of
michael@0 286 // the stack frame.
michael@0 287 //
michael@0 288 // For this type of frame, MSVC 14 (from Visual Studio 8/2005) in
michael@0 289 // link-time code generation mode (/LTCG and /GL) can generate erroneous
michael@0 290 // debugging data. The reported size of saved registers can be 0,
michael@0 291 // which is clearly an error because these frames must, at the very
michael@0 292 // least, save %ebp. For this reason, in addition to those given above
michael@0 293 // about the use of .raSearchStart, the stack may need to be scanned
michael@0 294 // for a better return address and a better frame pointer after the
michael@0 295 // program string is evaluated.
michael@0 296 //
michael@0 297 // %eip_new = *(%esp_old + callee_params + saved_regs + locals)
michael@0 298 // %ebp_new = *(%esp_old + callee_params + saved_regs - 8)
michael@0 299 // %esp_new = %esp_old + callee_params + saved_regs + locals + 4
michael@0 300 program_string = "$eip .raSearchStart ^ = "
michael@0 301 "$ebp $esp .cbCalleeParams + .cbSavedRegs + 8 - ^ = "
michael@0 302 "$esp .raSearchStart 4 + =";
michael@0 303 } else {
michael@0 304 // The function corresponding to the last frame doesn't use %ebp at
michael@0 305 // all. The callee frame is located relative to %esp.
michael@0 306 //
michael@0 307 // The called procedure's instruction pointer and stack pointer are
michael@0 308 // recovered in the same way as the case above, except that no
michael@0 309 // frame pointer (%ebp) is used at all, so it is not saved anywhere
michael@0 310 // in the callee's stack frame and does not need to be recovered.
michael@0 311 // Because %ebp wasn't used in the callee, whatever value it has
michael@0 312 // is the value that it had in the caller, so it can be carried
michael@0 313 // straight through without bringing its validity into question.
michael@0 314 //
michael@0 315 // Because of the use of .raSearchStart, the stack will possibly be
michael@0 316 // examined to locate a better return address after program string
michael@0 317 // evaluation. The stack will not be examined to locate a saved
michael@0 318 // %ebp value, because these frames do not save (or use) %ebp.
michael@0 319 //
michael@0 320 // %eip_new = *(%esp_old + callee_params + saved_regs + locals)
michael@0 321 // %esp_new = %esp_old + callee_params + saved_regs + locals + 4
michael@0 322 // %ebp_new = %ebp_old
michael@0 323 program_string = "$eip .raSearchStart ^ = "
michael@0 324 "$esp .raSearchStart 4 + =";
michael@0 325 recover_ebp = false;
michael@0 326 }
michael@0 327
michael@0 328 // Now crank it out, making sure that the program string set at least the
michael@0 329 // two required variables.
michael@0 330 PostfixEvaluator<uint32_t> evaluator =
michael@0 331 PostfixEvaluator<uint32_t>(&dictionary, memory_);
michael@0 332 PostfixEvaluator<uint32_t>::DictionaryValidityType dictionary_validity;
michael@0 333 if (!evaluator.Evaluate(program_string, &dictionary_validity) ||
michael@0 334 !dictionary_validity.have(ustr__ZSeip()) ||
michael@0 335 !dictionary_validity.have(ustr__ZSesp())) {
michael@0 336 // Program string evaluation failed. It may be that %eip is not somewhere
michael@0 337 // with stack frame info, and %ebp is pointing to non-stack memory, so
michael@0 338 // our evaluation couldn't succeed. We'll scan the stack for a return
michael@0 339 // address. This can happen if the stack is in a module for which
michael@0 340 // we don't have symbols, and that module is compiled without a
michael@0 341 // frame pointer.
michael@0 342 uint32_t location_start = last_frame->context.esp;
michael@0 343 uint32_t location, eip;
michael@0 344 if (!stack_scan_allowed
michael@0 345 || !ScanForReturnAddress(location_start, &location, &eip)) {
michael@0 346 // if we can't find an instruction pointer even with stack scanning,
michael@0 347 // give up.
michael@0 348 return NULL;
michael@0 349 }
michael@0 350
michael@0 351 // This seems like a reasonable return address. Since program string
michael@0 352 // evaluation failed, use it and set %esp to the location above the
michael@0 353 // one where the return address was found.
michael@0 354 dictionary.set(ustr__ZSeip(), eip);
michael@0 355 dictionary.set(ustr__ZSesp(), location + 4);
michael@0 356 trust = StackFrame::FRAME_TRUST_SCAN;
michael@0 357 }
michael@0 358
michael@0 359 // Since this stack frame did not use %ebp in a traditional way,
michael@0 360 // locating the return address isn't entirely deterministic. In that
michael@0 361 // case, the stack can be scanned to locate the return address.
michael@0 362 //
michael@0 363 // However, if program string evaluation resulted in both %eip and
michael@0 364 // %ebp values of 0, trust that the end of the stack has been
michael@0 365 // reached and don't scan for anything else.
michael@0 366 if (dictionary.get(ustr__ZSeip()) != 0 ||
michael@0 367 dictionary.get(ustr__ZSebp()) != 0) {
michael@0 368 int offset = 0;
michael@0 369
michael@0 370 // This scan can only be done if a CodeModules object is available, to
michael@0 371 // check that candidate return addresses are in fact inside a module.
michael@0 372 //
michael@0 373 // TODO(mmentovai): This ignores dynamically-generated code. One possible
michael@0 374 // solution is to check the minidump's memory map to see if the candidate
michael@0 375 // %eip value comes from a mapped executable page, although this would
michael@0 376 // require dumps that contain MINIDUMP_MEMORY_INFO, which the Breakpad
michael@0 377 // client doesn't currently write (it would need to call MiniDumpWriteDump
michael@0 378 // with the MiniDumpWithFullMemoryInfo type bit set). Even given this
michael@0 379 // ability, older OSes (pre-XP SP2) and CPUs (pre-P4) don't enforce
michael@0 380 // an independent execute privilege on memory pages.
michael@0 381
michael@0 382 uint32_t eip = dictionary.get(ustr__ZSeip());
michael@0 383 if (modules_ && !modules_->GetModuleForAddress(eip)) {
michael@0 384 // The instruction pointer at .raSearchStart was invalid, so start
michael@0 385 // looking one 32-bit word above that location.
michael@0 386 uint32_t location_start = dictionary.get(ustr__ZDraSearchStart()) + 4;
michael@0 387 uint32_t location;
michael@0 388 if (stack_scan_allowed
michael@0 389 && ScanForReturnAddress(location_start, &location, &eip)) {
michael@0 390 // This is a better return address that what program string
michael@0 391 // evaluation found. Use it, and set %esp to the location above the
michael@0 392 // one where the return address was found.
michael@0 393 dictionary.set(ustr__ZSeip(), eip);
michael@0 394 dictionary.set(ustr__ZSesp(), location + 4);
michael@0 395 offset = location - location_start;
michael@0 396 trust = StackFrame::FRAME_TRUST_CFI_SCAN;
michael@0 397 }
michael@0 398 }
michael@0 399
michael@0 400 if (recover_ebp) {
michael@0 401 // When trying to recover the previous value of the frame pointer (%ebp),
michael@0 402 // start looking at the lowest possible address in the saved-register
michael@0 403 // area, and look at the entire saved register area, increased by the
michael@0 404 // size of |offset| to account for additional data that may be on the
michael@0 405 // stack. The scan is performed from the highest possible address to
michael@0 406 // the lowest, because the expectation is that the function's prolog
michael@0 407 // would have saved %ebp early.
michael@0 408 uint32_t ebp = dictionary.get(ustr__ZSebp());
michael@0 409
michael@0 410 // When a scan for return address is used, it is possible to skip one or
michael@0 411 // more frames (when return address is not in a known module). One
michael@0 412 // indication for skipped frames is when the value of %ebp is lower than
michael@0 413 // the location of the return address on the stack
michael@0 414 bool has_skipped_frames =
michael@0 415 (trust != StackFrame::FRAME_TRUST_CFI && ebp <= raSearchStart + offset);
michael@0 416
michael@0 417 uint32_t value; // throwaway variable to check pointer validity
michael@0 418 if (has_skipped_frames || !memory_->GetMemoryAtAddress(ebp, &value)) {
michael@0 419 int fp_search_bytes = last_frame_info->saved_register_size + offset;
michael@0 420 uint32_t location_end = last_frame->context.esp +
michael@0 421 last_frame_callee_parameter_size;
michael@0 422
michael@0 423 for (uint32_t location = location_end + fp_search_bytes;
michael@0 424 location >= location_end;
michael@0 425 location -= 4) {
michael@0 426 if (!memory_->GetMemoryAtAddress(location, &ebp))
michael@0 427 break;
michael@0 428
michael@0 429 if (memory_->GetMemoryAtAddress(ebp, &value)) {
michael@0 430 // The candidate value is a pointer to the same memory region
michael@0 431 // (the stack). Prefer it as a recovered %ebp result.
michael@0 432 dictionary.set(ustr__ZSebp(), ebp);
michael@0 433 break;
michael@0 434 }
michael@0 435 }
michael@0 436 }
michael@0 437 }
michael@0 438 }
michael@0 439
michael@0 440 // Create a new stack frame (ownership will be transferred to the caller)
michael@0 441 // and fill it in.
michael@0 442 StackFrameX86* frame = new StackFrameX86();
michael@0 443
michael@0 444 frame->trust = trust;
michael@0 445 frame->context = last_frame->context;
michael@0 446 frame->context.eip = dictionary.get(ustr__ZSeip());
michael@0 447 frame->context.esp = dictionary.get(ustr__ZSesp());
michael@0 448 frame->context.ebp = dictionary.get(ustr__ZSebp());
michael@0 449 frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP |
michael@0 450 StackFrameX86::CONTEXT_VALID_ESP |
michael@0 451 StackFrameX86::CONTEXT_VALID_EBP;
michael@0 452
michael@0 453 // These are nonvolatile (callee-save) registers, and the program string
michael@0 454 // may have filled them in.
michael@0 455 if (dictionary_validity.have(ustr__ZSebx())) {
michael@0 456 frame->context.ebx = dictionary.get(ustr__ZSebx());
michael@0 457 frame->context_validity |= StackFrameX86::CONTEXT_VALID_EBX;
michael@0 458 }
michael@0 459 if (dictionary_validity.have(ustr__ZSesi())) {
michael@0 460 frame->context.esi = dictionary.get(ustr__ZSesi());
michael@0 461 frame->context_validity |= StackFrameX86::CONTEXT_VALID_ESI;
michael@0 462 }
michael@0 463 if (dictionary_validity.have(ustr__ZSedi())) {
michael@0 464 frame->context.edi = dictionary.get(ustr__ZSedi());
michael@0 465 frame->context_validity |= StackFrameX86::CONTEXT_VALID_EDI;
michael@0 466 }
michael@0 467
michael@0 468 return frame;
michael@0 469 }
michael@0 470
michael@0 471 StackFrameX86* StackwalkerX86::GetCallerByCFIFrameInfo(
michael@0 472 const vector<StackFrame*> &frames,
michael@0 473 CFIFrameInfo* cfi_frame_info) {
michael@0 474 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
michael@0 475 last_frame->cfi_frame_info = cfi_frame_info;
michael@0 476
michael@0 477 scoped_ptr<StackFrameX86> frame(new StackFrameX86());
michael@0 478 if (!cfi_walker_
michael@0 479 .FindCallerRegisters(*memory_, *cfi_frame_info,
michael@0 480 last_frame->context, last_frame->context_validity,
michael@0 481 &frame->context, &frame->context_validity))
michael@0 482 return NULL;
michael@0 483
michael@0 484 // Make sure we recovered all the essentials.
michael@0 485 static const int essentials = (StackFrameX86::CONTEXT_VALID_EIP
michael@0 486 | StackFrameX86::CONTEXT_VALID_ESP
michael@0 487 | StackFrameX86::CONTEXT_VALID_EBP);
michael@0 488 if ((frame->context_validity & essentials) != essentials)
michael@0 489 return NULL;
michael@0 490
michael@0 491 frame->trust = StackFrame::FRAME_TRUST_CFI;
michael@0 492
michael@0 493 return frame.release();
michael@0 494 }
michael@0 495
michael@0 496 StackFrameX86* StackwalkerX86::GetCallerByEBPAtBase(
michael@0 497 const vector<StackFrame*> &frames,
michael@0 498 bool stack_scan_allowed) {
michael@0 499 StackFrame::FrameTrust trust;
michael@0 500 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
michael@0 501 uint32_t last_esp = last_frame->context.esp;
michael@0 502 uint32_t last_ebp = last_frame->context.ebp;
michael@0 503
michael@0 504 // Assume that the standard %ebp-using x86 calling convention is in
michael@0 505 // use.
michael@0 506 //
michael@0 507 // The typical x86 calling convention, when frame pointers are present,
michael@0 508 // is for the calling procedure to use CALL, which pushes the return
michael@0 509 // address onto the stack and sets the instruction pointer (%eip) to
michael@0 510 // the entry point of the called routine. The called routine then
michael@0 511 // PUSHes the calling routine's frame pointer (%ebp) onto the stack
michael@0 512 // before copying the stack pointer (%esp) to the frame pointer (%ebp).
michael@0 513 // Therefore, the calling procedure's frame pointer is always available
michael@0 514 // by dereferencing the called procedure's frame pointer, and the return
michael@0 515 // address is always available at the memory location immediately above
michael@0 516 // the address pointed to by the called procedure's frame pointer. The
michael@0 517 // calling procedure's stack pointer (%esp) is 8 higher than the value
michael@0 518 // of the called procedure's frame pointer at the time the calling
michael@0 519 // procedure made the CALL: 4 bytes for the return address pushed by the
michael@0 520 // CALL itself, and 4 bytes for the callee's PUSH of the caller's frame
michael@0 521 // pointer.
michael@0 522 //
michael@0 523 // %eip_new = *(%ebp_old + 4)
michael@0 524 // %esp_new = %ebp_old + 8
michael@0 525 // %ebp_new = *(%ebp_old)
michael@0 526
michael@0 527 uint32_t caller_eip, caller_esp, caller_ebp;
michael@0 528
michael@0 529 if (memory_->GetMemoryAtAddress(last_ebp + 4, &caller_eip) &&
michael@0 530 memory_->GetMemoryAtAddress(last_ebp, &caller_ebp)) {
michael@0 531 caller_esp = last_ebp + 8;
michael@0 532 trust = StackFrame::FRAME_TRUST_FP;
michael@0 533 } else {
michael@0 534 // We couldn't read the memory %ebp refers to. It may be that %ebp
michael@0 535 // is pointing to non-stack memory. We'll scan the stack for a
michael@0 536 // return address. This can happen if last_frame is executing code
michael@0 537 // for a module for which we don't have symbols, and that module
michael@0 538 // is compiled without a frame pointer.
michael@0 539 if (!stack_scan_allowed
michael@0 540 || !ScanForReturnAddress(last_esp, &caller_esp, &caller_eip)) {
michael@0 541 // if we can't find an instruction pointer even with stack scanning,
michael@0 542 // give up.
michael@0 543 return NULL;
michael@0 544 }
michael@0 545
michael@0 546 // ScanForReturnAddress found a reasonable return address. Advance
michael@0 547 // %esp to the location above the one where the return address was
michael@0 548 // found. Assume that %ebp is unchanged.
michael@0 549 caller_esp += 4;
michael@0 550 caller_ebp = last_ebp;
michael@0 551
michael@0 552 trust = StackFrame::FRAME_TRUST_SCAN;
michael@0 553 }
michael@0 554
michael@0 555 // Create a new stack frame (ownership will be transferred to the caller)
michael@0 556 // and fill it in.
michael@0 557 StackFrameX86* frame = new StackFrameX86();
michael@0 558
michael@0 559 frame->trust = trust;
michael@0 560 frame->context = last_frame->context;
michael@0 561 frame->context.eip = caller_eip;
michael@0 562 frame->context.esp = caller_esp;
michael@0 563 frame->context.ebp = caller_ebp;
michael@0 564 frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP |
michael@0 565 StackFrameX86::CONTEXT_VALID_ESP |
michael@0 566 StackFrameX86::CONTEXT_VALID_EBP;
michael@0 567
michael@0 568 return frame;
michael@0 569 }
michael@0 570
michael@0 571 StackFrame* StackwalkerX86::GetCallerFrame(const CallStack* stack,
michael@0 572 bool stack_scan_allowed) {
michael@0 573 if (!memory_ || !stack) {
michael@0 574 BPLOG(ERROR) << "Can't get caller frame without memory or stack";
michael@0 575 return NULL;
michael@0 576 }
michael@0 577
michael@0 578 const vector<StackFrame*> &frames = *stack->frames();
michael@0 579 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
michael@0 580 scoped_ptr<StackFrameX86> new_frame;
michael@0 581
michael@0 582 // If the resolver has Windows stack walking information, use that.
michael@0 583 WindowsFrameInfo* windows_frame_info
michael@0 584 = frame_symbolizer_->FindWindowsFrameInfo(last_frame);
michael@0 585 if (windows_frame_info)
michael@0 586 new_frame.reset(GetCallerByWindowsFrameInfo(frames, windows_frame_info,
michael@0 587 stack_scan_allowed));
michael@0 588
michael@0 589 // If the resolver has DWARF CFI information, use that.
michael@0 590 if (!new_frame.get()) {
michael@0 591 CFIFrameInfo* cfi_frame_info =
michael@0 592 frame_symbolizer_->FindCFIFrameInfo(last_frame);
michael@0 593 if (cfi_frame_info)
michael@0 594 new_frame.reset(GetCallerByCFIFrameInfo(frames, cfi_frame_info));
michael@0 595 }
michael@0 596
michael@0 597 // Otherwise, hope that the program was using a traditional frame structure.
michael@0 598 if (!new_frame.get())
michael@0 599 new_frame.reset(GetCallerByEBPAtBase(frames, stack_scan_allowed));
michael@0 600
michael@0 601 // If nothing worked, tell the caller.
michael@0 602 if (!new_frame.get())
michael@0 603 return NULL;
michael@0 604
michael@0 605 // Treat an instruction address of 0 as end-of-stack.
michael@0 606 if (new_frame->context.eip == 0)
michael@0 607 return NULL;
michael@0 608
michael@0 609 // If the new stack pointer is at a lower address than the old, then
michael@0 610 // that's clearly incorrect. Treat this as end-of-stack to enforce
michael@0 611 // progress and avoid infinite loops.
michael@0 612 if (new_frame->context.esp <= last_frame->context.esp)
michael@0 613 return NULL;
michael@0 614
michael@0 615 // new_frame->context.eip is the return address, which is the instruction
michael@0 616 // after the CALL that caused us to arrive at the callee. Set
michael@0 617 // new_frame->instruction to one less than that, so it points within the
michael@0 618 // CALL instruction. See StackFrame::instruction for details, and
michael@0 619 // StackFrameAMD64::ReturnAddress.
michael@0 620 new_frame->instruction = new_frame->context.eip - 1;
michael@0 621
michael@0 622 return new_frame.release();
michael@0 623 }
michael@0 624
michael@0 625 } // namespace google_breakpad

mercurial