Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | /* This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 2 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 3 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 4 | |
michael@0 | 5 | #include "adreader.h" |
michael@0 | 6 | |
michael@0 | 7 | #include <stdio.h> |
michael@0 | 8 | #include "plhash.h" |
michael@0 | 9 | |
michael@0 | 10 | #include "nsTArray.h" |
michael@0 | 11 | #include "nsQuickSort.h" |
michael@0 | 12 | #include "nsXPCOM.h" |
michael@0 | 13 | |
michael@0 | 14 | const uint32_t kPointersDefaultSize = 8; |
michael@0 | 15 | |
michael@0 | 16 | /* |
michael@0 | 17 | * Read in an allocation dump, presumably one taken at shutdown (using |
michael@0 | 18 | * the --shutdown-leaks=file option, which must be used along with |
michael@0 | 19 | * --trace-malloc=tmlog), and treat the memory in the dump as leaks. |
michael@0 | 20 | * Find the leak roots, including cycles that are roots, by finding the |
michael@0 | 21 | * strongly connected components in the graph. Print output to stdout |
michael@0 | 22 | * as HTML. |
michael@0 | 23 | */ |
michael@0 | 24 | |
michael@0 | 25 | struct AllocationNode { |
michael@0 | 26 | const ADLog::Entry *entry; |
michael@0 | 27 | |
michael@0 | 28 | // Other |AllocationNode| objects whose memory has a pointer to |
michael@0 | 29 | // this object. |
michael@0 | 30 | nsAutoTArray<AllocationNode*, kPointersDefaultSize> pointers_to; |
michael@0 | 31 | |
michael@0 | 32 | // The reverse. |
michael@0 | 33 | nsAutoTArray<AllocationNode*, kPointersDefaultSize> pointers_from; |
michael@0 | 34 | |
michael@0 | 35 | // Early on in the algorithm, the pre-order index from a DFS. |
michael@0 | 36 | // Later on, set to the index of the strongly connected component to |
michael@0 | 37 | // which this node belongs. |
michael@0 | 38 | uint32_t index; |
michael@0 | 39 | |
michael@0 | 40 | bool reached; |
michael@0 | 41 | bool is_root; |
michael@0 | 42 | }; |
michael@0 | 43 | |
michael@0 | 44 | static PLHashNumber hash_pointer(const void *key) |
michael@0 | 45 | { |
michael@0 | 46 | return (PLHashNumber) NS_PTR_TO_INT32(key); |
michael@0 | 47 | } |
michael@0 | 48 | |
michael@0 | 49 | static int sort_by_index(const void* e1, const void* e2, void*) |
michael@0 | 50 | { |
michael@0 | 51 | const AllocationNode *n1 = *static_cast<const AllocationNode*const*>(e1); |
michael@0 | 52 | const AllocationNode *n2 = *static_cast<const AllocationNode*const*>(e2); |
michael@0 | 53 | return n1->index - n2->index; |
michael@0 | 54 | } |
michael@0 | 55 | |
michael@0 | 56 | static int sort_by_reverse_index(const void* e1, const void* e2, void*) |
michael@0 | 57 | { |
michael@0 | 58 | const AllocationNode *n1 = *static_cast<const AllocationNode*const*>(e1); |
michael@0 | 59 | const AllocationNode *n2 = *static_cast<const AllocationNode*const*>(e2); |
michael@0 | 60 | return n2->index - n1->index; |
michael@0 | 61 | } |
michael@0 | 62 | |
michael@0 | 63 | static void print_escaped(FILE *aStream, const char* aData) |
michael@0 | 64 | { |
michael@0 | 65 | char c; |
michael@0 | 66 | char buf[1000]; |
michael@0 | 67 | char *p = buf; |
michael@0 | 68 | while ((c = *aData++)) { |
michael@0 | 69 | switch (c) { |
michael@0 | 70 | #define CH(char) *p++ = char |
michael@0 | 71 | case '<': |
michael@0 | 72 | CH('&'); CH('l'); CH('t'); CH(';'); |
michael@0 | 73 | break; |
michael@0 | 74 | case '>': |
michael@0 | 75 | CH('&'); CH('g'); CH('t'); CH(';'); |
michael@0 | 76 | break; |
michael@0 | 77 | case '&': |
michael@0 | 78 | CH('&'); CH('a'); CH('m'); CH('p'); CH(';'); |
michael@0 | 79 | break; |
michael@0 | 80 | default: |
michael@0 | 81 | CH(c); |
michael@0 | 82 | break; |
michael@0 | 83 | #undef CH |
michael@0 | 84 | } |
michael@0 | 85 | if (p + 10 > buf + sizeof(buf)) { |
michael@0 | 86 | *p = '\0'; |
michael@0 | 87 | fputs(buf, aStream); |
michael@0 | 88 | p = buf; |
michael@0 | 89 | } |
michael@0 | 90 | } |
michael@0 | 91 | *p = '\0'; |
michael@0 | 92 | fputs(buf, aStream); |
michael@0 | 93 | } |
michael@0 | 94 | |
michael@0 | 95 | static const char *allocation_format = |
michael@0 | 96 | (sizeof(ADLog::Pointer) == 4) ? "0x%08zX" : |
michael@0 | 97 | (sizeof(ADLog::Pointer) == 8) ? "0x%016zX" : |
michael@0 | 98 | "UNEXPECTED sizeof(void*)"; |
michael@0 | 99 | |
michael@0 | 100 | int main(int argc, char **argv) |
michael@0 | 101 | { |
michael@0 | 102 | if (argc != 2) { |
michael@0 | 103 | fprintf(stderr, |
michael@0 | 104 | "Expected usage: %s <sd-leak-file>\n" |
michael@0 | 105 | " sd-leak-file: Output of --shutdown-leaks=<file> option.\n", |
michael@0 | 106 | argv[0]); |
michael@0 | 107 | return 1; |
michael@0 | 108 | } |
michael@0 | 109 | |
michael@0 | 110 | NS_InitXPCOM2(nullptr, nullptr, nullptr); |
michael@0 | 111 | |
michael@0 | 112 | ADLog log; |
michael@0 | 113 | if (!log.Read(argv[1])) { |
michael@0 | 114 | fprintf(stderr, |
michael@0 | 115 | "%s: Error reading input file %s.\n", argv[0], argv[1]); |
michael@0 | 116 | } |
michael@0 | 117 | |
michael@0 | 118 | const size_t count = log.count(); |
michael@0 | 119 | |
michael@0 | 120 | PLHashTable *memory_map = |
michael@0 | 121 | PL_NewHashTable(count * 8, hash_pointer, PL_CompareValues, |
michael@0 | 122 | PL_CompareValues, 0, 0); |
michael@0 | 123 | if (!memory_map) { |
michael@0 | 124 | fprintf(stderr, "%s: Out of memory.\n", argv[0]); |
michael@0 | 125 | return 1; |
michael@0 | 126 | } |
michael@0 | 127 | |
michael@0 | 128 | // Create one |AllocationNode| object for each log entry, and create |
michael@0 | 129 | // entries in the hashtable pointing to it for each byte it occupies. |
michael@0 | 130 | AllocationNode *nodes = new AllocationNode[count]; |
michael@0 | 131 | if (!nodes) { |
michael@0 | 132 | fprintf(stderr, "%s: Out of memory.\n", argv[0]); |
michael@0 | 133 | return 1; |
michael@0 | 134 | } |
michael@0 | 135 | |
michael@0 | 136 | { |
michael@0 | 137 | AllocationNode *cur_node = nodes; |
michael@0 | 138 | for (ADLog::const_iterator entry = log.begin(), entry_end = log.end(); |
michael@0 | 139 | entry != entry_end; ++entry, ++cur_node) { |
michael@0 | 140 | const ADLog::Entry *e = cur_node->entry = *entry; |
michael@0 | 141 | cur_node->reached = false; |
michael@0 | 142 | |
michael@0 | 143 | for (ADLog::Pointer p = e->address, |
michael@0 | 144 | p_end = e->address + e->datasize; |
michael@0 | 145 | p != p_end; ++p) { |
michael@0 | 146 | PLHashEntry *he = PL_HashTableAdd(memory_map, p, cur_node); |
michael@0 | 147 | if (!he) { |
michael@0 | 148 | fprintf(stderr, "%s: Out of memory.\n", argv[0]); |
michael@0 | 149 | return 1; |
michael@0 | 150 | } |
michael@0 | 151 | } |
michael@0 | 152 | } |
michael@0 | 153 | } |
michael@0 | 154 | |
michael@0 | 155 | // Construct graph based on pointers. |
michael@0 | 156 | for (AllocationNode *node = nodes, *node_end = nodes + count; |
michael@0 | 157 | node != node_end; ++node) { |
michael@0 | 158 | const ADLog::Entry *e = node->entry; |
michael@0 | 159 | for (const char *d = e->data, *d_end = e->data + e->datasize - |
michael@0 | 160 | e->datasize % sizeof(ADLog::Pointer); |
michael@0 | 161 | d != d_end; d += sizeof(ADLog::Pointer)) { |
michael@0 | 162 | AllocationNode *target = (AllocationNode*) |
michael@0 | 163 | PL_HashTableLookup(memory_map, *(void**)d); |
michael@0 | 164 | if (target) { |
michael@0 | 165 | target->pointers_from.AppendElement(node); |
michael@0 | 166 | node->pointers_to.AppendElement(target); |
michael@0 | 167 | } |
michael@0 | 168 | } |
michael@0 | 169 | } |
michael@0 | 170 | |
michael@0 | 171 | // Do a depth-first search on the graph (i.e., by following |
michael@0 | 172 | // |pointers_to|) and assign the post-order index to |index|. |
michael@0 | 173 | { |
michael@0 | 174 | uint32_t dfs_index = 0; |
michael@0 | 175 | nsTArray<AllocationNode*> stack; |
michael@0 | 176 | |
michael@0 | 177 | for (AllocationNode *n = nodes, *n_end = nodes+count; n != n_end; ++n) { |
michael@0 | 178 | if (n->reached) { |
michael@0 | 179 | continue; |
michael@0 | 180 | } |
michael@0 | 181 | stack.AppendElement(n); |
michael@0 | 182 | |
michael@0 | 183 | do { |
michael@0 | 184 | uint32_t pos = stack.Length() - 1; |
michael@0 | 185 | AllocationNode *n = stack[pos]; |
michael@0 | 186 | if (n->reached) { |
michael@0 | 187 | n->index = dfs_index++; |
michael@0 | 188 | stack.RemoveElementAt(pos); |
michael@0 | 189 | } else { |
michael@0 | 190 | n->reached = true; |
michael@0 | 191 | |
michael@0 | 192 | // When doing post-order processing, we have to be |
michael@0 | 193 | // careful not to put reached nodes into the stack. |
michael@0 | 194 | for (int32_t i = n->pointers_to.Length() - 1; i >= 0; --i) { |
michael@0 | 195 | AllocationNode* e = n->pointers_to[i]; |
michael@0 | 196 | if (!e->reached) { |
michael@0 | 197 | stack.AppendElement(e); |
michael@0 | 198 | } |
michael@0 | 199 | } |
michael@0 | 200 | } |
michael@0 | 201 | } while (stack.Length() > 0); |
michael@0 | 202 | } |
michael@0 | 203 | } |
michael@0 | 204 | |
michael@0 | 205 | // Sort the nodes by their DFS index, in reverse, so that the first |
michael@0 | 206 | // node is guaranteed to be in a root SCC. |
michael@0 | 207 | AllocationNode **sorted_nodes = new AllocationNode*[count]; |
michael@0 | 208 | if (!sorted_nodes) { |
michael@0 | 209 | fprintf(stderr, "%s: Out of memory.\n", argv[0]); |
michael@0 | 210 | return 1; |
michael@0 | 211 | } |
michael@0 | 212 | |
michael@0 | 213 | { |
michael@0 | 214 | for (size_t i = 0; i < count; ++i) { |
michael@0 | 215 | sorted_nodes[i] = nodes + i; |
michael@0 | 216 | } |
michael@0 | 217 | NS_QuickSort(sorted_nodes, count, sizeof(AllocationNode*), |
michael@0 | 218 | sort_by_reverse_index, 0); |
michael@0 | 219 | } |
michael@0 | 220 | |
michael@0 | 221 | // Put the nodes into their strongly-connected components. |
michael@0 | 222 | uint32_t num_sccs = 0; |
michael@0 | 223 | { |
michael@0 | 224 | for (size_t i = 0; i < count; ++i) { |
michael@0 | 225 | nodes[i].reached = false; |
michael@0 | 226 | } |
michael@0 | 227 | nsTArray<AllocationNode*> stack; |
michael@0 | 228 | for (AllocationNode **sn = sorted_nodes, |
michael@0 | 229 | **sn_end = sorted_nodes + count; sn != sn_end; ++sn) { |
michael@0 | 230 | if ((*sn)->reached) { |
michael@0 | 231 | continue; |
michael@0 | 232 | } |
michael@0 | 233 | |
michael@0 | 234 | // We found a new strongly connected index. |
michael@0 | 235 | stack.AppendElement(*sn); |
michael@0 | 236 | do { |
michael@0 | 237 | uint32_t pos = stack.Length() - 1; |
michael@0 | 238 | AllocationNode *n = stack[pos]; |
michael@0 | 239 | stack.RemoveElementAt(pos); |
michael@0 | 240 | |
michael@0 | 241 | if (!n->reached) { |
michael@0 | 242 | n->reached = true; |
michael@0 | 243 | n->index = num_sccs; |
michael@0 | 244 | stack.AppendElements(n->pointers_from); |
michael@0 | 245 | } |
michael@0 | 246 | } while (stack.Length() > 0); |
michael@0 | 247 | ++num_sccs; |
michael@0 | 248 | } |
michael@0 | 249 | } |
michael@0 | 250 | |
michael@0 | 251 | // Identify which nodes are leak roots by using DFS, and watching |
michael@0 | 252 | // for component transitions. |
michael@0 | 253 | uint32_t num_root_nodes = count; |
michael@0 | 254 | { |
michael@0 | 255 | for (size_t i = 0; i < count; ++i) { |
michael@0 | 256 | nodes[i].is_root = true; |
michael@0 | 257 | } |
michael@0 | 258 | |
michael@0 | 259 | nsTArray<AllocationNode*> stack; |
michael@0 | 260 | for (AllocationNode *n = nodes, *n_end = nodes+count; n != n_end; ++n) { |
michael@0 | 261 | if (!n->is_root) { |
michael@0 | 262 | continue; |
michael@0 | 263 | } |
michael@0 | 264 | |
michael@0 | 265 | // Loop through pointers_to, and add any that are in a |
michael@0 | 266 | // different SCC to stack: |
michael@0 | 267 | for (int i = n->pointers_to.Length() - 1; i >= 0; --i) { |
michael@0 | 268 | AllocationNode *target = n->pointers_to[i]; |
michael@0 | 269 | if (n->index != target->index) { |
michael@0 | 270 | stack.AppendElement(target); |
michael@0 | 271 | } |
michael@0 | 272 | } |
michael@0 | 273 | |
michael@0 | 274 | while (stack.Length() > 0) { |
michael@0 | 275 | uint32_t pos = stack.Length() - 1; |
michael@0 | 276 | AllocationNode *n = stack[pos]; |
michael@0 | 277 | stack.RemoveElementAt(pos); |
michael@0 | 278 | |
michael@0 | 279 | if (n->is_root) { |
michael@0 | 280 | n->is_root = false; |
michael@0 | 281 | --num_root_nodes; |
michael@0 | 282 | stack.AppendElements(n->pointers_to); |
michael@0 | 283 | } |
michael@0 | 284 | } |
michael@0 | 285 | } |
michael@0 | 286 | } |
michael@0 | 287 | |
michael@0 | 288 | // Sort the nodes by their SCC index. |
michael@0 | 289 | NS_QuickSort(sorted_nodes, count, sizeof(AllocationNode*), |
michael@0 | 290 | sort_by_index, 0); |
michael@0 | 291 | |
michael@0 | 292 | // Print output. |
michael@0 | 293 | { |
michael@0 | 294 | printf("<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n" |
michael@0 | 295 | "<html>\n" |
michael@0 | 296 | "<head>\n" |
michael@0 | 297 | "<title>Leak analysis</title>\n" |
michael@0 | 298 | "<style type=\"text/css\">\n" |
michael@0 | 299 | " .root { background: white; color: black; }\n" |
michael@0 | 300 | " .nonroot { background: #ccc; color: black; }\n" |
michael@0 | 301 | "</style>\n" |
michael@0 | 302 | "</head>\n"); |
michael@0 | 303 | printf("<body>\n\n" |
michael@0 | 304 | "<p>Generated %zd entries (%d in root SCCs) and %d SCCs.</p>\n\n", |
michael@0 | 305 | count, num_root_nodes, num_sccs); |
michael@0 | 306 | |
michael@0 | 307 | for (size_t i = 0; i < count; ++i) { |
michael@0 | 308 | nodes[i].reached = false; |
michael@0 | 309 | } |
michael@0 | 310 | |
michael@0 | 311 | // Loop over the sorted nodes twice, first printing the roots |
michael@0 | 312 | // and then the non-roots. |
michael@0 | 313 | for (int32_t root_type = true; |
michael@0 | 314 | root_type == true || root_type == false; --root_type) { |
michael@0 | 315 | if (root_type) { |
michael@0 | 316 | printf("\n\n" |
michael@0 | 317 | "<div class=\"root\">\n" |
michael@0 | 318 | "<h1 id=\"root\">Root components</h1>\n"); |
michael@0 | 319 | } else { |
michael@0 | 320 | printf("\n\n" |
michael@0 | 321 | "<div class=\"nonroot\">\n" |
michael@0 | 322 | "<h1 id=\"nonroot\">Non-root components</h1>\n"); |
michael@0 | 323 | } |
michael@0 | 324 | uint32_t component = (uint32_t)-1; |
michael@0 | 325 | bool one_object_component; |
michael@0 | 326 | for (const AllocationNode *const* sn = sorted_nodes, |
michael@0 | 327 | *const* sn_end = sorted_nodes + count; |
michael@0 | 328 | sn != sn_end; ++sn) { |
michael@0 | 329 | const AllocationNode *n = *sn; |
michael@0 | 330 | if (n->is_root != root_type) |
michael@0 | 331 | continue; |
michael@0 | 332 | const ADLog::Entry *e = n->entry; |
michael@0 | 333 | |
michael@0 | 334 | if (n->index != component) { |
michael@0 | 335 | component = n->index; |
michael@0 | 336 | one_object_component = |
michael@0 | 337 | sn + 1 == sn_end || (*(sn+1))->index != component; |
michael@0 | 338 | if (!one_object_component) |
michael@0 | 339 | printf("\n\n<h2 id=\"c%d\">Component %d</h2>\n", |
michael@0 | 340 | component, component); |
michael@0 | 341 | } |
michael@0 | 342 | |
michael@0 | 343 | if (one_object_component) { |
michael@0 | 344 | printf("\n\n<div id=\"c%d\">\n", component); |
michael@0 | 345 | printf("<h2 id=\"o%td\">Object %td " |
michael@0 | 346 | "(single-object component %d)</h2>\n", |
michael@0 | 347 | n-nodes, n-nodes, component); |
michael@0 | 348 | } else { |
michael@0 | 349 | printf("\n\n<h3 id=\"o%td\">Object %td</h3>\n", |
michael@0 | 350 | n-nodes, n-nodes); |
michael@0 | 351 | } |
michael@0 | 352 | printf("<pre>\n"); |
michael@0 | 353 | printf("%p <%s> (%zd)\n", |
michael@0 | 354 | e->address, e->type, e->datasize); |
michael@0 | 355 | for (size_t d = 0; d < e->datasize; |
michael@0 | 356 | d += sizeof(ADLog::Pointer)) { |
michael@0 | 357 | AllocationNode *target = (AllocationNode*) |
michael@0 | 358 | PL_HashTableLookup(memory_map, *(void**)(e->data + d)); |
michael@0 | 359 | if (target) { |
michael@0 | 360 | printf(" <a href=\"#o%td\">", |
michael@0 | 361 | target - nodes); |
michael@0 | 362 | printf(allocation_format, |
michael@0 | 363 | *(size_t*)(e->data + d)); |
michael@0 | 364 | printf("</a> <%s>", |
michael@0 | 365 | target->entry->type); |
michael@0 | 366 | if (target->index != n->index) { |
michael@0 | 367 | printf(", component %d", target->index); |
michael@0 | 368 | } |
michael@0 | 369 | printf("\n"); |
michael@0 | 370 | } else { |
michael@0 | 371 | printf(" "); |
michael@0 | 372 | printf(allocation_format, |
michael@0 | 373 | *(size_t*)(e->data + d)); |
michael@0 | 374 | printf("\n"); |
michael@0 | 375 | } |
michael@0 | 376 | } |
michael@0 | 377 | |
michael@0 | 378 | if (n->pointers_from.Length()) { |
michael@0 | 379 | printf("\nPointers from:\n"); |
michael@0 | 380 | for (uint32_t i = 0, i_end = n->pointers_from.Length(); |
michael@0 | 381 | i != i_end; ++i) { |
michael@0 | 382 | AllocationNode *t = n->pointers_from[i]; |
michael@0 | 383 | const ADLog::Entry *te = t->entry; |
michael@0 | 384 | printf(" <a href=\"#o%td\">%s</a> (Object %td, ", |
michael@0 | 385 | t - nodes, te->type, t - nodes); |
michael@0 | 386 | if (t->index != n->index) { |
michael@0 | 387 | printf("component %d, ", t->index); |
michael@0 | 388 | } |
michael@0 | 389 | if (t == n) { |
michael@0 | 390 | printf("self)\n"); |
michael@0 | 391 | } else { |
michael@0 | 392 | printf("%p)\n", te->address); |
michael@0 | 393 | } |
michael@0 | 394 | } |
michael@0 | 395 | } |
michael@0 | 396 | |
michael@0 | 397 | print_escaped(stdout, e->allocation_stack); |
michael@0 | 398 | |
michael@0 | 399 | printf("</pre>\n"); |
michael@0 | 400 | if (one_object_component) { |
michael@0 | 401 | printf("</div>\n"); |
michael@0 | 402 | } |
michael@0 | 403 | } |
michael@0 | 404 | printf("</div>\n"); |
michael@0 | 405 | } |
michael@0 | 406 | printf("</body>\n" |
michael@0 | 407 | "</html>\n"); |
michael@0 | 408 | } |
michael@0 | 409 | |
michael@0 | 410 | delete [] sorted_nodes; |
michael@0 | 411 | delete [] nodes; |
michael@0 | 412 | |
michael@0 | 413 | NS_ShutdownXPCOM(nullptr); |
michael@0 | 414 | |
michael@0 | 415 | return 0; |
michael@0 | 416 | } |