Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
michael@0 | 2 | /* vim:set ts=2 sw=2 sts=2 et cindent: */ |
michael@0 | 3 | /* This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 4 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 5 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 6 | |
michael@0 | 7 | #ifndef nsTArray_h__ |
michael@0 | 8 | #define nsTArray_h__ |
michael@0 | 9 | |
michael@0 | 10 | #include "nsTArrayForwardDeclare.h" |
michael@0 | 11 | #include "mozilla/Alignment.h" |
michael@0 | 12 | #include "mozilla/Assertions.h" |
michael@0 | 13 | #include "mozilla/MemoryReporting.h" |
michael@0 | 14 | #include "mozilla/TypeTraits.h" |
michael@0 | 15 | |
michael@0 | 16 | #include <string.h> |
michael@0 | 17 | |
michael@0 | 18 | #include "nsCycleCollectionNoteChild.h" |
michael@0 | 19 | #include "nsAlgorithm.h" |
michael@0 | 20 | #include "nscore.h" |
michael@0 | 21 | #include "nsQuickSort.h" |
michael@0 | 22 | #include "nsDebug.h" |
michael@0 | 23 | #include "nsISupportsImpl.h" |
michael@0 | 24 | #include <new> |
michael@0 | 25 | |
michael@0 | 26 | namespace JS { |
michael@0 | 27 | template <class T> |
michael@0 | 28 | class Heap; |
michael@0 | 29 | } /* namespace JS */ |
michael@0 | 30 | |
michael@0 | 31 | class nsRegion; |
michael@0 | 32 | class nsIntRegion; |
michael@0 | 33 | |
michael@0 | 34 | // |
michael@0 | 35 | // nsTArray is a resizable array class, like std::vector. |
michael@0 | 36 | // |
michael@0 | 37 | // Unlike std::vector, which follows C++'s construction/destruction rules, |
michael@0 | 38 | // nsTArray assumes that your "T" can be memmoved()'ed safely. |
michael@0 | 39 | // |
michael@0 | 40 | // The public classes defined in this header are |
michael@0 | 41 | // |
michael@0 | 42 | // nsTArray<T>, |
michael@0 | 43 | // FallibleTArray<T>, |
michael@0 | 44 | // nsAutoTArray<T, N>, and |
michael@0 | 45 | // AutoFallibleTArray<T, N>. |
michael@0 | 46 | // |
michael@0 | 47 | // nsTArray and nsAutoTArray are infallible; if one tries to make an allocation |
michael@0 | 48 | // which fails, it crashes the program. In contrast, FallibleTArray and |
michael@0 | 49 | // AutoFallibleTArray are fallible; if you use one of these classes, you must |
michael@0 | 50 | // check the return values of methods such as Append() which may allocate. If |
michael@0 | 51 | // in doubt, choose an infallible type. |
michael@0 | 52 | // |
michael@0 | 53 | // InfallibleTArray and AutoInfallibleTArray are aliases for nsTArray and |
michael@0 | 54 | // nsAutoTArray. |
michael@0 | 55 | // |
michael@0 | 56 | // If you just want to declare the nsTArray types (e.g., if you're in a header |
michael@0 | 57 | // file and don't need the full nsTArray definitions) consider including |
michael@0 | 58 | // nsTArrayForwardDeclare.h instead of nsTArray.h. |
michael@0 | 59 | // |
michael@0 | 60 | // The template parameter (i.e., T in nsTArray<T>) specifies the type of the |
michael@0 | 61 | // elements and has the following requirements: |
michael@0 | 62 | // |
michael@0 | 63 | // T MUST be safely memmove()'able. |
michael@0 | 64 | // T MUST define a copy-constructor. |
michael@0 | 65 | // T MAY define operator< for sorting. |
michael@0 | 66 | // T MAY define operator== for searching. |
michael@0 | 67 | // |
michael@0 | 68 | // (Note that the memmove requirement may be relaxed for certain types - see |
michael@0 | 69 | // nsTArray_CopyChooser below.) |
michael@0 | 70 | // |
michael@0 | 71 | // For methods taking a Comparator instance, the Comparator must be a class |
michael@0 | 72 | // defining the following methods: |
michael@0 | 73 | // |
michael@0 | 74 | // class Comparator { |
michael@0 | 75 | // public: |
michael@0 | 76 | // /** @return True if the elements are equals; false otherwise. */ |
michael@0 | 77 | // bool Equals(const elem_type& a, const Item& b) const; |
michael@0 | 78 | // |
michael@0 | 79 | // /** @return True if (a < b); false otherwise. */ |
michael@0 | 80 | // bool LessThan(const elem_type& a, const Item& b) const; |
michael@0 | 81 | // }; |
michael@0 | 82 | // |
michael@0 | 83 | // The Equals method is used for searching, and the LessThan method is used for |
michael@0 | 84 | // searching and sorting. The |Item| type above can be arbitrary, but must |
michael@0 | 85 | // match the Item type passed to the sort or search function. |
michael@0 | 86 | // |
michael@0 | 87 | |
michael@0 | 88 | |
michael@0 | 89 | // |
michael@0 | 90 | // nsTArrayFallibleResult and nsTArrayInfallibleResult types are proxy types |
michael@0 | 91 | // which are used because you cannot use a templated type which is bound to |
michael@0 | 92 | // void as an argument to a void function. In order to work around that, we |
michael@0 | 93 | // encode either a void or a boolean inside these proxy objects, and pass them |
michael@0 | 94 | // to the aforementioned function instead, and then use the type information to |
michael@0 | 95 | // decide what to do in the function. |
michael@0 | 96 | // |
michael@0 | 97 | // Note that public nsTArray methods should never return a proxy type. Such |
michael@0 | 98 | // types are only meant to be used in the internal nsTArray helper methods. |
michael@0 | 99 | // Public methods returning non-proxy types cannot be called from other |
michael@0 | 100 | // nsTArray members. |
michael@0 | 101 | // |
michael@0 | 102 | struct nsTArrayFallibleResult |
michael@0 | 103 | { |
michael@0 | 104 | // Note: allows implicit conversions from and to bool |
michael@0 | 105 | nsTArrayFallibleResult(bool result) |
michael@0 | 106 | : mResult(result) |
michael@0 | 107 | {} |
michael@0 | 108 | |
michael@0 | 109 | operator bool() { |
michael@0 | 110 | return mResult; |
michael@0 | 111 | } |
michael@0 | 112 | |
michael@0 | 113 | private: |
michael@0 | 114 | bool mResult; |
michael@0 | 115 | }; |
michael@0 | 116 | |
michael@0 | 117 | struct nsTArrayInfallibleResult |
michael@0 | 118 | { |
michael@0 | 119 | }; |
michael@0 | 120 | |
michael@0 | 121 | // |
michael@0 | 122 | // nsTArray*Allocators must all use the same |free()|, to allow swap()'ing |
michael@0 | 123 | // between fallible and infallible variants. |
michael@0 | 124 | // |
michael@0 | 125 | |
michael@0 | 126 | struct nsTArrayFallibleAllocatorBase |
michael@0 | 127 | { |
michael@0 | 128 | typedef bool ResultType; |
michael@0 | 129 | typedef nsTArrayFallibleResult ResultTypeProxy; |
michael@0 | 130 | |
michael@0 | 131 | static ResultType Result(ResultTypeProxy result) { |
michael@0 | 132 | return result; |
michael@0 | 133 | } |
michael@0 | 134 | |
michael@0 | 135 | static bool Successful(ResultTypeProxy result) { |
michael@0 | 136 | return result; |
michael@0 | 137 | } |
michael@0 | 138 | |
michael@0 | 139 | static ResultTypeProxy SuccessResult() { |
michael@0 | 140 | return true; |
michael@0 | 141 | } |
michael@0 | 142 | |
michael@0 | 143 | static ResultTypeProxy FailureResult() { |
michael@0 | 144 | return false; |
michael@0 | 145 | } |
michael@0 | 146 | |
michael@0 | 147 | static ResultType ConvertBoolToResultType(bool aValue) { |
michael@0 | 148 | return aValue; |
michael@0 | 149 | } |
michael@0 | 150 | }; |
michael@0 | 151 | |
michael@0 | 152 | struct nsTArrayInfallibleAllocatorBase |
michael@0 | 153 | { |
michael@0 | 154 | typedef void ResultType; |
michael@0 | 155 | typedef nsTArrayInfallibleResult ResultTypeProxy; |
michael@0 | 156 | |
michael@0 | 157 | static ResultType Result(ResultTypeProxy result) { |
michael@0 | 158 | } |
michael@0 | 159 | |
michael@0 | 160 | static bool Successful(ResultTypeProxy) { |
michael@0 | 161 | return true; |
michael@0 | 162 | } |
michael@0 | 163 | |
michael@0 | 164 | static ResultTypeProxy SuccessResult() { |
michael@0 | 165 | return ResultTypeProxy(); |
michael@0 | 166 | } |
michael@0 | 167 | |
michael@0 | 168 | static ResultTypeProxy FailureResult() { |
michael@0 | 169 | NS_RUNTIMEABORT("Infallible nsTArray should never fail"); |
michael@0 | 170 | return ResultTypeProxy(); |
michael@0 | 171 | } |
michael@0 | 172 | |
michael@0 | 173 | static ResultType ConvertBoolToResultType(bool aValue) { |
michael@0 | 174 | if (!aValue) { |
michael@0 | 175 | NS_RUNTIMEABORT("infallible nsTArray should never convert false to ResultType"); |
michael@0 | 176 | } |
michael@0 | 177 | } |
michael@0 | 178 | }; |
michael@0 | 179 | |
michael@0 | 180 | #if defined(MOZALLOC_HAVE_XMALLOC) |
michael@0 | 181 | #include "mozilla/mozalloc_abort.h" |
michael@0 | 182 | |
michael@0 | 183 | struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase |
michael@0 | 184 | { |
michael@0 | 185 | static void* Malloc(size_t size) { |
michael@0 | 186 | return moz_malloc(size); |
michael@0 | 187 | } |
michael@0 | 188 | |
michael@0 | 189 | static void* Realloc(void* ptr, size_t size) { |
michael@0 | 190 | return moz_realloc(ptr, size); |
michael@0 | 191 | } |
michael@0 | 192 | |
michael@0 | 193 | static void Free(void* ptr) { |
michael@0 | 194 | moz_free(ptr); |
michael@0 | 195 | } |
michael@0 | 196 | |
michael@0 | 197 | static void SizeTooBig(size_t) { |
michael@0 | 198 | } |
michael@0 | 199 | }; |
michael@0 | 200 | |
michael@0 | 201 | struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase |
michael@0 | 202 | { |
michael@0 | 203 | static void* Malloc(size_t size) { |
michael@0 | 204 | return moz_xmalloc(size); |
michael@0 | 205 | } |
michael@0 | 206 | |
michael@0 | 207 | static void* Realloc(void* ptr, size_t size) { |
michael@0 | 208 | return moz_xrealloc(ptr, size); |
michael@0 | 209 | } |
michael@0 | 210 | |
michael@0 | 211 | static void Free(void* ptr) { |
michael@0 | 212 | moz_free(ptr); |
michael@0 | 213 | } |
michael@0 | 214 | |
michael@0 | 215 | static void SizeTooBig(size_t size) { |
michael@0 | 216 | NS_ABORT_OOM(size); |
michael@0 | 217 | } |
michael@0 | 218 | }; |
michael@0 | 219 | |
michael@0 | 220 | #else |
michael@0 | 221 | #include <stdlib.h> |
michael@0 | 222 | |
michael@0 | 223 | struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase |
michael@0 | 224 | { |
michael@0 | 225 | static void* Malloc(size_t size) { |
michael@0 | 226 | return malloc(size); |
michael@0 | 227 | } |
michael@0 | 228 | |
michael@0 | 229 | static void* Realloc(void* ptr, size_t size) { |
michael@0 | 230 | return realloc(ptr, size); |
michael@0 | 231 | } |
michael@0 | 232 | |
michael@0 | 233 | static void Free(void* ptr) { |
michael@0 | 234 | free(ptr); |
michael@0 | 235 | } |
michael@0 | 236 | |
michael@0 | 237 | static void SizeTooBig(size_t) { |
michael@0 | 238 | } |
michael@0 | 239 | }; |
michael@0 | 240 | |
michael@0 | 241 | struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase |
michael@0 | 242 | { |
michael@0 | 243 | static void* Malloc(size_t size) { |
michael@0 | 244 | void* ptr = malloc(size); |
michael@0 | 245 | if (MOZ_UNLIKELY(!ptr)) { |
michael@0 | 246 | NS_ABORT_OOM(size); |
michael@0 | 247 | } |
michael@0 | 248 | return ptr; |
michael@0 | 249 | } |
michael@0 | 250 | |
michael@0 | 251 | static void* Realloc(void* ptr, size_t size) { |
michael@0 | 252 | void* newptr = realloc(ptr, size); |
michael@0 | 253 | if (MOZ_UNLIKELY(!ptr && size)) { |
michael@0 | 254 | NS_ABORT_OOM(size); |
michael@0 | 255 | } |
michael@0 | 256 | return newptr; |
michael@0 | 257 | } |
michael@0 | 258 | |
michael@0 | 259 | static void Free(void* ptr) { |
michael@0 | 260 | free(ptr); |
michael@0 | 261 | } |
michael@0 | 262 | |
michael@0 | 263 | static void SizeTooBig(size_t size) { |
michael@0 | 264 | NS_ABORT_OOM(size); |
michael@0 | 265 | } |
michael@0 | 266 | }; |
michael@0 | 267 | |
michael@0 | 268 | #endif |
michael@0 | 269 | |
michael@0 | 270 | // nsTArray_base stores elements into the space allocated beyond |
michael@0 | 271 | // sizeof(*this). This is done to minimize the size of the nsTArray |
michael@0 | 272 | // object when it is empty. |
michael@0 | 273 | struct NS_COM_GLUE nsTArrayHeader |
michael@0 | 274 | { |
michael@0 | 275 | static nsTArrayHeader sEmptyHdr; |
michael@0 | 276 | |
michael@0 | 277 | uint32_t mLength; |
michael@0 | 278 | uint32_t mCapacity : 31; |
michael@0 | 279 | uint32_t mIsAutoArray : 1; |
michael@0 | 280 | }; |
michael@0 | 281 | |
michael@0 | 282 | // This class provides a SafeElementAt method to nsTArray<T*> which does |
michael@0 | 283 | // not take a second default value parameter. |
michael@0 | 284 | template <class E, class Derived> |
michael@0 | 285 | struct nsTArray_SafeElementAtHelper |
michael@0 | 286 | { |
michael@0 | 287 | typedef E* elem_type; |
michael@0 | 288 | typedef uint32_t index_type; |
michael@0 | 289 | |
michael@0 | 290 | // No implementation is provided for these two methods, and that is on |
michael@0 | 291 | // purpose, since we don't support these functions on non-pointer type |
michael@0 | 292 | // instantiations. |
michael@0 | 293 | elem_type& SafeElementAt(index_type i); |
michael@0 | 294 | const elem_type& SafeElementAt(index_type i) const; |
michael@0 | 295 | }; |
michael@0 | 296 | |
michael@0 | 297 | template <class E, class Derived> |
michael@0 | 298 | struct nsTArray_SafeElementAtHelper<E*, Derived> |
michael@0 | 299 | { |
michael@0 | 300 | typedef E* elem_type; |
michael@0 | 301 | typedef uint32_t index_type; |
michael@0 | 302 | |
michael@0 | 303 | elem_type SafeElementAt(index_type i) { |
michael@0 | 304 | return static_cast<Derived*> (this)->SafeElementAt(i, nullptr); |
michael@0 | 305 | } |
michael@0 | 306 | |
michael@0 | 307 | const elem_type SafeElementAt(index_type i) const { |
michael@0 | 308 | return static_cast<const Derived*> (this)->SafeElementAt(i, nullptr); |
michael@0 | 309 | } |
michael@0 | 310 | }; |
michael@0 | 311 | |
michael@0 | 312 | // E is the base type that the smart pointer is templated over; the |
michael@0 | 313 | // smart pointer can act as E*. |
michael@0 | 314 | template <class E, class Derived> |
michael@0 | 315 | struct nsTArray_SafeElementAtSmartPtrHelper |
michael@0 | 316 | { |
michael@0 | 317 | typedef E* elem_type; |
michael@0 | 318 | typedef uint32_t index_type; |
michael@0 | 319 | |
michael@0 | 320 | elem_type SafeElementAt(index_type i) { |
michael@0 | 321 | return static_cast<Derived*> (this)->SafeElementAt(i, nullptr); |
michael@0 | 322 | } |
michael@0 | 323 | |
michael@0 | 324 | const elem_type SafeElementAt(index_type i) const { |
michael@0 | 325 | return static_cast<const Derived*> (this)->SafeElementAt(i, nullptr); |
michael@0 | 326 | } |
michael@0 | 327 | }; |
michael@0 | 328 | |
michael@0 | 329 | template <class T> class nsCOMPtr; |
michael@0 | 330 | |
michael@0 | 331 | template <class E, class Derived> |
michael@0 | 332 | struct nsTArray_SafeElementAtHelper<nsCOMPtr<E>, Derived> : |
michael@0 | 333 | public nsTArray_SafeElementAtSmartPtrHelper<E, Derived> |
michael@0 | 334 | { |
michael@0 | 335 | }; |
michael@0 | 336 | |
michael@0 | 337 | template <class T> class nsRefPtr; |
michael@0 | 338 | |
michael@0 | 339 | template <class E, class Derived> |
michael@0 | 340 | struct nsTArray_SafeElementAtHelper<nsRefPtr<E>, Derived> : |
michael@0 | 341 | public nsTArray_SafeElementAtSmartPtrHelper<E, Derived> |
michael@0 | 342 | { |
michael@0 | 343 | }; |
michael@0 | 344 | |
michael@0 | 345 | // |
michael@0 | 346 | // This class serves as a base class for nsTArray. It shouldn't be used |
michael@0 | 347 | // directly. It holds common implementation code that does not depend on the |
michael@0 | 348 | // element type of the nsTArray. |
michael@0 | 349 | // |
michael@0 | 350 | template<class Alloc, class Copy> |
michael@0 | 351 | class nsTArray_base |
michael@0 | 352 | { |
michael@0 | 353 | // Allow swapping elements with |nsTArray_base|s created using a |
michael@0 | 354 | // different allocator. This is kosher because all allocators use |
michael@0 | 355 | // the same free(). |
michael@0 | 356 | template<class Allocator, class Copier> |
michael@0 | 357 | friend class nsTArray_base; |
michael@0 | 358 | |
michael@0 | 359 | protected: |
michael@0 | 360 | typedef nsTArrayHeader Header; |
michael@0 | 361 | |
michael@0 | 362 | public: |
michael@0 | 363 | typedef uint32_t size_type; |
michael@0 | 364 | typedef uint32_t index_type; |
michael@0 | 365 | |
michael@0 | 366 | // @return The number of elements in the array. |
michael@0 | 367 | size_type Length() const { |
michael@0 | 368 | return mHdr->mLength; |
michael@0 | 369 | } |
michael@0 | 370 | |
michael@0 | 371 | // @return True if the array is empty or false otherwise. |
michael@0 | 372 | bool IsEmpty() const { |
michael@0 | 373 | return Length() == 0; |
michael@0 | 374 | } |
michael@0 | 375 | |
michael@0 | 376 | // @return The number of elements that can fit in the array without forcing |
michael@0 | 377 | // the array to be re-allocated. The length of an array is always less |
michael@0 | 378 | // than or equal to its capacity. |
michael@0 | 379 | size_type Capacity() const { |
michael@0 | 380 | return mHdr->mCapacity; |
michael@0 | 381 | } |
michael@0 | 382 | |
michael@0 | 383 | #ifdef DEBUG |
michael@0 | 384 | void* DebugGetHeader() const { |
michael@0 | 385 | return mHdr; |
michael@0 | 386 | } |
michael@0 | 387 | #endif |
michael@0 | 388 | |
michael@0 | 389 | protected: |
michael@0 | 390 | nsTArray_base(); |
michael@0 | 391 | |
michael@0 | 392 | ~nsTArray_base(); |
michael@0 | 393 | |
michael@0 | 394 | // Resize the storage if necessary to achieve the requested capacity. |
michael@0 | 395 | // @param capacity The requested number of array elements. |
michael@0 | 396 | // @param elemSize The size of an array element. |
michael@0 | 397 | // @return False if insufficient memory is available; true otherwise. |
michael@0 | 398 | typename Alloc::ResultTypeProxy EnsureCapacity(size_type capacity, size_type elemSize); |
michael@0 | 399 | |
michael@0 | 400 | // Resize the storage to the minimum required amount. |
michael@0 | 401 | // @param elemSize The size of an array element. |
michael@0 | 402 | // @param elemAlign The alignment in bytes of an array element. |
michael@0 | 403 | void ShrinkCapacity(size_type elemSize, size_t elemAlign); |
michael@0 | 404 | |
michael@0 | 405 | // This method may be called to resize a "gap" in the array by shifting |
michael@0 | 406 | // elements around. It updates mLength appropriately. If the resulting |
michael@0 | 407 | // array has zero elements, then the array's memory is free'd. |
michael@0 | 408 | // @param start The starting index of the gap. |
michael@0 | 409 | // @param oldLen The current length of the gap. |
michael@0 | 410 | // @param newLen The desired length of the gap. |
michael@0 | 411 | // @param elemSize The size of an array element. |
michael@0 | 412 | // @param elemAlign The alignment in bytes of an array element. |
michael@0 | 413 | void ShiftData(index_type start, size_type oldLen, size_type newLen, |
michael@0 | 414 | size_type elemSize, size_t elemAlign); |
michael@0 | 415 | |
michael@0 | 416 | // This method increments the length member of the array's header. |
michael@0 | 417 | // Note that mHdr may actually be sEmptyHdr in the case where a |
michael@0 | 418 | // zero-length array is inserted into our array. But then n should |
michael@0 | 419 | // always be 0. |
michael@0 | 420 | void IncrementLength(uint32_t n) { |
michael@0 | 421 | if (mHdr == EmptyHdr()) { |
michael@0 | 422 | if (MOZ_UNLIKELY(n != 0)) { |
michael@0 | 423 | // Writing a non-zero length to the empty header would be extremely bad. |
michael@0 | 424 | MOZ_CRASH(); |
michael@0 | 425 | } |
michael@0 | 426 | } else { |
michael@0 | 427 | mHdr->mLength += n; |
michael@0 | 428 | } |
michael@0 | 429 | } |
michael@0 | 430 | |
michael@0 | 431 | // This method inserts blank slots into the array. |
michael@0 | 432 | // @param index the place to insert the new elements. This must be no |
michael@0 | 433 | // greater than the current length of the array. |
michael@0 | 434 | // @param count the number of slots to insert |
michael@0 | 435 | // @param elementSize the size of an array element. |
michael@0 | 436 | // @param elemAlign the alignment in bytes of an array element. |
michael@0 | 437 | bool InsertSlotsAt(index_type index, size_type count, |
michael@0 | 438 | size_type elementSize, size_t elemAlign); |
michael@0 | 439 | |
michael@0 | 440 | protected: |
michael@0 | 441 | template<class Allocator> |
michael@0 | 442 | typename Alloc::ResultTypeProxy |
michael@0 | 443 | SwapArrayElements(nsTArray_base<Allocator, Copy>& other, |
michael@0 | 444 | size_type elemSize, |
michael@0 | 445 | size_t elemAlign); |
michael@0 | 446 | |
michael@0 | 447 | // This is an RAII class used in SwapArrayElements. |
michael@0 | 448 | class IsAutoArrayRestorer { |
michael@0 | 449 | public: |
michael@0 | 450 | IsAutoArrayRestorer(nsTArray_base<Alloc, Copy> &array, size_t elemAlign); |
michael@0 | 451 | ~IsAutoArrayRestorer(); |
michael@0 | 452 | |
michael@0 | 453 | private: |
michael@0 | 454 | nsTArray_base<Alloc, Copy> &mArray; |
michael@0 | 455 | size_t mElemAlign; |
michael@0 | 456 | bool mIsAuto; |
michael@0 | 457 | }; |
michael@0 | 458 | |
michael@0 | 459 | // Helper function for SwapArrayElements. Ensures that if the array |
michael@0 | 460 | // is an nsAutoTArray that it doesn't use the built-in buffer. |
michael@0 | 461 | bool EnsureNotUsingAutoArrayBuffer(size_type elemSize); |
michael@0 | 462 | |
michael@0 | 463 | // Returns true if this nsTArray is an nsAutoTArray with a built-in buffer. |
michael@0 | 464 | bool IsAutoArray() const { |
michael@0 | 465 | return mHdr->mIsAutoArray; |
michael@0 | 466 | } |
michael@0 | 467 | |
michael@0 | 468 | // Returns a Header for the built-in buffer of this nsAutoTArray. |
michael@0 | 469 | Header* GetAutoArrayBuffer(size_t elemAlign) { |
michael@0 | 470 | MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this"); |
michael@0 | 471 | return GetAutoArrayBufferUnsafe(elemAlign); |
michael@0 | 472 | } |
michael@0 | 473 | const Header* GetAutoArrayBuffer(size_t elemAlign) const { |
michael@0 | 474 | MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this"); |
michael@0 | 475 | return GetAutoArrayBufferUnsafe(elemAlign); |
michael@0 | 476 | } |
michael@0 | 477 | |
michael@0 | 478 | // Returns a Header for the built-in buffer of this nsAutoTArray, but doesn't |
michael@0 | 479 | // assert that we are an nsAutoTArray. |
michael@0 | 480 | Header* GetAutoArrayBufferUnsafe(size_t elemAlign) { |
michael@0 | 481 | return const_cast<Header*>(static_cast<const nsTArray_base<Alloc, Copy>*>(this)-> |
michael@0 | 482 | GetAutoArrayBufferUnsafe(elemAlign)); |
michael@0 | 483 | } |
michael@0 | 484 | const Header* GetAutoArrayBufferUnsafe(size_t elemAlign) const; |
michael@0 | 485 | |
michael@0 | 486 | // Returns true if this is an nsAutoTArray and it currently uses the |
michael@0 | 487 | // built-in buffer to store its elements. |
michael@0 | 488 | bool UsesAutoArrayBuffer() const; |
michael@0 | 489 | |
michael@0 | 490 | // The array's elements (prefixed with a Header). This pointer is never |
michael@0 | 491 | // null. If the array is empty, then this will point to sEmptyHdr. |
michael@0 | 492 | Header *mHdr; |
michael@0 | 493 | |
michael@0 | 494 | Header* Hdr() const { |
michael@0 | 495 | return mHdr; |
michael@0 | 496 | } |
michael@0 | 497 | |
michael@0 | 498 | Header** PtrToHdr() { |
michael@0 | 499 | return &mHdr; |
michael@0 | 500 | } |
michael@0 | 501 | |
michael@0 | 502 | static Header* EmptyHdr() { |
michael@0 | 503 | return &Header::sEmptyHdr; |
michael@0 | 504 | } |
michael@0 | 505 | }; |
michael@0 | 506 | |
michael@0 | 507 | // |
michael@0 | 508 | // This class defines convenience functions for element specific operations. |
michael@0 | 509 | // Specialize this template if necessary. |
michael@0 | 510 | // |
michael@0 | 511 | template<class E> |
michael@0 | 512 | class nsTArrayElementTraits |
michael@0 | 513 | { |
michael@0 | 514 | public: |
michael@0 | 515 | // Invoke the default constructor in place. |
michael@0 | 516 | static inline void Construct(E *e) { |
michael@0 | 517 | // Do NOT call "E()"! That triggers C++ "default initialization" |
michael@0 | 518 | // which zeroes out POD ("plain old data") types such as regular |
michael@0 | 519 | // ints. We don't want that because it can be a performance issue |
michael@0 | 520 | // and people don't expect it; nsTArray should work like a regular |
michael@0 | 521 | // C/C++ array in this respect. |
michael@0 | 522 | new (static_cast<void *>(e)) E; |
michael@0 | 523 | } |
michael@0 | 524 | // Invoke the copy-constructor in place. |
michael@0 | 525 | template<class A> |
michael@0 | 526 | static inline void Construct(E *e, const A &arg) { |
michael@0 | 527 | typedef typename mozilla::RemoveCV<E>::Type E_NoCV; |
michael@0 | 528 | typedef typename mozilla::RemoveCV<A>::Type A_NoCV; |
michael@0 | 529 | static_assert(!mozilla::IsSame<E_NoCV*, A_NoCV>::value, |
michael@0 | 530 | "For safety, we disallow constructing nsTArray<E> elements " |
michael@0 | 531 | "from E* pointers. See bug 960591."); |
michael@0 | 532 | new (static_cast<void *>(e)) E(arg); |
michael@0 | 533 | } |
michael@0 | 534 | // Invoke the destructor in place. |
michael@0 | 535 | static inline void Destruct(E *e) { |
michael@0 | 536 | e->~E(); |
michael@0 | 537 | } |
michael@0 | 538 | }; |
michael@0 | 539 | |
michael@0 | 540 | // The default comparator used by nsTArray |
michael@0 | 541 | template<class A, class B> |
michael@0 | 542 | class nsDefaultComparator |
michael@0 | 543 | { |
michael@0 | 544 | public: |
michael@0 | 545 | bool Equals(const A& a, const B& b) const { |
michael@0 | 546 | return a == b; |
michael@0 | 547 | } |
michael@0 | 548 | bool LessThan(const A& a, const B& b) const { |
michael@0 | 549 | return a < b; |
michael@0 | 550 | } |
michael@0 | 551 | }; |
michael@0 | 552 | |
michael@0 | 553 | template <class E> class InfallibleTArray; |
michael@0 | 554 | template <class E> class FallibleTArray; |
michael@0 | 555 | |
michael@0 | 556 | template<bool IsPod, bool IsSameType> |
michael@0 | 557 | struct AssignRangeAlgorithm { |
michael@0 | 558 | template<class Item, class ElemType, class IndexType, class SizeType> |
michael@0 | 559 | static void implementation(ElemType* elements, IndexType start, |
michael@0 | 560 | SizeType count, const Item *values) { |
michael@0 | 561 | ElemType *iter = elements + start, *end = iter + count; |
michael@0 | 562 | for (; iter != end; ++iter, ++values) |
michael@0 | 563 | nsTArrayElementTraits<ElemType>::Construct(iter, *values); |
michael@0 | 564 | } |
michael@0 | 565 | }; |
michael@0 | 566 | |
michael@0 | 567 | template<> |
michael@0 | 568 | struct AssignRangeAlgorithm<true, true> { |
michael@0 | 569 | template<class Item, class ElemType, class IndexType, class SizeType> |
michael@0 | 570 | static void implementation(ElemType* elements, IndexType start, |
michael@0 | 571 | SizeType count, const Item *values) { |
michael@0 | 572 | memcpy(elements + start, values, count * sizeof(ElemType)); |
michael@0 | 573 | } |
michael@0 | 574 | }; |
michael@0 | 575 | |
michael@0 | 576 | // |
michael@0 | 577 | // Normally elements are copied with memcpy and memmove, but for some element |
michael@0 | 578 | // types that is problematic. The nsTArray_CopyChooser template class can be |
michael@0 | 579 | // specialized to ensure that copying calls constructors and destructors |
michael@0 | 580 | // instead, as is done below for JS::Heap<E> elements. |
michael@0 | 581 | // |
michael@0 | 582 | |
michael@0 | 583 | // |
michael@0 | 584 | // A class that defines how to copy elements using memcpy/memmove. |
michael@0 | 585 | // |
michael@0 | 586 | struct nsTArray_CopyWithMemutils |
michael@0 | 587 | { |
michael@0 | 588 | const static bool allowRealloc = true; |
michael@0 | 589 | |
michael@0 | 590 | static void CopyElements(void* dest, const void* src, size_t count, size_t elemSize) { |
michael@0 | 591 | memcpy(dest, src, count * elemSize); |
michael@0 | 592 | } |
michael@0 | 593 | |
michael@0 | 594 | static void CopyHeaderAndElements(void* dest, const void* src, size_t count, size_t elemSize) { |
michael@0 | 595 | memcpy(dest, src, sizeof(nsTArrayHeader) + count * elemSize); |
michael@0 | 596 | } |
michael@0 | 597 | |
michael@0 | 598 | static void MoveElements(void* dest, const void* src, size_t count, size_t elemSize) { |
michael@0 | 599 | memmove(dest, src, count * elemSize); |
michael@0 | 600 | } |
michael@0 | 601 | }; |
michael@0 | 602 | |
michael@0 | 603 | // |
michael@0 | 604 | // A template class that defines how to copy elements calling their constructors |
michael@0 | 605 | // and destructors appropriately. |
michael@0 | 606 | // |
michael@0 | 607 | template <class ElemType> |
michael@0 | 608 | struct nsTArray_CopyWithConstructors |
michael@0 | 609 | { |
michael@0 | 610 | typedef nsTArrayElementTraits<ElemType> traits; |
michael@0 | 611 | |
michael@0 | 612 | const static bool allowRealloc = false; |
michael@0 | 613 | |
michael@0 | 614 | static void CopyElements(void* dest, void* src, size_t count, size_t elemSize) { |
michael@0 | 615 | ElemType* destElem = static_cast<ElemType*>(dest); |
michael@0 | 616 | ElemType* srcElem = static_cast<ElemType*>(src); |
michael@0 | 617 | ElemType* destElemEnd = destElem + count; |
michael@0 | 618 | #ifdef DEBUG |
michael@0 | 619 | ElemType* srcElemEnd = srcElem + count; |
michael@0 | 620 | MOZ_ASSERT(srcElemEnd <= destElem || srcElemEnd > destElemEnd); |
michael@0 | 621 | #endif |
michael@0 | 622 | while (destElem != destElemEnd) { |
michael@0 | 623 | traits::Construct(destElem, *srcElem); |
michael@0 | 624 | traits::Destruct(srcElem); |
michael@0 | 625 | ++destElem; |
michael@0 | 626 | ++srcElem; |
michael@0 | 627 | } |
michael@0 | 628 | } |
michael@0 | 629 | |
michael@0 | 630 | static void CopyHeaderAndElements(void* dest, void* src, size_t count, size_t elemSize) { |
michael@0 | 631 | nsTArrayHeader* destHeader = static_cast<nsTArrayHeader*>(dest); |
michael@0 | 632 | nsTArrayHeader* srcHeader = static_cast<nsTArrayHeader*>(src); |
michael@0 | 633 | *destHeader = *srcHeader; |
michael@0 | 634 | CopyElements(static_cast<uint8_t*>(dest) + sizeof(nsTArrayHeader), |
michael@0 | 635 | static_cast<uint8_t*>(src) + sizeof(nsTArrayHeader), |
michael@0 | 636 | count, elemSize); |
michael@0 | 637 | } |
michael@0 | 638 | |
michael@0 | 639 | static void MoveElements(void* dest, void* src, size_t count, size_t elemSize) { |
michael@0 | 640 | ElemType* destElem = static_cast<ElemType*>(dest); |
michael@0 | 641 | ElemType* srcElem = static_cast<ElemType*>(src); |
michael@0 | 642 | ElemType* destElemEnd = destElem + count; |
michael@0 | 643 | ElemType* srcElemEnd = srcElem + count; |
michael@0 | 644 | if (destElem == srcElem) { |
michael@0 | 645 | return; // In practice, we don't do this. |
michael@0 | 646 | } else if (srcElemEnd > destElem && srcElemEnd < destElemEnd) { |
michael@0 | 647 | while (destElemEnd != destElem) { |
michael@0 | 648 | --destElemEnd; |
michael@0 | 649 | --srcElemEnd; |
michael@0 | 650 | traits::Construct(destElemEnd, *srcElemEnd); |
michael@0 | 651 | traits::Destruct(srcElem); |
michael@0 | 652 | } |
michael@0 | 653 | } else { |
michael@0 | 654 | CopyElements(dest, src, count, elemSize); |
michael@0 | 655 | } |
michael@0 | 656 | } |
michael@0 | 657 | }; |
michael@0 | 658 | |
michael@0 | 659 | // |
michael@0 | 660 | // The default behaviour is to use memcpy/memmove for everything. |
michael@0 | 661 | // |
michael@0 | 662 | template <class E> |
michael@0 | 663 | struct nsTArray_CopyChooser { |
michael@0 | 664 | typedef nsTArray_CopyWithMemutils Type; |
michael@0 | 665 | }; |
michael@0 | 666 | |
michael@0 | 667 | // |
michael@0 | 668 | // Some classes require constructors/destructors to be called, so they are |
michael@0 | 669 | // specialized here. |
michael@0 | 670 | // |
michael@0 | 671 | template <class E> |
michael@0 | 672 | struct nsTArray_CopyChooser<JS::Heap<E> > { |
michael@0 | 673 | typedef nsTArray_CopyWithConstructors<JS::Heap<E> > Type; |
michael@0 | 674 | }; |
michael@0 | 675 | |
michael@0 | 676 | template<> |
michael@0 | 677 | struct nsTArray_CopyChooser<nsRegion> { |
michael@0 | 678 | typedef nsTArray_CopyWithConstructors<nsRegion> Type; |
michael@0 | 679 | }; |
michael@0 | 680 | |
michael@0 | 681 | template<> |
michael@0 | 682 | struct nsTArray_CopyChooser<nsIntRegion> { |
michael@0 | 683 | typedef nsTArray_CopyWithConstructors<nsIntRegion> Type; |
michael@0 | 684 | }; |
michael@0 | 685 | |
michael@0 | 686 | // |
michael@0 | 687 | // Base class for nsTArray_Impl that is templated on element type and derived |
michael@0 | 688 | // nsTArray_Impl class, to allow extra conversions to be added for specific |
michael@0 | 689 | // types. |
michael@0 | 690 | // |
michael@0 | 691 | template <class E, class Derived> |
michael@0 | 692 | struct nsTArray_TypedBase : public nsTArray_SafeElementAtHelper<E, Derived> {}; |
michael@0 | 693 | |
michael@0 | 694 | // |
michael@0 | 695 | // Specialization of nsTArray_TypedBase for arrays containing JS::Heap<E> |
michael@0 | 696 | // elements. |
michael@0 | 697 | // |
michael@0 | 698 | // These conversions are safe because JS::Heap<E> and E share the same |
michael@0 | 699 | // representation, and since the result of the conversions are const references |
michael@0 | 700 | // we won't miss any barriers. |
michael@0 | 701 | // |
michael@0 | 702 | // The static_cast is necessary to obtain the correct address for the derived |
michael@0 | 703 | // class since we are a base class used in multiple inheritance. |
michael@0 | 704 | // |
michael@0 | 705 | template <class E, class Derived> |
michael@0 | 706 | struct nsTArray_TypedBase<JS::Heap<E>, Derived> |
michael@0 | 707 | : public nsTArray_SafeElementAtHelper<JS::Heap<E>, Derived> |
michael@0 | 708 | { |
michael@0 | 709 | operator const nsTArray<E>& () { |
michael@0 | 710 | static_assert(sizeof(E) == sizeof(JS::Heap<E>), |
michael@0 | 711 | "JS::Heap<E> must be binary compatible with E."); |
michael@0 | 712 | Derived* self = static_cast<Derived*>(this); |
michael@0 | 713 | return *reinterpret_cast<nsTArray<E> *>(self); |
michael@0 | 714 | } |
michael@0 | 715 | |
michael@0 | 716 | operator const FallibleTArray<E>& () { |
michael@0 | 717 | Derived* self = static_cast<Derived*>(this); |
michael@0 | 718 | return *reinterpret_cast<FallibleTArray<E> *>(self); |
michael@0 | 719 | } |
michael@0 | 720 | }; |
michael@0 | 721 | |
michael@0 | 722 | |
michael@0 | 723 | // |
michael@0 | 724 | // nsTArray_Impl contains most of the guts supporting nsTArray, FallibleTArray, |
michael@0 | 725 | // nsAutoTArray, and AutoFallibleTArray. |
michael@0 | 726 | // |
michael@0 | 727 | // The only situation in which you might need to use nsTArray_Impl in your code |
michael@0 | 728 | // is if you're writing code which mutates a TArray which may or may not be |
michael@0 | 729 | // infallible. |
michael@0 | 730 | // |
michael@0 | 731 | // Code which merely reads from a TArray which may or may not be infallible can |
michael@0 | 732 | // simply cast the TArray to |const nsTArray&|; both fallible and infallible |
michael@0 | 733 | // TArrays can be cast to |const nsTArray&|. |
michael@0 | 734 | // |
michael@0 | 735 | template<class E, class Alloc> |
michael@0 | 736 | class nsTArray_Impl : public nsTArray_base<Alloc, typename nsTArray_CopyChooser<E>::Type>, |
michael@0 | 737 | public nsTArray_TypedBase<E, nsTArray_Impl<E, Alloc> > |
michael@0 | 738 | { |
michael@0 | 739 | public: |
michael@0 | 740 | typedef typename nsTArray_CopyChooser<E>::Type copy_type; |
michael@0 | 741 | typedef nsTArray_base<Alloc, copy_type> base_type; |
michael@0 | 742 | typedef typename base_type::size_type size_type; |
michael@0 | 743 | typedef typename base_type::index_type index_type; |
michael@0 | 744 | typedef E elem_type; |
michael@0 | 745 | typedef nsTArray_Impl<E, Alloc> self_type; |
michael@0 | 746 | typedef nsTArrayElementTraits<E> elem_traits; |
michael@0 | 747 | typedef nsTArray_SafeElementAtHelper<E, self_type> safeelementat_helper_type; |
michael@0 | 748 | |
michael@0 | 749 | using safeelementat_helper_type::SafeElementAt; |
michael@0 | 750 | using base_type::EmptyHdr; |
michael@0 | 751 | |
michael@0 | 752 | // A special value that is used to indicate an invalid or unknown index |
michael@0 | 753 | // into the array. |
michael@0 | 754 | enum { |
michael@0 | 755 | NoIndex = index_type(-1) |
michael@0 | 756 | }; |
michael@0 | 757 | |
michael@0 | 758 | using base_type::Length; |
michael@0 | 759 | |
michael@0 | 760 | // |
michael@0 | 761 | // Finalization method |
michael@0 | 762 | // |
michael@0 | 763 | |
michael@0 | 764 | ~nsTArray_Impl() { Clear(); } |
michael@0 | 765 | |
michael@0 | 766 | // |
michael@0 | 767 | // Initialization methods |
michael@0 | 768 | // |
michael@0 | 769 | |
michael@0 | 770 | nsTArray_Impl() {} |
michael@0 | 771 | |
michael@0 | 772 | // Initialize this array and pre-allocate some number of elements. |
michael@0 | 773 | explicit nsTArray_Impl(size_type capacity) { |
michael@0 | 774 | SetCapacity(capacity); |
michael@0 | 775 | } |
michael@0 | 776 | |
michael@0 | 777 | // The array's copy-constructor performs a 'deep' copy of the given array. |
michael@0 | 778 | // @param other The array object to copy. |
michael@0 | 779 | // |
michael@0 | 780 | // It's very important that we declare this method as taking |const |
michael@0 | 781 | // self_type&| as opposed to taking |const nsTArray_Impl<E, OtherAlloc>| for |
michael@0 | 782 | // an arbitrary OtherAlloc. |
michael@0 | 783 | // |
michael@0 | 784 | // If we don't declare a constructor taking |const self_type&|, C++ generates |
michael@0 | 785 | // a copy-constructor for this class which merely copies the object's |
michael@0 | 786 | // members, which is obviously wrong. |
michael@0 | 787 | // |
michael@0 | 788 | // You can pass an nsTArray_Impl<E, OtherAlloc> to this method because |
michael@0 | 789 | // nsTArray_Impl<E, X> can be cast to const nsTArray_Impl<E, Y>&. So the |
michael@0 | 790 | // effect on the API is the same as if we'd declared this method as taking |
michael@0 | 791 | // |const nsTArray_Impl<E, OtherAlloc>&|. |
michael@0 | 792 | explicit nsTArray_Impl(const self_type& other) { |
michael@0 | 793 | AppendElements(other); |
michael@0 | 794 | } |
michael@0 | 795 | |
michael@0 | 796 | // Allow converting to a const array with a different kind of allocator, |
michael@0 | 797 | // Since the allocator doesn't matter for const arrays |
michael@0 | 798 | template<typename Allocator> |
michael@0 | 799 | operator const nsTArray_Impl<E, Allocator>&() const { |
michael@0 | 800 | return *reinterpret_cast<const nsTArray_Impl<E, Allocator>*>(this); |
michael@0 | 801 | } |
michael@0 | 802 | // And we have to do this for our subclasses too |
michael@0 | 803 | operator const nsTArray<E>&() const { |
michael@0 | 804 | return *reinterpret_cast<const InfallibleTArray<E>*>(this); |
michael@0 | 805 | } |
michael@0 | 806 | operator const FallibleTArray<E>&() const { |
michael@0 | 807 | return *reinterpret_cast<const FallibleTArray<E>*>(this); |
michael@0 | 808 | } |
michael@0 | 809 | |
michael@0 | 810 | // The array's assignment operator performs a 'deep' copy of the given |
michael@0 | 811 | // array. It is optimized to reuse existing storage if possible. |
michael@0 | 812 | // @param other The array object to copy. |
michael@0 | 813 | self_type& operator=(const self_type& other) { |
michael@0 | 814 | ReplaceElementsAt(0, Length(), other.Elements(), other.Length()); |
michael@0 | 815 | return *this; |
michael@0 | 816 | } |
michael@0 | 817 | |
michael@0 | 818 | // Return true if this array has the same length and the same |
michael@0 | 819 | // elements as |other|. |
michael@0 | 820 | template<typename Allocator> |
michael@0 | 821 | bool operator==(const nsTArray_Impl<E, Allocator>& other) const { |
michael@0 | 822 | size_type len = Length(); |
michael@0 | 823 | if (len != other.Length()) |
michael@0 | 824 | return false; |
michael@0 | 825 | |
michael@0 | 826 | // XXX std::equal would be as fast or faster here |
michael@0 | 827 | for (index_type i = 0; i < len; ++i) |
michael@0 | 828 | if (!(operator[](i) == other[i])) |
michael@0 | 829 | return false; |
michael@0 | 830 | |
michael@0 | 831 | return true; |
michael@0 | 832 | } |
michael@0 | 833 | |
michael@0 | 834 | // Return true if this array does not have the same length and the same |
michael@0 | 835 | // elements as |other|. |
michael@0 | 836 | bool operator!=(const self_type& other) const { |
michael@0 | 837 | return !operator==(other); |
michael@0 | 838 | } |
michael@0 | 839 | |
michael@0 | 840 | template<typename Allocator> |
michael@0 | 841 | self_type& operator=(const nsTArray_Impl<E, Allocator>& other) { |
michael@0 | 842 | ReplaceElementsAt(0, Length(), other.Elements(), other.Length()); |
michael@0 | 843 | return *this; |
michael@0 | 844 | } |
michael@0 | 845 | |
michael@0 | 846 | // @return The amount of memory used by this nsTArray_Impl, excluding |
michael@0 | 847 | // sizeof(*this). |
michael@0 | 848 | size_t SizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const { |
michael@0 | 849 | if (this->UsesAutoArrayBuffer() || Hdr() == EmptyHdr()) |
michael@0 | 850 | return 0; |
michael@0 | 851 | return mallocSizeOf(this->Hdr()); |
michael@0 | 852 | } |
michael@0 | 853 | |
michael@0 | 854 | // @return The amount of memory used by this nsTArray_Impl, including |
michael@0 | 855 | // sizeof(*this). |
michael@0 | 856 | size_t SizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const { |
michael@0 | 857 | return mallocSizeOf(this) + SizeOfExcludingThis(mallocSizeOf); |
michael@0 | 858 | } |
michael@0 | 859 | |
michael@0 | 860 | // |
michael@0 | 861 | // Accessor methods |
michael@0 | 862 | // |
michael@0 | 863 | |
michael@0 | 864 | // This method provides direct access to the array elements. |
michael@0 | 865 | // @return A pointer to the first element of the array. If the array is |
michael@0 | 866 | // empty, then this pointer must not be dereferenced. |
michael@0 | 867 | elem_type* Elements() { |
michael@0 | 868 | return reinterpret_cast<elem_type *>(Hdr() + 1); |
michael@0 | 869 | } |
michael@0 | 870 | |
michael@0 | 871 | // This method provides direct, readonly access to the array elements. |
michael@0 | 872 | // @return A pointer to the first element of the array. If the array is |
michael@0 | 873 | // empty, then this pointer must not be dereferenced. |
michael@0 | 874 | const elem_type* Elements() const { |
michael@0 | 875 | return reinterpret_cast<const elem_type *>(Hdr() + 1); |
michael@0 | 876 | } |
michael@0 | 877 | |
michael@0 | 878 | // This method provides direct access to the i'th element of the array. |
michael@0 | 879 | // The given index must be within the array bounds. |
michael@0 | 880 | // @param i The index of an element in the array. |
michael@0 | 881 | // @return A reference to the i'th element of the array. |
michael@0 | 882 | elem_type& ElementAt(index_type i) { |
michael@0 | 883 | MOZ_ASSERT(i < Length(), "invalid array index"); |
michael@0 | 884 | return Elements()[i]; |
michael@0 | 885 | } |
michael@0 | 886 | |
michael@0 | 887 | // This method provides direct, readonly access to the i'th element of the |
michael@0 | 888 | // array. The given index must be within the array bounds. |
michael@0 | 889 | // @param i The index of an element in the array. |
michael@0 | 890 | // @return A const reference to the i'th element of the array. |
michael@0 | 891 | const elem_type& ElementAt(index_type i) const { |
michael@0 | 892 | MOZ_ASSERT(i < Length(), "invalid array index"); |
michael@0 | 893 | return Elements()[i]; |
michael@0 | 894 | } |
michael@0 | 895 | |
michael@0 | 896 | // This method provides direct access to the i'th element of the array in |
michael@0 | 897 | // a bounds safe manner. If the requested index is out of bounds the |
michael@0 | 898 | // provided default value is returned. |
michael@0 | 899 | // @param i The index of an element in the array. |
michael@0 | 900 | // @param def The value to return if the index is out of bounds. |
michael@0 | 901 | elem_type& SafeElementAt(index_type i, elem_type& def) { |
michael@0 | 902 | return i < Length() ? Elements()[i] : def; |
michael@0 | 903 | } |
michael@0 | 904 | |
michael@0 | 905 | // This method provides direct access to the i'th element of the array in |
michael@0 | 906 | // a bounds safe manner. If the requested index is out of bounds the |
michael@0 | 907 | // provided default value is returned. |
michael@0 | 908 | // @param i The index of an element in the array. |
michael@0 | 909 | // @param def The value to return if the index is out of bounds. |
michael@0 | 910 | const elem_type& SafeElementAt(index_type i, const elem_type& def) const { |
michael@0 | 911 | return i < Length() ? Elements()[i] : def; |
michael@0 | 912 | } |
michael@0 | 913 | |
michael@0 | 914 | // Shorthand for ElementAt(i) |
michael@0 | 915 | elem_type& operator[](index_type i) { |
michael@0 | 916 | return ElementAt(i); |
michael@0 | 917 | } |
michael@0 | 918 | |
michael@0 | 919 | // Shorthand for ElementAt(i) |
michael@0 | 920 | const elem_type& operator[](index_type i) const { |
michael@0 | 921 | return ElementAt(i); |
michael@0 | 922 | } |
michael@0 | 923 | |
michael@0 | 924 | // Shorthand for ElementAt(length - 1) |
michael@0 | 925 | elem_type& LastElement() { |
michael@0 | 926 | return ElementAt(Length() - 1); |
michael@0 | 927 | } |
michael@0 | 928 | |
michael@0 | 929 | // Shorthand for ElementAt(length - 1) |
michael@0 | 930 | const elem_type& LastElement() const { |
michael@0 | 931 | return ElementAt(Length() - 1); |
michael@0 | 932 | } |
michael@0 | 933 | |
michael@0 | 934 | // Shorthand for SafeElementAt(length - 1, def) |
michael@0 | 935 | elem_type& SafeLastElement(elem_type& def) { |
michael@0 | 936 | return SafeElementAt(Length() - 1, def); |
michael@0 | 937 | } |
michael@0 | 938 | |
michael@0 | 939 | // Shorthand for SafeElementAt(length - 1, def) |
michael@0 | 940 | const elem_type& SafeLastElement(const elem_type& def) const { |
michael@0 | 941 | return SafeElementAt(Length() - 1, def); |
michael@0 | 942 | } |
michael@0 | 943 | |
michael@0 | 944 | // |
michael@0 | 945 | // Search methods |
michael@0 | 946 | // |
michael@0 | 947 | |
michael@0 | 948 | // This method searches for the first element in this array that is equal |
michael@0 | 949 | // to the given element. |
michael@0 | 950 | // @param item The item to search for. |
michael@0 | 951 | // @param comp The Comparator used to determine element equality. |
michael@0 | 952 | // @return true if the element was found. |
michael@0 | 953 | template<class Item, class Comparator> |
michael@0 | 954 | bool Contains(const Item& item, const Comparator& comp) const { |
michael@0 | 955 | return IndexOf(item, 0, comp) != NoIndex; |
michael@0 | 956 | } |
michael@0 | 957 | |
michael@0 | 958 | // This method searches for the first element in this array that is equal |
michael@0 | 959 | // to the given element. This method assumes that 'operator==' is defined |
michael@0 | 960 | // for elem_type. |
michael@0 | 961 | // @param item The item to search for. |
michael@0 | 962 | // @return true if the element was found. |
michael@0 | 963 | template<class Item> |
michael@0 | 964 | bool Contains(const Item& item) const { |
michael@0 | 965 | return IndexOf(item) != NoIndex; |
michael@0 | 966 | } |
michael@0 | 967 | |
michael@0 | 968 | // This method searches for the offset of the first element in this |
michael@0 | 969 | // array that is equal to the given element. |
michael@0 | 970 | // @param item The item to search for. |
michael@0 | 971 | // @param start The index to start from. |
michael@0 | 972 | // @param comp The Comparator used to determine element equality. |
michael@0 | 973 | // @return The index of the found element or NoIndex if not found. |
michael@0 | 974 | template<class Item, class Comparator> |
michael@0 | 975 | index_type IndexOf(const Item& item, index_type start, |
michael@0 | 976 | const Comparator& comp) const { |
michael@0 | 977 | const elem_type* iter = Elements() + start, *end = Elements() + Length(); |
michael@0 | 978 | for (; iter != end; ++iter) { |
michael@0 | 979 | if (comp.Equals(*iter, item)) |
michael@0 | 980 | return index_type(iter - Elements()); |
michael@0 | 981 | } |
michael@0 | 982 | return NoIndex; |
michael@0 | 983 | } |
michael@0 | 984 | |
michael@0 | 985 | // This method searches for the offset of the first element in this |
michael@0 | 986 | // array that is equal to the given element. This method assumes |
michael@0 | 987 | // that 'operator==' is defined for elem_type. |
michael@0 | 988 | // @param item The item to search for. |
michael@0 | 989 | // @param start The index to start from. |
michael@0 | 990 | // @return The index of the found element or NoIndex if not found. |
michael@0 | 991 | template<class Item> |
michael@0 | 992 | index_type IndexOf(const Item& item, index_type start = 0) const { |
michael@0 | 993 | return IndexOf(item, start, nsDefaultComparator<elem_type, Item>()); |
michael@0 | 994 | } |
michael@0 | 995 | |
michael@0 | 996 | // This method searches for the offset of the last element in this |
michael@0 | 997 | // array that is equal to the given element. |
michael@0 | 998 | // @param item The item to search for. |
michael@0 | 999 | // @param start The index to start from. If greater than or equal to the |
michael@0 | 1000 | // length of the array, then the entire array is searched. |
michael@0 | 1001 | // @param comp The Comparator used to determine element equality. |
michael@0 | 1002 | // @return The index of the found element or NoIndex if not found. |
michael@0 | 1003 | template<class Item, class Comparator> |
michael@0 | 1004 | index_type LastIndexOf(const Item& item, index_type start, |
michael@0 | 1005 | const Comparator& comp) const { |
michael@0 | 1006 | size_type endOffset = start >= Length() ? Length() : start + 1; |
michael@0 | 1007 | const elem_type* end = Elements() - 1, *iter = end + endOffset; |
michael@0 | 1008 | for (; iter != end; --iter) { |
michael@0 | 1009 | if (comp.Equals(*iter, item)) |
michael@0 | 1010 | return index_type(iter - Elements()); |
michael@0 | 1011 | } |
michael@0 | 1012 | return NoIndex; |
michael@0 | 1013 | } |
michael@0 | 1014 | |
michael@0 | 1015 | // This method searches for the offset of the last element in this |
michael@0 | 1016 | // array that is equal to the given element. This method assumes |
michael@0 | 1017 | // that 'operator==' is defined for elem_type. |
michael@0 | 1018 | // @param item The item to search for. |
michael@0 | 1019 | // @param start The index to start from. If greater than or equal to the |
michael@0 | 1020 | // length of the array, then the entire array is searched. |
michael@0 | 1021 | // @return The index of the found element or NoIndex if not found. |
michael@0 | 1022 | template<class Item> |
michael@0 | 1023 | index_type LastIndexOf(const Item& item, |
michael@0 | 1024 | index_type start = NoIndex) const { |
michael@0 | 1025 | return LastIndexOf(item, start, nsDefaultComparator<elem_type, Item>()); |
michael@0 | 1026 | } |
michael@0 | 1027 | |
michael@0 | 1028 | // This method searches for the offset for the element in this array |
michael@0 | 1029 | // that is equal to the given element. The array is assumed to be sorted. |
michael@0 | 1030 | // @param item The item to search for. |
michael@0 | 1031 | // @param comp The Comparator used. |
michael@0 | 1032 | // @return The index of the found element or NoIndex if not found. |
michael@0 | 1033 | template<class Item, class Comparator> |
michael@0 | 1034 | index_type BinaryIndexOf(const Item& item, const Comparator& comp) const { |
michael@0 | 1035 | index_type low = 0, high = Length(); |
michael@0 | 1036 | while (high > low) { |
michael@0 | 1037 | index_type mid = (high + low) >> 1; |
michael@0 | 1038 | if (comp.Equals(ElementAt(mid), item)) |
michael@0 | 1039 | return mid; |
michael@0 | 1040 | if (comp.LessThan(ElementAt(mid), item)) |
michael@0 | 1041 | low = mid + 1; |
michael@0 | 1042 | else |
michael@0 | 1043 | high = mid; |
michael@0 | 1044 | } |
michael@0 | 1045 | return NoIndex; |
michael@0 | 1046 | } |
michael@0 | 1047 | |
michael@0 | 1048 | // This method searches for the offset for the element in this array |
michael@0 | 1049 | // that is equal to the given element. The array is assumed to be sorted. |
michael@0 | 1050 | // This method assumes that 'operator==' and 'operator<' are defined. |
michael@0 | 1051 | // @param item The item to search for. |
michael@0 | 1052 | // @return The index of the found element or NoIndex if not found. |
michael@0 | 1053 | template<class Item> |
michael@0 | 1054 | index_type BinaryIndexOf(const Item& item) const { |
michael@0 | 1055 | return BinaryIndexOf(item, nsDefaultComparator<elem_type, Item>()); |
michael@0 | 1056 | } |
michael@0 | 1057 | |
michael@0 | 1058 | // |
michael@0 | 1059 | // Mutation methods |
michael@0 | 1060 | // |
michael@0 | 1061 | // This method call the destructor on each element of the array, empties it, |
michael@0 | 1062 | // but does not shrink the array's capacity. |
michael@0 | 1063 | // See also SetLengthAndRetainStorage. |
michael@0 | 1064 | // Make sure to call Compact() if needed to avoid keeping a huge array |
michael@0 | 1065 | // around. |
michael@0 | 1066 | void ClearAndRetainStorage() { |
michael@0 | 1067 | if (base_type::mHdr == EmptyHdr()) { |
michael@0 | 1068 | return; |
michael@0 | 1069 | } |
michael@0 | 1070 | |
michael@0 | 1071 | DestructRange(0, Length()); |
michael@0 | 1072 | base_type::mHdr->mLength = 0; |
michael@0 | 1073 | } |
michael@0 | 1074 | |
michael@0 | 1075 | // This method modifies the length of the array, but unlike SetLength |
michael@0 | 1076 | // it doesn't deallocate/reallocate the current internal storage. |
michael@0 | 1077 | // The new length MUST be shorter than or equal to the current capacity. |
michael@0 | 1078 | // If the new length is larger than the existing length of the array, |
michael@0 | 1079 | // then new elements will be constructed using elem_type's default |
michael@0 | 1080 | // constructor. If shorter, elements will be destructed and removed. |
michael@0 | 1081 | // See also ClearAndRetainStorage. |
michael@0 | 1082 | // @param newLen The desired length of this array. |
michael@0 | 1083 | void SetLengthAndRetainStorage(size_type newLen) { |
michael@0 | 1084 | MOZ_ASSERT(newLen <= base_type::Capacity()); |
michael@0 | 1085 | size_type oldLen = Length(); |
michael@0 | 1086 | if (newLen > oldLen) { |
michael@0 | 1087 | InsertElementsAt(oldLen, newLen - oldLen); |
michael@0 | 1088 | return; |
michael@0 | 1089 | } |
michael@0 | 1090 | if (newLen < oldLen) { |
michael@0 | 1091 | DestructRange(newLen, oldLen - newLen); |
michael@0 | 1092 | base_type::mHdr->mLength = newLen; |
michael@0 | 1093 | } |
michael@0 | 1094 | } |
michael@0 | 1095 | |
michael@0 | 1096 | // This method replaces a range of elements in this array. |
michael@0 | 1097 | // @param start The starting index of the elements to replace. |
michael@0 | 1098 | // @param count The number of elements to replace. This may be zero to |
michael@0 | 1099 | // insert elements without removing any existing elements. |
michael@0 | 1100 | // @param array The values to copy into this array. Must be non-null, |
michael@0 | 1101 | // and these elements must not already exist in the array |
michael@0 | 1102 | // being modified. |
michael@0 | 1103 | // @param arrayLen The number of values to copy into this array. |
michael@0 | 1104 | // @return A pointer to the new elements in the array, or null if |
michael@0 | 1105 | // the operation failed due to insufficient memory. |
michael@0 | 1106 | template<class Item> |
michael@0 | 1107 | elem_type *ReplaceElementsAt(index_type start, size_type count, |
michael@0 | 1108 | const Item* array, size_type arrayLen) { |
michael@0 | 1109 | // Adjust memory allocation up-front to catch errors. |
michael@0 | 1110 | if (!Alloc::Successful(this->EnsureCapacity(Length() + arrayLen - count, sizeof(elem_type)))) |
michael@0 | 1111 | return nullptr; |
michael@0 | 1112 | DestructRange(start, count); |
michael@0 | 1113 | this->ShiftData(start, count, arrayLen, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); |
michael@0 | 1114 | AssignRange(start, arrayLen, array); |
michael@0 | 1115 | return Elements() + start; |
michael@0 | 1116 | } |
michael@0 | 1117 | |
michael@0 | 1118 | // A variation on the ReplaceElementsAt method defined above. |
michael@0 | 1119 | template<class Item> |
michael@0 | 1120 | elem_type *ReplaceElementsAt(index_type start, size_type count, |
michael@0 | 1121 | const nsTArray<Item>& array) { |
michael@0 | 1122 | return ReplaceElementsAt(start, count, array.Elements(), array.Length()); |
michael@0 | 1123 | } |
michael@0 | 1124 | |
michael@0 | 1125 | // A variation on the ReplaceElementsAt method defined above. |
michael@0 | 1126 | template<class Item> |
michael@0 | 1127 | elem_type *ReplaceElementsAt(index_type start, size_type count, |
michael@0 | 1128 | const Item& item) { |
michael@0 | 1129 | return ReplaceElementsAt(start, count, &item, 1); |
michael@0 | 1130 | } |
michael@0 | 1131 | |
michael@0 | 1132 | // A variation on the ReplaceElementsAt method defined above. |
michael@0 | 1133 | template<class Item> |
michael@0 | 1134 | elem_type *ReplaceElementAt(index_type index, const Item& item) { |
michael@0 | 1135 | return ReplaceElementsAt(index, 1, &item, 1); |
michael@0 | 1136 | } |
michael@0 | 1137 | |
michael@0 | 1138 | // A variation on the ReplaceElementsAt method defined above. |
michael@0 | 1139 | template<class Item> |
michael@0 | 1140 | elem_type *InsertElementsAt(index_type index, const Item* array, |
michael@0 | 1141 | size_type arrayLen) { |
michael@0 | 1142 | return ReplaceElementsAt(index, 0, array, arrayLen); |
michael@0 | 1143 | } |
michael@0 | 1144 | |
michael@0 | 1145 | // A variation on the ReplaceElementsAt method defined above. |
michael@0 | 1146 | template<class Item, class Allocator> |
michael@0 | 1147 | elem_type *InsertElementsAt(index_type index, const nsTArray_Impl<Item, Allocator>& array) { |
michael@0 | 1148 | return ReplaceElementsAt(index, 0, array.Elements(), array.Length()); |
michael@0 | 1149 | } |
michael@0 | 1150 | |
michael@0 | 1151 | // A variation on the ReplaceElementsAt method defined above. |
michael@0 | 1152 | template<class Item> |
michael@0 | 1153 | elem_type *InsertElementAt(index_type index, const Item& item) { |
michael@0 | 1154 | return ReplaceElementsAt(index, 0, &item, 1); |
michael@0 | 1155 | } |
michael@0 | 1156 | |
michael@0 | 1157 | // Insert a new element without copy-constructing. This is useful to avoid |
michael@0 | 1158 | // temporaries. |
michael@0 | 1159 | // @return A pointer to the newly inserted element, or null on OOM. |
michael@0 | 1160 | elem_type* InsertElementAt(index_type index) { |
michael@0 | 1161 | if (!Alloc::Successful(this->EnsureCapacity(Length() + 1, sizeof(elem_type)))) |
michael@0 | 1162 | return nullptr; |
michael@0 | 1163 | this->ShiftData(index, 0, 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); |
michael@0 | 1164 | elem_type *elem = Elements() + index; |
michael@0 | 1165 | elem_traits::Construct(elem); |
michael@0 | 1166 | return elem; |
michael@0 | 1167 | } |
michael@0 | 1168 | |
michael@0 | 1169 | // This method searches for the smallest index of an element that is strictly |
michael@0 | 1170 | // greater than |item|. If |item| is inserted at this index, the array will |
michael@0 | 1171 | // remain sorted and |item| would come after all elements that are equal to |
michael@0 | 1172 | // it. If |item| is greater than or equal to all elements in the array, the |
michael@0 | 1173 | // array length is returned. |
michael@0 | 1174 | // |
michael@0 | 1175 | // Note that consumers who want to know whether there are existing items equal |
michael@0 | 1176 | // to |item| in the array can just check that the return value here is > 0 and |
michael@0 | 1177 | // indexing into the previous slot gives something equal to |item|. |
michael@0 | 1178 | // |
michael@0 | 1179 | // |
michael@0 | 1180 | // @param item The item to search for. |
michael@0 | 1181 | // @param comp The Comparator used. |
michael@0 | 1182 | // @return The index of greatest element <= to |item| |
michael@0 | 1183 | // @precondition The array is sorted |
michael@0 | 1184 | template<class Item, class Comparator> |
michael@0 | 1185 | index_type |
michael@0 | 1186 | IndexOfFirstElementGt(const Item& item, |
michael@0 | 1187 | const Comparator& comp) const { |
michael@0 | 1188 | // invariant: low <= [idx] <= high |
michael@0 | 1189 | index_type low = 0, high = Length(); |
michael@0 | 1190 | while (high > low) { |
michael@0 | 1191 | index_type mid = (high + low) >> 1; |
michael@0 | 1192 | // Comparators are not required to provide a LessThan(Item&, elem_type), |
michael@0 | 1193 | // so we can't do comp.LessThan(item, ElementAt(mid)). |
michael@0 | 1194 | if (comp.LessThan(ElementAt(mid), item) || |
michael@0 | 1195 | comp.Equals(ElementAt(mid), item)) { |
michael@0 | 1196 | // item >= ElementAt(mid), so our desired index is at least mid+1. |
michael@0 | 1197 | low = mid + 1; |
michael@0 | 1198 | } else { |
michael@0 | 1199 | // item < ElementAt(mid). Our desired index is therefore at most mid. |
michael@0 | 1200 | high = mid; |
michael@0 | 1201 | } |
michael@0 | 1202 | } |
michael@0 | 1203 | MOZ_ASSERT(high == low); |
michael@0 | 1204 | return low; |
michael@0 | 1205 | } |
michael@0 | 1206 | |
michael@0 | 1207 | // A variation on the IndexOfFirstElementGt method defined above. |
michael@0 | 1208 | template<class Item> |
michael@0 | 1209 | index_type |
michael@0 | 1210 | IndexOfFirstElementGt(const Item& item) const { |
michael@0 | 1211 | return IndexOfFirstElementGt(item, nsDefaultComparator<elem_type, Item>()); |
michael@0 | 1212 | } |
michael@0 | 1213 | |
michael@0 | 1214 | // Inserts |item| at such an index to guarantee that if the array |
michael@0 | 1215 | // was previously sorted, it will remain sorted after this |
michael@0 | 1216 | // insertion. |
michael@0 | 1217 | template<class Item, class Comparator> |
michael@0 | 1218 | elem_type *InsertElementSorted(const Item& item, const Comparator& comp) { |
michael@0 | 1219 | index_type index = IndexOfFirstElementGt(item, comp); |
michael@0 | 1220 | return InsertElementAt(index, item); |
michael@0 | 1221 | } |
michael@0 | 1222 | |
michael@0 | 1223 | // A variation on the InsertElementSorted method defined above. |
michael@0 | 1224 | template<class Item> |
michael@0 | 1225 | elem_type *InsertElementSorted(const Item& item) { |
michael@0 | 1226 | return InsertElementSorted(item, nsDefaultComparator<elem_type, Item>()); |
michael@0 | 1227 | } |
michael@0 | 1228 | |
michael@0 | 1229 | // This method appends elements to the end of this array. |
michael@0 | 1230 | // @param array The elements to append to this array. |
michael@0 | 1231 | // @param arrayLen The number of elements to append to this array. |
michael@0 | 1232 | // @return A pointer to the new elements in the array, or null if |
michael@0 | 1233 | // the operation failed due to insufficient memory. |
michael@0 | 1234 | template<class Item> |
michael@0 | 1235 | elem_type *AppendElements(const Item* array, size_type arrayLen) { |
michael@0 | 1236 | if (!Alloc::Successful(this->EnsureCapacity(Length() + arrayLen, sizeof(elem_type)))) |
michael@0 | 1237 | return nullptr; |
michael@0 | 1238 | index_type len = Length(); |
michael@0 | 1239 | AssignRange(len, arrayLen, array); |
michael@0 | 1240 | this->IncrementLength(arrayLen); |
michael@0 | 1241 | return Elements() + len; |
michael@0 | 1242 | } |
michael@0 | 1243 | |
michael@0 | 1244 | // A variation on the AppendElements method defined above. |
michael@0 | 1245 | template<class Item, class Allocator> |
michael@0 | 1246 | elem_type *AppendElements(const nsTArray_Impl<Item, Allocator>& array) { |
michael@0 | 1247 | return AppendElements(array.Elements(), array.Length()); |
michael@0 | 1248 | } |
michael@0 | 1249 | |
michael@0 | 1250 | // A variation on the AppendElements method defined above. |
michael@0 | 1251 | template<class Item> |
michael@0 | 1252 | elem_type *AppendElement(const Item& item) { |
michael@0 | 1253 | return AppendElements(&item, 1); |
michael@0 | 1254 | } |
michael@0 | 1255 | |
michael@0 | 1256 | // Append new elements without copy-constructing. This is useful to avoid |
michael@0 | 1257 | // temporaries. |
michael@0 | 1258 | // @return A pointer to the newly appended elements, or null on OOM. |
michael@0 | 1259 | elem_type *AppendElements(size_type count) { |
michael@0 | 1260 | if (!Alloc::Successful(this->EnsureCapacity(Length() + count, sizeof(elem_type)))) |
michael@0 | 1261 | return nullptr; |
michael@0 | 1262 | elem_type *elems = Elements() + Length(); |
michael@0 | 1263 | size_type i; |
michael@0 | 1264 | for (i = 0; i < count; ++i) { |
michael@0 | 1265 | elem_traits::Construct(elems + i); |
michael@0 | 1266 | } |
michael@0 | 1267 | this->IncrementLength(count); |
michael@0 | 1268 | return elems; |
michael@0 | 1269 | } |
michael@0 | 1270 | |
michael@0 | 1271 | // Append a new element without copy-constructing. This is useful to avoid |
michael@0 | 1272 | // temporaries. |
michael@0 | 1273 | // @return A pointer to the newly appended element, or null on OOM. |
michael@0 | 1274 | elem_type *AppendElement() { |
michael@0 | 1275 | return AppendElements(1); |
michael@0 | 1276 | } |
michael@0 | 1277 | |
michael@0 | 1278 | // Move all elements from another array to the end of this array without |
michael@0 | 1279 | // calling copy constructors or destructors. |
michael@0 | 1280 | // @return A pointer to the newly appended elements, or null on OOM. |
michael@0 | 1281 | template<class Item, class Allocator> |
michael@0 | 1282 | elem_type *MoveElementsFrom(nsTArray_Impl<Item, Allocator>& array) { |
michael@0 | 1283 | MOZ_ASSERT(&array != this, "argument must be different array"); |
michael@0 | 1284 | index_type len = Length(); |
michael@0 | 1285 | index_type otherLen = array.Length(); |
michael@0 | 1286 | if (!Alloc::Successful(this->EnsureCapacity(len + otherLen, sizeof(elem_type)))) |
michael@0 | 1287 | return nullptr; |
michael@0 | 1288 | copy_type::CopyElements(Elements() + len, array.Elements(), otherLen, sizeof(elem_type)); |
michael@0 | 1289 | this->IncrementLength(otherLen); |
michael@0 | 1290 | array.ShiftData(0, otherLen, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); |
michael@0 | 1291 | return Elements() + len; |
michael@0 | 1292 | } |
michael@0 | 1293 | |
michael@0 | 1294 | // This method removes a range of elements from this array. |
michael@0 | 1295 | // @param start The starting index of the elements to remove. |
michael@0 | 1296 | // @param count The number of elements to remove. |
michael@0 | 1297 | void RemoveElementsAt(index_type start, size_type count) { |
michael@0 | 1298 | MOZ_ASSERT(count == 0 || start < Length(), "Invalid start index"); |
michael@0 | 1299 | MOZ_ASSERT(start + count <= Length(), "Invalid length"); |
michael@0 | 1300 | // Check that the previous assert didn't overflow |
michael@0 | 1301 | MOZ_ASSERT(start <= start + count, "Start index plus length overflows"); |
michael@0 | 1302 | DestructRange(start, count); |
michael@0 | 1303 | this->ShiftData(start, count, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); |
michael@0 | 1304 | } |
michael@0 | 1305 | |
michael@0 | 1306 | // A variation on the RemoveElementsAt method defined above. |
michael@0 | 1307 | void RemoveElementAt(index_type index) { |
michael@0 | 1308 | RemoveElementsAt(index, 1); |
michael@0 | 1309 | } |
michael@0 | 1310 | |
michael@0 | 1311 | // A variation on the RemoveElementsAt method defined above. |
michael@0 | 1312 | void Clear() { |
michael@0 | 1313 | RemoveElementsAt(0, Length()); |
michael@0 | 1314 | } |
michael@0 | 1315 | |
michael@0 | 1316 | // This helper function combines IndexOf with RemoveElementAt to "search |
michael@0 | 1317 | // and destroy" the first element that is equal to the given element. |
michael@0 | 1318 | // @param item The item to search for. |
michael@0 | 1319 | // @param comp The Comparator used to determine element equality. |
michael@0 | 1320 | // @return true if the element was found |
michael@0 | 1321 | template<class Item, class Comparator> |
michael@0 | 1322 | bool RemoveElement(const Item& item, const Comparator& comp) { |
michael@0 | 1323 | index_type i = IndexOf(item, 0, comp); |
michael@0 | 1324 | if (i == NoIndex) |
michael@0 | 1325 | return false; |
michael@0 | 1326 | |
michael@0 | 1327 | RemoveElementAt(i); |
michael@0 | 1328 | return true; |
michael@0 | 1329 | } |
michael@0 | 1330 | |
michael@0 | 1331 | // A variation on the RemoveElement method defined above that assumes |
michael@0 | 1332 | // that 'operator==' is defined for elem_type. |
michael@0 | 1333 | template<class Item> |
michael@0 | 1334 | bool RemoveElement(const Item& item) { |
michael@0 | 1335 | return RemoveElement(item, nsDefaultComparator<elem_type, Item>()); |
michael@0 | 1336 | } |
michael@0 | 1337 | |
michael@0 | 1338 | // This helper function combines IndexOfFirstElementGt with |
michael@0 | 1339 | // RemoveElementAt to "search and destroy" the last element that |
michael@0 | 1340 | // is equal to the given element. |
michael@0 | 1341 | // @param item The item to search for. |
michael@0 | 1342 | // @param comp The Comparator used to determine element equality. |
michael@0 | 1343 | // @return true if the element was found |
michael@0 | 1344 | template<class Item, class Comparator> |
michael@0 | 1345 | bool RemoveElementSorted(const Item& item, const Comparator& comp) { |
michael@0 | 1346 | index_type index = IndexOfFirstElementGt(item, comp); |
michael@0 | 1347 | if (index > 0 && comp.Equals(ElementAt(index - 1), item)) { |
michael@0 | 1348 | RemoveElementAt(index - 1); |
michael@0 | 1349 | return true; |
michael@0 | 1350 | } |
michael@0 | 1351 | return false; |
michael@0 | 1352 | } |
michael@0 | 1353 | |
michael@0 | 1354 | // A variation on the RemoveElementSorted method defined above. |
michael@0 | 1355 | template<class Item> |
michael@0 | 1356 | bool RemoveElementSorted(const Item& item) { |
michael@0 | 1357 | return RemoveElementSorted(item, nsDefaultComparator<elem_type, Item>()); |
michael@0 | 1358 | } |
michael@0 | 1359 | |
michael@0 | 1360 | // This method causes the elements contained in this array and the given |
michael@0 | 1361 | // array to be swapped. |
michael@0 | 1362 | template<class Allocator> |
michael@0 | 1363 | typename Alloc::ResultType |
michael@0 | 1364 | SwapElements(nsTArray_Impl<E, Allocator>& other) { |
michael@0 | 1365 | return Alloc::Result(this->SwapArrayElements(other, sizeof(elem_type), |
michael@0 | 1366 | MOZ_ALIGNOF(elem_type))); |
michael@0 | 1367 | } |
michael@0 | 1368 | |
michael@0 | 1369 | // |
michael@0 | 1370 | // Allocation |
michael@0 | 1371 | // |
michael@0 | 1372 | |
michael@0 | 1373 | // This method may increase the capacity of this array object by the |
michael@0 | 1374 | // specified amount. This method may be called in advance of several |
michael@0 | 1375 | // AppendElement operations to minimize heap re-allocations. This method |
michael@0 | 1376 | // will not reduce the number of elements in this array. |
michael@0 | 1377 | // @param capacity The desired capacity of this array. |
michael@0 | 1378 | // @return True if the operation succeeded; false if we ran out of memory |
michael@0 | 1379 | typename Alloc::ResultType SetCapacity(size_type capacity) { |
michael@0 | 1380 | return Alloc::Result(this->EnsureCapacity(capacity, sizeof(elem_type))); |
michael@0 | 1381 | } |
michael@0 | 1382 | |
michael@0 | 1383 | // This method modifies the length of the array. If the new length is |
michael@0 | 1384 | // larger than the existing length of the array, then new elements will be |
michael@0 | 1385 | // constructed using elem_type's default constructor. Otherwise, this call |
michael@0 | 1386 | // removes elements from the array (see also RemoveElementsAt). |
michael@0 | 1387 | // @param newLen The desired length of this array. |
michael@0 | 1388 | // @return True if the operation succeeded; false otherwise. |
michael@0 | 1389 | // See also TruncateLength if the new length is guaranteed to be |
michael@0 | 1390 | // smaller than the old. |
michael@0 | 1391 | typename Alloc::ResultType SetLength(size_type newLen) { |
michael@0 | 1392 | size_type oldLen = Length(); |
michael@0 | 1393 | if (newLen > oldLen) { |
michael@0 | 1394 | return Alloc::ConvertBoolToResultType(InsertElementsAt(oldLen, newLen - oldLen) != nullptr); |
michael@0 | 1395 | } |
michael@0 | 1396 | |
michael@0 | 1397 | TruncateLength(newLen); |
michael@0 | 1398 | return Alloc::ConvertBoolToResultType(true); |
michael@0 | 1399 | } |
michael@0 | 1400 | |
michael@0 | 1401 | // This method modifies the length of the array, but may only be |
michael@0 | 1402 | // called when the new length is shorter than the old. It can |
michael@0 | 1403 | // therefore be called when elem_type has no default constructor, |
michael@0 | 1404 | // unlike SetLength. It removes elements from the array (see also |
michael@0 | 1405 | // RemoveElementsAt). |
michael@0 | 1406 | // @param newLen The desired length of this array. |
michael@0 | 1407 | void TruncateLength(size_type newLen) { |
michael@0 | 1408 | size_type oldLen = Length(); |
michael@0 | 1409 | NS_ABORT_IF_FALSE(newLen <= oldLen, |
michael@0 | 1410 | "caller should use SetLength instead"); |
michael@0 | 1411 | RemoveElementsAt(newLen, oldLen - newLen); |
michael@0 | 1412 | } |
michael@0 | 1413 | |
michael@0 | 1414 | // This method ensures that the array has length at least the given |
michael@0 | 1415 | // length. If the current length is shorter than the given length, |
michael@0 | 1416 | // then new elements will be constructed using elem_type's default |
michael@0 | 1417 | // constructor. |
michael@0 | 1418 | // @param minLen The desired minimum length of this array. |
michael@0 | 1419 | // @return True if the operation succeeded; false otherwise. |
michael@0 | 1420 | typename Alloc::ResultType EnsureLengthAtLeast(size_type minLen) { |
michael@0 | 1421 | size_type oldLen = Length(); |
michael@0 | 1422 | if (minLen > oldLen) { |
michael@0 | 1423 | return Alloc::ConvertBoolToResultType(!!InsertElementsAt(oldLen, minLen - oldLen)); |
michael@0 | 1424 | } |
michael@0 | 1425 | return Alloc::ConvertBoolToResultType(true); |
michael@0 | 1426 | } |
michael@0 | 1427 | |
michael@0 | 1428 | // This method inserts elements into the array, constructing |
michael@0 | 1429 | // them using elem_type's default constructor. |
michael@0 | 1430 | // @param index the place to insert the new elements. This must be no |
michael@0 | 1431 | // greater than the current length of the array. |
michael@0 | 1432 | // @param count the number of elements to insert |
michael@0 | 1433 | elem_type *InsertElementsAt(index_type index, size_type count) { |
michael@0 | 1434 | if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) { |
michael@0 | 1435 | return nullptr; |
michael@0 | 1436 | } |
michael@0 | 1437 | |
michael@0 | 1438 | // Initialize the extra array elements |
michael@0 | 1439 | elem_type *iter = Elements() + index, *end = iter + count; |
michael@0 | 1440 | for (; iter != end; ++iter) { |
michael@0 | 1441 | elem_traits::Construct(iter); |
michael@0 | 1442 | } |
michael@0 | 1443 | |
michael@0 | 1444 | return Elements() + index; |
michael@0 | 1445 | } |
michael@0 | 1446 | |
michael@0 | 1447 | // This method inserts elements into the array, constructing them |
michael@0 | 1448 | // elem_type's copy constructor (or whatever one-arg constructor |
michael@0 | 1449 | // happens to match the Item type). |
michael@0 | 1450 | // @param index the place to insert the new elements. This must be no |
michael@0 | 1451 | // greater than the current length of the array. |
michael@0 | 1452 | // @param count the number of elements to insert. |
michael@0 | 1453 | // @param item the value to use when constructing the new elements. |
michael@0 | 1454 | template<class Item> |
michael@0 | 1455 | elem_type *InsertElementsAt(index_type index, size_type count, |
michael@0 | 1456 | const Item& item) { |
michael@0 | 1457 | if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) { |
michael@0 | 1458 | return nullptr; |
michael@0 | 1459 | } |
michael@0 | 1460 | |
michael@0 | 1461 | // Initialize the extra array elements |
michael@0 | 1462 | elem_type *iter = Elements() + index, *end = iter + count; |
michael@0 | 1463 | for (; iter != end; ++iter) { |
michael@0 | 1464 | elem_traits::Construct(iter, item); |
michael@0 | 1465 | } |
michael@0 | 1466 | |
michael@0 | 1467 | return Elements() + index; |
michael@0 | 1468 | } |
michael@0 | 1469 | |
michael@0 | 1470 | // This method may be called to minimize the memory used by this array. |
michael@0 | 1471 | void Compact() { |
michael@0 | 1472 | ShrinkCapacity(sizeof(elem_type), MOZ_ALIGNOF(elem_type)); |
michael@0 | 1473 | } |
michael@0 | 1474 | |
michael@0 | 1475 | // |
michael@0 | 1476 | // Sorting |
michael@0 | 1477 | // |
michael@0 | 1478 | |
michael@0 | 1479 | // This function is meant to be used with the NS_QuickSort function. It |
michael@0 | 1480 | // maps the callback API expected by NS_QuickSort to the Comparator API |
michael@0 | 1481 | // used by nsTArray_Impl. See nsTArray_Impl::Sort. |
michael@0 | 1482 | template<class Comparator> |
michael@0 | 1483 | static int Compare(const void* e1, const void* e2, void *data) { |
michael@0 | 1484 | const Comparator* c = reinterpret_cast<const Comparator*>(data); |
michael@0 | 1485 | const elem_type* a = static_cast<const elem_type*>(e1); |
michael@0 | 1486 | const elem_type* b = static_cast<const elem_type*>(e2); |
michael@0 | 1487 | return c->LessThan(*a, *b) ? -1 : (c->Equals(*a, *b) ? 0 : 1); |
michael@0 | 1488 | } |
michael@0 | 1489 | |
michael@0 | 1490 | // This method sorts the elements of the array. It uses the LessThan |
michael@0 | 1491 | // method defined on the given Comparator object to collate elements. |
michael@0 | 1492 | // @param comp The Comparator used to collate elements. |
michael@0 | 1493 | template<class Comparator> |
michael@0 | 1494 | void Sort(const Comparator& comp) { |
michael@0 | 1495 | NS_QuickSort(Elements(), Length(), sizeof(elem_type), |
michael@0 | 1496 | Compare<Comparator>, const_cast<Comparator*>(&comp)); |
michael@0 | 1497 | } |
michael@0 | 1498 | |
michael@0 | 1499 | // A variation on the Sort method defined above that assumes that |
michael@0 | 1500 | // 'operator<' is defined for elem_type. |
michael@0 | 1501 | void Sort() { |
michael@0 | 1502 | Sort(nsDefaultComparator<elem_type, elem_type>()); |
michael@0 | 1503 | } |
michael@0 | 1504 | |
michael@0 | 1505 | // |
michael@0 | 1506 | // Binary Heap |
michael@0 | 1507 | // |
michael@0 | 1508 | |
michael@0 | 1509 | // Sorts the array into a binary heap. |
michael@0 | 1510 | // @param comp The Comparator used to create the heap |
michael@0 | 1511 | template<class Comparator> |
michael@0 | 1512 | void MakeHeap(const Comparator& comp) { |
michael@0 | 1513 | if (!Length()) { |
michael@0 | 1514 | return; |
michael@0 | 1515 | } |
michael@0 | 1516 | index_type index = (Length() - 1) / 2; |
michael@0 | 1517 | do { |
michael@0 | 1518 | SiftDown(index, comp); |
michael@0 | 1519 | } while (index--); |
michael@0 | 1520 | } |
michael@0 | 1521 | |
michael@0 | 1522 | // A variation on the MakeHeap method defined above. |
michael@0 | 1523 | void MakeHeap() { |
michael@0 | 1524 | MakeHeap(nsDefaultComparator<elem_type, elem_type>()); |
michael@0 | 1525 | } |
michael@0 | 1526 | |
michael@0 | 1527 | // Adds an element to the heap |
michael@0 | 1528 | // @param item The item to add |
michael@0 | 1529 | // @param comp The Comparator used to sift-up the item |
michael@0 | 1530 | template<class Item, class Comparator> |
michael@0 | 1531 | elem_type *PushHeap(const Item& item, const Comparator& comp) { |
michael@0 | 1532 | if (!base_type::InsertSlotsAt(Length(), 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) { |
michael@0 | 1533 | return nullptr; |
michael@0 | 1534 | } |
michael@0 | 1535 | // Sift up the new node |
michael@0 | 1536 | elem_type *elem = Elements(); |
michael@0 | 1537 | index_type index = Length() - 1; |
michael@0 | 1538 | index_type parent_index = (index - 1) / 2; |
michael@0 | 1539 | while (index && comp.LessThan(elem[parent_index], item)) { |
michael@0 | 1540 | elem[index] = elem[parent_index]; |
michael@0 | 1541 | index = parent_index; |
michael@0 | 1542 | parent_index = (index - 1) / 2; |
michael@0 | 1543 | } |
michael@0 | 1544 | elem[index] = item; |
michael@0 | 1545 | return &elem[index]; |
michael@0 | 1546 | } |
michael@0 | 1547 | |
michael@0 | 1548 | // A variation on the PushHeap method defined above. |
michael@0 | 1549 | template<class Item> |
michael@0 | 1550 | elem_type *PushHeap(const Item& item) { |
michael@0 | 1551 | return PushHeap(item, nsDefaultComparator<elem_type, Item>()); |
michael@0 | 1552 | } |
michael@0 | 1553 | |
michael@0 | 1554 | // Delete the root of the heap and restore the heap |
michael@0 | 1555 | // @param comp The Comparator used to restore the heap |
michael@0 | 1556 | template<class Comparator> |
michael@0 | 1557 | void PopHeap(const Comparator& comp) { |
michael@0 | 1558 | if (!Length()) { |
michael@0 | 1559 | return; |
michael@0 | 1560 | } |
michael@0 | 1561 | index_type last_index = Length() - 1; |
michael@0 | 1562 | elem_type *elem = Elements(); |
michael@0 | 1563 | elem[0] = elem[last_index]; |
michael@0 | 1564 | TruncateLength(last_index); |
michael@0 | 1565 | if (Length()) { |
michael@0 | 1566 | SiftDown(0, comp); |
michael@0 | 1567 | } |
michael@0 | 1568 | } |
michael@0 | 1569 | |
michael@0 | 1570 | // A variation on the PopHeap method defined above. |
michael@0 | 1571 | void PopHeap() { |
michael@0 | 1572 | PopHeap(nsDefaultComparator<elem_type, elem_type>()); |
michael@0 | 1573 | } |
michael@0 | 1574 | |
michael@0 | 1575 | protected: |
michael@0 | 1576 | using base_type::Hdr; |
michael@0 | 1577 | using base_type::ShrinkCapacity; |
michael@0 | 1578 | |
michael@0 | 1579 | // This method invokes elem_type's destructor on a range of elements. |
michael@0 | 1580 | // @param start The index of the first element to destroy. |
michael@0 | 1581 | // @param count The number of elements to destroy. |
michael@0 | 1582 | void DestructRange(index_type start, size_type count) { |
michael@0 | 1583 | elem_type *iter = Elements() + start, *end = iter + count; |
michael@0 | 1584 | for (; iter != end; ++iter) { |
michael@0 | 1585 | elem_traits::Destruct(iter); |
michael@0 | 1586 | } |
michael@0 | 1587 | } |
michael@0 | 1588 | |
michael@0 | 1589 | // This method invokes elem_type's copy-constructor on a range of elements. |
michael@0 | 1590 | // @param start The index of the first element to construct. |
michael@0 | 1591 | // @param count The number of elements to construct. |
michael@0 | 1592 | // @param values The array of elements to copy. |
michael@0 | 1593 | template<class Item> |
michael@0 | 1594 | void AssignRange(index_type start, size_type count, |
michael@0 | 1595 | const Item *values) { |
michael@0 | 1596 | AssignRangeAlgorithm<mozilla::IsPod<Item>::value, |
michael@0 | 1597 | mozilla::IsSame<Item, elem_type>::value> |
michael@0 | 1598 | ::implementation(Elements(), start, count, values); |
michael@0 | 1599 | } |
michael@0 | 1600 | |
michael@0 | 1601 | // This method sifts an item down to its proper place in a binary heap |
michael@0 | 1602 | // @param index The index of the node to start sifting down from |
michael@0 | 1603 | // @param comp The Comparator used to sift down |
michael@0 | 1604 | template<class Comparator> |
michael@0 | 1605 | void SiftDown(index_type index, const Comparator& comp) { |
michael@0 | 1606 | elem_type *elem = Elements(); |
michael@0 | 1607 | elem_type item = elem[index]; |
michael@0 | 1608 | index_type end = Length() - 1; |
michael@0 | 1609 | while ((index * 2) < end) { |
michael@0 | 1610 | const index_type left = (index * 2) + 1; |
michael@0 | 1611 | const index_type right = (index * 2) + 2; |
michael@0 | 1612 | const index_type parent_index = index; |
michael@0 | 1613 | if (comp.LessThan(item, elem[left])) { |
michael@0 | 1614 | if (left < end && |
michael@0 | 1615 | comp.LessThan(elem[left], elem[right])) { |
michael@0 | 1616 | index = right; |
michael@0 | 1617 | } else { |
michael@0 | 1618 | index = left; |
michael@0 | 1619 | } |
michael@0 | 1620 | } else if (left < end && |
michael@0 | 1621 | comp.LessThan(item, elem[right])) { |
michael@0 | 1622 | index = right; |
michael@0 | 1623 | } else { |
michael@0 | 1624 | break; |
michael@0 | 1625 | } |
michael@0 | 1626 | elem[parent_index] = elem[index]; |
michael@0 | 1627 | } |
michael@0 | 1628 | elem[index] = item; |
michael@0 | 1629 | } |
michael@0 | 1630 | }; |
michael@0 | 1631 | |
michael@0 | 1632 | template <typename E, typename Alloc> |
michael@0 | 1633 | inline void |
michael@0 | 1634 | ImplCycleCollectionUnlink(nsTArray_Impl<E, Alloc>& aField) |
michael@0 | 1635 | { |
michael@0 | 1636 | aField.Clear(); |
michael@0 | 1637 | } |
michael@0 | 1638 | |
michael@0 | 1639 | template <typename E, typename Alloc> |
michael@0 | 1640 | inline void |
michael@0 | 1641 | ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback, |
michael@0 | 1642 | nsTArray_Impl<E, Alloc>& aField, |
michael@0 | 1643 | const char* aName, |
michael@0 | 1644 | uint32_t aFlags = 0) |
michael@0 | 1645 | { |
michael@0 | 1646 | aFlags |= CycleCollectionEdgeNameArrayFlag; |
michael@0 | 1647 | uint32_t length = aField.Length(); |
michael@0 | 1648 | for (uint32_t i = 0; i < length; ++i) { |
michael@0 | 1649 | ImplCycleCollectionTraverse(aCallback, aField[i], aName, aFlags); |
michael@0 | 1650 | } |
michael@0 | 1651 | } |
michael@0 | 1652 | |
michael@0 | 1653 | // |
michael@0 | 1654 | // nsTArray is an infallible vector class. See the comment at the top of this |
michael@0 | 1655 | // file for more details. |
michael@0 | 1656 | // |
michael@0 | 1657 | template <class E> |
michael@0 | 1658 | class nsTArray : public nsTArray_Impl<E, nsTArrayInfallibleAllocator> |
michael@0 | 1659 | { |
michael@0 | 1660 | public: |
michael@0 | 1661 | typedef nsTArray_Impl<E, nsTArrayInfallibleAllocator> base_type; |
michael@0 | 1662 | typedef nsTArray<E> self_type; |
michael@0 | 1663 | typedef typename base_type::size_type size_type; |
michael@0 | 1664 | |
michael@0 | 1665 | nsTArray() {} |
michael@0 | 1666 | explicit nsTArray(size_type capacity) : base_type(capacity) {} |
michael@0 | 1667 | explicit nsTArray(const nsTArray& other) : base_type(other) {} |
michael@0 | 1668 | |
michael@0 | 1669 | template<class Allocator> |
michael@0 | 1670 | explicit nsTArray(const nsTArray_Impl<E, Allocator>& other) : base_type(other) {} |
michael@0 | 1671 | }; |
michael@0 | 1672 | |
michael@0 | 1673 | // |
michael@0 | 1674 | // FallibleTArray is a fallible vector class. |
michael@0 | 1675 | // |
michael@0 | 1676 | template <class E> |
michael@0 | 1677 | class FallibleTArray : public nsTArray_Impl<E, nsTArrayFallibleAllocator> |
michael@0 | 1678 | { |
michael@0 | 1679 | public: |
michael@0 | 1680 | typedef nsTArray_Impl<E, nsTArrayFallibleAllocator> base_type; |
michael@0 | 1681 | typedef FallibleTArray<E> self_type; |
michael@0 | 1682 | typedef typename base_type::size_type size_type; |
michael@0 | 1683 | |
michael@0 | 1684 | FallibleTArray() {} |
michael@0 | 1685 | explicit FallibleTArray(size_type capacity) : base_type(capacity) {} |
michael@0 | 1686 | explicit FallibleTArray(const FallibleTArray<E>& other) : base_type(other) {} |
michael@0 | 1687 | |
michael@0 | 1688 | template<class Allocator> |
michael@0 | 1689 | explicit FallibleTArray(const nsTArray_Impl<E, Allocator>& other) : base_type(other) {} |
michael@0 | 1690 | }; |
michael@0 | 1691 | |
michael@0 | 1692 | // |
michael@0 | 1693 | // nsAutoArrayBase is a base class for AutoFallibleTArray and nsAutoTArray. |
michael@0 | 1694 | // You shouldn't use this class directly. |
michael@0 | 1695 | // |
michael@0 | 1696 | template <class TArrayBase, uint32_t N> |
michael@0 | 1697 | class nsAutoArrayBase : public TArrayBase |
michael@0 | 1698 | { |
michael@0 | 1699 | public: |
michael@0 | 1700 | typedef nsAutoArrayBase<TArrayBase, N> self_type; |
michael@0 | 1701 | typedef TArrayBase base_type; |
michael@0 | 1702 | typedef typename base_type::Header Header; |
michael@0 | 1703 | typedef typename base_type::elem_type elem_type; |
michael@0 | 1704 | |
michael@0 | 1705 | template<typename Allocator> |
michael@0 | 1706 | self_type& operator=(const nsTArray_Impl<elem_type, Allocator>& other) { |
michael@0 | 1707 | base_type::operator=(other); |
michael@0 | 1708 | return *this; |
michael@0 | 1709 | } |
michael@0 | 1710 | |
michael@0 | 1711 | protected: |
michael@0 | 1712 | nsAutoArrayBase() { |
michael@0 | 1713 | Init(); |
michael@0 | 1714 | } |
michael@0 | 1715 | |
michael@0 | 1716 | // We need this constructor because nsAutoTArray and friends all have |
michael@0 | 1717 | // implicit copy-constructors. If we don't have this method, those |
michael@0 | 1718 | // copy-constructors will call nsAutoArrayBase's implicit copy-constructor, |
michael@0 | 1719 | // which won't call Init() and set up the auto buffer! |
michael@0 | 1720 | nsAutoArrayBase(const self_type &aOther) { |
michael@0 | 1721 | Init(); |
michael@0 | 1722 | this->AppendElements(aOther); |
michael@0 | 1723 | } |
michael@0 | 1724 | |
michael@0 | 1725 | private: |
michael@0 | 1726 | // nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer |
michael@0 | 1727 | // to mAutoBuf. |
michael@0 | 1728 | template<class Allocator, class Copier> |
michael@0 | 1729 | friend class nsTArray_base; |
michael@0 | 1730 | |
michael@0 | 1731 | void Init() { |
michael@0 | 1732 | static_assert(MOZ_ALIGNOF(elem_type) <= 8, |
michael@0 | 1733 | "can't handle alignments greater than 8, " |
michael@0 | 1734 | "see nsTArray_base::UsesAutoArrayBuffer()"); |
michael@0 | 1735 | // Temporary work around for VS2012 RC compiler crash |
michael@0 | 1736 | Header** phdr = base_type::PtrToHdr(); |
michael@0 | 1737 | *phdr = reinterpret_cast<Header*>(&mAutoBuf); |
michael@0 | 1738 | (*phdr)->mLength = 0; |
michael@0 | 1739 | (*phdr)->mCapacity = N; |
michael@0 | 1740 | (*phdr)->mIsAutoArray = 1; |
michael@0 | 1741 | |
michael@0 | 1742 | MOZ_ASSERT(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(elem_type)) == |
michael@0 | 1743 | reinterpret_cast<Header*>(&mAutoBuf), |
michael@0 | 1744 | "GetAutoArrayBuffer needs to be fixed"); |
michael@0 | 1745 | } |
michael@0 | 1746 | |
michael@0 | 1747 | // Declare mAutoBuf aligned to the maximum of the header's alignment and |
michael@0 | 1748 | // elem_type's alignment. We need to use a union rather than |
michael@0 | 1749 | // MOZ_ALIGNED_DECL because GCC is picky about what goes into |
michael@0 | 1750 | // __attribute__((aligned(foo))). |
michael@0 | 1751 | union { |
michael@0 | 1752 | char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(elem_type)]; |
michael@0 | 1753 | // Do the max operation inline to ensure that it is a compile-time constant. |
michael@0 | 1754 | mozilla::AlignedElem<(MOZ_ALIGNOF(Header) > MOZ_ALIGNOF(elem_type)) |
michael@0 | 1755 | ? MOZ_ALIGNOF(Header) : MOZ_ALIGNOF(elem_type)> mAlign; |
michael@0 | 1756 | }; |
michael@0 | 1757 | }; |
michael@0 | 1758 | |
michael@0 | 1759 | // |
michael@0 | 1760 | // nsAutoTArray<E, N> is an infallible vector class with N elements of inline |
michael@0 | 1761 | // storage. If you try to store more than N elements inside an |
michael@0 | 1762 | // nsAutoTArray<E, N>, we'll call malloc() and store them all on the heap. |
michael@0 | 1763 | // |
michael@0 | 1764 | // Note that you can cast an nsAutoTArray<E, N> to |
michael@0 | 1765 | // |const AutoFallibleTArray<E, N>&|. |
michael@0 | 1766 | // |
michael@0 | 1767 | template<class E, uint32_t N> |
michael@0 | 1768 | class nsAutoTArray : public nsAutoArrayBase<nsTArray<E>, N> |
michael@0 | 1769 | { |
michael@0 | 1770 | typedef nsAutoTArray<E, N> self_type; |
michael@0 | 1771 | typedef nsAutoArrayBase<nsTArray<E>, N> Base; |
michael@0 | 1772 | |
michael@0 | 1773 | public: |
michael@0 | 1774 | nsAutoTArray() {} |
michael@0 | 1775 | |
michael@0 | 1776 | template<typename Allocator> |
michael@0 | 1777 | explicit nsAutoTArray(const nsTArray_Impl<E, Allocator>& other) { |
michael@0 | 1778 | Base::AppendElements(other); |
michael@0 | 1779 | } |
michael@0 | 1780 | |
michael@0 | 1781 | operator const AutoFallibleTArray<E, N>&() const { |
michael@0 | 1782 | return *reinterpret_cast<const AutoFallibleTArray<E, N>*>(this); |
michael@0 | 1783 | } |
michael@0 | 1784 | }; |
michael@0 | 1785 | |
michael@0 | 1786 | // |
michael@0 | 1787 | // AutoFallibleTArray<E, N> is a fallible vector class with N elements of |
michael@0 | 1788 | // inline storage. |
michael@0 | 1789 | // |
michael@0 | 1790 | template<class E, uint32_t N> |
michael@0 | 1791 | class AutoFallibleTArray : public nsAutoArrayBase<FallibleTArray<E>, N> |
michael@0 | 1792 | { |
michael@0 | 1793 | typedef AutoFallibleTArray<E, N> self_type; |
michael@0 | 1794 | typedef nsAutoArrayBase<FallibleTArray<E>, N> Base; |
michael@0 | 1795 | |
michael@0 | 1796 | public: |
michael@0 | 1797 | AutoFallibleTArray() {} |
michael@0 | 1798 | |
michael@0 | 1799 | template<typename Allocator> |
michael@0 | 1800 | explicit AutoFallibleTArray(const nsTArray_Impl<E, Allocator>& other) { |
michael@0 | 1801 | Base::AppendElements(other); |
michael@0 | 1802 | } |
michael@0 | 1803 | |
michael@0 | 1804 | operator const nsAutoTArray<E, N>&() const { |
michael@0 | 1805 | return *reinterpret_cast<const nsAutoTArray<E, N>*>(this); |
michael@0 | 1806 | } |
michael@0 | 1807 | }; |
michael@0 | 1808 | |
michael@0 | 1809 | // Assert that nsAutoTArray doesn't have any extra padding inside. |
michael@0 | 1810 | // |
michael@0 | 1811 | // It's important that the data stored in this auto array takes up a multiple of |
michael@0 | 1812 | // 8 bytes; e.g. nsAutoTArray<uint32_t, 1> wouldn't work. Since nsAutoTArray |
michael@0 | 1813 | // contains a pointer, its size must be a multiple of alignof(void*). (This is |
michael@0 | 1814 | // because any type may be placed into an array, and there's no padding between |
michael@0 | 1815 | // elements of an array.) The compiler pads the end of the structure to |
michael@0 | 1816 | // enforce this rule. |
michael@0 | 1817 | // |
michael@0 | 1818 | // If we used nsAutoTArray<uint32_t, 1> below, this assertion would fail on a |
michael@0 | 1819 | // 64-bit system, where the compiler inserts 4 bytes of padding at the end of |
michael@0 | 1820 | // the auto array to make its size a multiple of alignof(void*) == 8 bytes. |
michael@0 | 1821 | |
michael@0 | 1822 | static_assert(sizeof(nsAutoTArray<uint32_t, 2>) == |
michael@0 | 1823 | sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(uint32_t) * 2, |
michael@0 | 1824 | "nsAutoTArray shouldn't contain any extra padding, " |
michael@0 | 1825 | "see the comment"); |
michael@0 | 1826 | |
michael@0 | 1827 | // Definitions of nsTArray_Impl methods |
michael@0 | 1828 | #include "nsTArray-inl.h" |
michael@0 | 1829 | |
michael@0 | 1830 | #endif // nsTArray_h__ |