Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | /* |
michael@0 | 2 | * Copyright (C) 2011 Google Inc. All rights reserved. |
michael@0 | 3 | * |
michael@0 | 4 | * Redistribution and use in source and binary forms, with or without |
michael@0 | 5 | * modification, are permitted provided that the following conditions |
michael@0 | 6 | * are met: |
michael@0 | 7 | * |
michael@0 | 8 | * 1. Redistributions of source code must retain the above copyright |
michael@0 | 9 | * notice, this list of conditions and the following disclaimer. |
michael@0 | 10 | * 2. Redistributions in binary form must reproduce the above copyright |
michael@0 | 11 | * notice, this list of conditions and the following disclaimer in the |
michael@0 | 12 | * documentation and/or other materials provided with the distribution. |
michael@0 | 13 | * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of |
michael@0 | 14 | * its contributors may be used to endorse or promote products derived |
michael@0 | 15 | * from this software without specific prior written permission. |
michael@0 | 16 | * |
michael@0 | 17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
michael@0 | 18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
michael@0 | 19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
michael@0 | 20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
michael@0 | 21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
michael@0 | 22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
michael@0 | 23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
michael@0 | 24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
michael@0 | 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
michael@0 | 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
michael@0 | 27 | */ |
michael@0 | 28 | |
michael@0 | 29 | #include "DynamicsCompressorKernel.h" |
michael@0 | 30 | |
michael@0 | 31 | #include "DenormalDisabler.h" |
michael@0 | 32 | #include <algorithm> |
michael@0 | 33 | |
michael@0 | 34 | #include "mozilla/FloatingPoint.h" |
michael@0 | 35 | #include "mozilla/Constants.h" |
michael@0 | 36 | #include "WebAudioUtils.h" |
michael@0 | 37 | |
michael@0 | 38 | using namespace std; |
michael@0 | 39 | |
michael@0 | 40 | using namespace mozilla::dom; // for WebAudioUtils |
michael@0 | 41 | using mozilla::IsInfinite; |
michael@0 | 42 | using mozilla::IsNaN; |
michael@0 | 43 | |
michael@0 | 44 | namespace WebCore { |
michael@0 | 45 | |
michael@0 | 46 | |
michael@0 | 47 | // Metering hits peaks instantly, but releases this fast (in seconds). |
michael@0 | 48 | const float meteringReleaseTimeConstant = 0.325f; |
michael@0 | 49 | |
michael@0 | 50 | const float uninitializedValue = -1; |
michael@0 | 51 | |
michael@0 | 52 | DynamicsCompressorKernel::DynamicsCompressorKernel(float sampleRate, unsigned numberOfChannels) |
michael@0 | 53 | : m_sampleRate(sampleRate) |
michael@0 | 54 | , m_lastPreDelayFrames(DefaultPreDelayFrames) |
michael@0 | 55 | , m_preDelayReadIndex(0) |
michael@0 | 56 | , m_preDelayWriteIndex(DefaultPreDelayFrames) |
michael@0 | 57 | , m_ratio(uninitializedValue) |
michael@0 | 58 | , m_slope(uninitializedValue) |
michael@0 | 59 | , m_linearThreshold(uninitializedValue) |
michael@0 | 60 | , m_dbThreshold(uninitializedValue) |
michael@0 | 61 | , m_dbKnee(uninitializedValue) |
michael@0 | 62 | , m_kneeThreshold(uninitializedValue) |
michael@0 | 63 | , m_kneeThresholdDb(uninitializedValue) |
michael@0 | 64 | , m_ykneeThresholdDb(uninitializedValue) |
michael@0 | 65 | , m_K(uninitializedValue) |
michael@0 | 66 | { |
michael@0 | 67 | setNumberOfChannels(numberOfChannels); |
michael@0 | 68 | |
michael@0 | 69 | // Initializes most member variables |
michael@0 | 70 | reset(); |
michael@0 | 71 | |
michael@0 | 72 | m_meteringReleaseK = |
michael@0 | 73 | static_cast<float>(WebAudioUtils::DiscreteTimeConstantForSampleRate(meteringReleaseTimeConstant, sampleRate)); |
michael@0 | 74 | } |
michael@0 | 75 | |
michael@0 | 76 | size_t DynamicsCompressorKernel::sizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const |
michael@0 | 77 | { |
michael@0 | 78 | size_t amount = 0; |
michael@0 | 79 | amount += m_preDelayBuffers.SizeOfExcludingThis(aMallocSizeOf); |
michael@0 | 80 | for (size_t i = 0; i < m_preDelayBuffers.Length(); i++) { |
michael@0 | 81 | amount += m_preDelayBuffers[i].SizeOfExcludingThis(aMallocSizeOf); |
michael@0 | 82 | } |
michael@0 | 83 | |
michael@0 | 84 | return amount; |
michael@0 | 85 | } |
michael@0 | 86 | |
michael@0 | 87 | void DynamicsCompressorKernel::setNumberOfChannels(unsigned numberOfChannels) |
michael@0 | 88 | { |
michael@0 | 89 | if (m_preDelayBuffers.Length() == numberOfChannels) |
michael@0 | 90 | return; |
michael@0 | 91 | |
michael@0 | 92 | m_preDelayBuffers.Clear(); |
michael@0 | 93 | for (unsigned i = 0; i < numberOfChannels; ++i) |
michael@0 | 94 | m_preDelayBuffers.AppendElement(new float[MaxPreDelayFrames]); |
michael@0 | 95 | } |
michael@0 | 96 | |
michael@0 | 97 | void DynamicsCompressorKernel::setPreDelayTime(float preDelayTime) |
michael@0 | 98 | { |
michael@0 | 99 | // Re-configure look-ahead section pre-delay if delay time has changed. |
michael@0 | 100 | unsigned preDelayFrames = preDelayTime * sampleRate(); |
michael@0 | 101 | if (preDelayFrames > MaxPreDelayFrames - 1) |
michael@0 | 102 | preDelayFrames = MaxPreDelayFrames - 1; |
michael@0 | 103 | |
michael@0 | 104 | if (m_lastPreDelayFrames != preDelayFrames) { |
michael@0 | 105 | m_lastPreDelayFrames = preDelayFrames; |
michael@0 | 106 | for (unsigned i = 0; i < m_preDelayBuffers.Length(); ++i) |
michael@0 | 107 | memset(m_preDelayBuffers[i], 0, sizeof(float) * MaxPreDelayFrames); |
michael@0 | 108 | |
michael@0 | 109 | m_preDelayReadIndex = 0; |
michael@0 | 110 | m_preDelayWriteIndex = preDelayFrames; |
michael@0 | 111 | } |
michael@0 | 112 | } |
michael@0 | 113 | |
michael@0 | 114 | // Exponential curve for the knee. |
michael@0 | 115 | // It is 1st derivative matched at m_linearThreshold and asymptotically approaches the value m_linearThreshold + 1 / k. |
michael@0 | 116 | float DynamicsCompressorKernel::kneeCurve(float x, float k) |
michael@0 | 117 | { |
michael@0 | 118 | // Linear up to threshold. |
michael@0 | 119 | if (x < m_linearThreshold) |
michael@0 | 120 | return x; |
michael@0 | 121 | |
michael@0 | 122 | return m_linearThreshold + (1 - expf(-k * (x - m_linearThreshold))) / k; |
michael@0 | 123 | } |
michael@0 | 124 | |
michael@0 | 125 | // Full compression curve with constant ratio after knee. |
michael@0 | 126 | float DynamicsCompressorKernel::saturate(float x, float k) |
michael@0 | 127 | { |
michael@0 | 128 | float y; |
michael@0 | 129 | |
michael@0 | 130 | if (x < m_kneeThreshold) |
michael@0 | 131 | y = kneeCurve(x, k); |
michael@0 | 132 | else { |
michael@0 | 133 | // Constant ratio after knee. |
michael@0 | 134 | float xDb = WebAudioUtils::ConvertLinearToDecibels(x, -1000.0f); |
michael@0 | 135 | float yDb = m_ykneeThresholdDb + m_slope * (xDb - m_kneeThresholdDb); |
michael@0 | 136 | |
michael@0 | 137 | y = WebAudioUtils::ConvertDecibelsToLinear(yDb); |
michael@0 | 138 | } |
michael@0 | 139 | |
michael@0 | 140 | return y; |
michael@0 | 141 | } |
michael@0 | 142 | |
michael@0 | 143 | // Approximate 1st derivative with input and output expressed in dB. |
michael@0 | 144 | // This slope is equal to the inverse of the compression "ratio". |
michael@0 | 145 | // In other words, a compression ratio of 20 would be a slope of 1/20. |
michael@0 | 146 | float DynamicsCompressorKernel::slopeAt(float x, float k) |
michael@0 | 147 | { |
michael@0 | 148 | if (x < m_linearThreshold) |
michael@0 | 149 | return 1; |
michael@0 | 150 | |
michael@0 | 151 | float x2 = x * 1.001; |
michael@0 | 152 | |
michael@0 | 153 | float xDb = WebAudioUtils::ConvertLinearToDecibels(x, -1000.0f); |
michael@0 | 154 | float x2Db = WebAudioUtils::ConvertLinearToDecibels(x2, -1000.0f); |
michael@0 | 155 | |
michael@0 | 156 | float yDb = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(x, k), -1000.0f); |
michael@0 | 157 | float y2Db = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(x2, k), -1000.0f); |
michael@0 | 158 | |
michael@0 | 159 | float m = (y2Db - yDb) / (x2Db - xDb); |
michael@0 | 160 | |
michael@0 | 161 | return m; |
michael@0 | 162 | } |
michael@0 | 163 | |
michael@0 | 164 | float DynamicsCompressorKernel::kAtSlope(float desiredSlope) |
michael@0 | 165 | { |
michael@0 | 166 | float xDb = m_dbThreshold + m_dbKnee; |
michael@0 | 167 | float x = WebAudioUtils::ConvertDecibelsToLinear(xDb); |
michael@0 | 168 | |
michael@0 | 169 | // Approximate k given initial values. |
michael@0 | 170 | float minK = 0.1; |
michael@0 | 171 | float maxK = 10000; |
michael@0 | 172 | float k = 5; |
michael@0 | 173 | |
michael@0 | 174 | for (int i = 0; i < 15; ++i) { |
michael@0 | 175 | // A high value for k will more quickly asymptotically approach a slope of 0. |
michael@0 | 176 | float slope = slopeAt(x, k); |
michael@0 | 177 | |
michael@0 | 178 | if (slope < desiredSlope) { |
michael@0 | 179 | // k is too high. |
michael@0 | 180 | maxK = k; |
michael@0 | 181 | } else { |
michael@0 | 182 | // k is too low. |
michael@0 | 183 | minK = k; |
michael@0 | 184 | } |
michael@0 | 185 | |
michael@0 | 186 | // Re-calculate based on geometric mean. |
michael@0 | 187 | k = sqrtf(minK * maxK); |
michael@0 | 188 | } |
michael@0 | 189 | |
michael@0 | 190 | return k; |
michael@0 | 191 | } |
michael@0 | 192 | |
michael@0 | 193 | float DynamicsCompressorKernel::updateStaticCurveParameters(float dbThreshold, float dbKnee, float ratio) |
michael@0 | 194 | { |
michael@0 | 195 | if (dbThreshold != m_dbThreshold || dbKnee != m_dbKnee || ratio != m_ratio) { |
michael@0 | 196 | // Threshold and knee. |
michael@0 | 197 | m_dbThreshold = dbThreshold; |
michael@0 | 198 | m_linearThreshold = WebAudioUtils::ConvertDecibelsToLinear(dbThreshold); |
michael@0 | 199 | m_dbKnee = dbKnee; |
michael@0 | 200 | |
michael@0 | 201 | // Compute knee parameters. |
michael@0 | 202 | m_ratio = ratio; |
michael@0 | 203 | m_slope = 1 / m_ratio; |
michael@0 | 204 | |
michael@0 | 205 | float k = kAtSlope(1 / m_ratio); |
michael@0 | 206 | |
michael@0 | 207 | m_kneeThresholdDb = dbThreshold + dbKnee; |
michael@0 | 208 | m_kneeThreshold = WebAudioUtils::ConvertDecibelsToLinear(m_kneeThresholdDb); |
michael@0 | 209 | |
michael@0 | 210 | m_ykneeThresholdDb = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(m_kneeThreshold, k), -1000.0f); |
michael@0 | 211 | |
michael@0 | 212 | m_K = k; |
michael@0 | 213 | } |
michael@0 | 214 | return m_K; |
michael@0 | 215 | } |
michael@0 | 216 | |
michael@0 | 217 | void DynamicsCompressorKernel::process(float* sourceChannels[], |
michael@0 | 218 | float* destinationChannels[], |
michael@0 | 219 | unsigned numberOfChannels, |
michael@0 | 220 | unsigned framesToProcess, |
michael@0 | 221 | |
michael@0 | 222 | float dbThreshold, |
michael@0 | 223 | float dbKnee, |
michael@0 | 224 | float ratio, |
michael@0 | 225 | float attackTime, |
michael@0 | 226 | float releaseTime, |
michael@0 | 227 | float preDelayTime, |
michael@0 | 228 | float dbPostGain, |
michael@0 | 229 | float effectBlend, /* equal power crossfade */ |
michael@0 | 230 | |
michael@0 | 231 | float releaseZone1, |
michael@0 | 232 | float releaseZone2, |
michael@0 | 233 | float releaseZone3, |
michael@0 | 234 | float releaseZone4 |
michael@0 | 235 | ) |
michael@0 | 236 | { |
michael@0 | 237 | MOZ_ASSERT(m_preDelayBuffers.Length() == numberOfChannels); |
michael@0 | 238 | |
michael@0 | 239 | float sampleRate = this->sampleRate(); |
michael@0 | 240 | |
michael@0 | 241 | float dryMix = 1 - effectBlend; |
michael@0 | 242 | float wetMix = effectBlend; |
michael@0 | 243 | |
michael@0 | 244 | float k = updateStaticCurveParameters(dbThreshold, dbKnee, ratio); |
michael@0 | 245 | |
michael@0 | 246 | // Makeup gain. |
michael@0 | 247 | float fullRangeGain = saturate(1, k); |
michael@0 | 248 | float fullRangeMakeupGain = 1 / fullRangeGain; |
michael@0 | 249 | |
michael@0 | 250 | // Empirical/perceptual tuning. |
michael@0 | 251 | fullRangeMakeupGain = powf(fullRangeMakeupGain, 0.6f); |
michael@0 | 252 | |
michael@0 | 253 | float masterLinearGain = WebAudioUtils::ConvertDecibelsToLinear(dbPostGain) * fullRangeMakeupGain; |
michael@0 | 254 | |
michael@0 | 255 | // Attack parameters. |
michael@0 | 256 | attackTime = max(0.001f, attackTime); |
michael@0 | 257 | float attackFrames = attackTime * sampleRate; |
michael@0 | 258 | |
michael@0 | 259 | // Release parameters. |
michael@0 | 260 | float releaseFrames = sampleRate * releaseTime; |
michael@0 | 261 | |
michael@0 | 262 | // Detector release time. |
michael@0 | 263 | float satReleaseTime = 0.0025f; |
michael@0 | 264 | float satReleaseFrames = satReleaseTime * sampleRate; |
michael@0 | 265 | |
michael@0 | 266 | // Create a smooth function which passes through four points. |
michael@0 | 267 | |
michael@0 | 268 | // Polynomial of the form |
michael@0 | 269 | // y = a + b*x + c*x^2 + d*x^3 + e*x^4; |
michael@0 | 270 | |
michael@0 | 271 | float y1 = releaseFrames * releaseZone1; |
michael@0 | 272 | float y2 = releaseFrames * releaseZone2; |
michael@0 | 273 | float y3 = releaseFrames * releaseZone3; |
michael@0 | 274 | float y4 = releaseFrames * releaseZone4; |
michael@0 | 275 | |
michael@0 | 276 | // All of these coefficients were derived for 4th order polynomial curve fitting where the y values |
michael@0 | 277 | // match the evenly spaced x values as follows: (y1 : x == 0, y2 : x == 1, y3 : x == 2, y4 : x == 3) |
michael@0 | 278 | float kA = 0.9999999999999998f*y1 + 1.8432219684323923e-16f*y2 - 1.9373394351676423e-16f*y3 + 8.824516011816245e-18f*y4; |
michael@0 | 279 | float kB = -1.5788320352845888f*y1 + 2.3305837032074286f*y2 - 0.9141194204840429f*y3 + 0.1623677525612032f*y4; |
michael@0 | 280 | float kC = 0.5334142869106424f*y1 - 1.272736789213631f*y2 + 0.9258856042207512f*y3 - 0.18656310191776226f*y4; |
michael@0 | 281 | float kD = 0.08783463138207234f*y1 - 0.1694162967925622f*y2 + 0.08588057951595272f*y3 - 0.00429891410546283f*y4; |
michael@0 | 282 | float kE = -0.042416883008123074f*y1 + 0.1115693827987602f*y2 - 0.09764676325265872f*y3 + 0.028494263462021576f*y4; |
michael@0 | 283 | |
michael@0 | 284 | // x ranges from 0 -> 3 0 1 2 3 |
michael@0 | 285 | // -15 -10 -5 0db |
michael@0 | 286 | |
michael@0 | 287 | // y calculates adaptive release frames depending on the amount of compression. |
michael@0 | 288 | |
michael@0 | 289 | setPreDelayTime(preDelayTime); |
michael@0 | 290 | |
michael@0 | 291 | const int nDivisionFrames = 32; |
michael@0 | 292 | |
michael@0 | 293 | const int nDivisions = framesToProcess / nDivisionFrames; |
michael@0 | 294 | |
michael@0 | 295 | unsigned frameIndex = 0; |
michael@0 | 296 | for (int i = 0; i < nDivisions; ++i) { |
michael@0 | 297 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
michael@0 | 298 | // Calculate desired gain |
michael@0 | 299 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
michael@0 | 300 | |
michael@0 | 301 | // Fix gremlins. |
michael@0 | 302 | if (IsNaN(m_detectorAverage)) |
michael@0 | 303 | m_detectorAverage = 1; |
michael@0 | 304 | if (IsInfinite(m_detectorAverage)) |
michael@0 | 305 | m_detectorAverage = 1; |
michael@0 | 306 | |
michael@0 | 307 | float desiredGain = m_detectorAverage; |
michael@0 | 308 | |
michael@0 | 309 | // Pre-warp so we get desiredGain after sin() warp below. |
michael@0 | 310 | float scaledDesiredGain = asinf(desiredGain) / (0.5f * M_PI); |
michael@0 | 311 | |
michael@0 | 312 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
michael@0 | 313 | // Deal with envelopes |
michael@0 | 314 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
michael@0 | 315 | |
michael@0 | 316 | // envelopeRate is the rate we slew from current compressor level to the desired level. |
michael@0 | 317 | // The exact rate depends on if we're attacking or releasing and by how much. |
michael@0 | 318 | float envelopeRate; |
michael@0 | 319 | |
michael@0 | 320 | bool isReleasing = scaledDesiredGain > m_compressorGain; |
michael@0 | 321 | |
michael@0 | 322 | // compressionDiffDb is the difference between current compression level and the desired level. |
michael@0 | 323 | float compressionDiffDb = WebAudioUtils::ConvertLinearToDecibels(m_compressorGain / scaledDesiredGain, -1000.0f); |
michael@0 | 324 | |
michael@0 | 325 | if (isReleasing) { |
michael@0 | 326 | // Release mode - compressionDiffDb should be negative dB |
michael@0 | 327 | m_maxAttackCompressionDiffDb = -1; |
michael@0 | 328 | |
michael@0 | 329 | // Fix gremlins. |
michael@0 | 330 | if (IsNaN(compressionDiffDb)) |
michael@0 | 331 | compressionDiffDb = -1; |
michael@0 | 332 | if (IsInfinite(compressionDiffDb)) |
michael@0 | 333 | compressionDiffDb = -1; |
michael@0 | 334 | |
michael@0 | 335 | // Adaptive release - higher compression (lower compressionDiffDb) releases faster. |
michael@0 | 336 | |
michael@0 | 337 | // Contain within range: -12 -> 0 then scale to go from 0 -> 3 |
michael@0 | 338 | float x = compressionDiffDb; |
michael@0 | 339 | x = max(-12.0f, x); |
michael@0 | 340 | x = min(0.0f, x); |
michael@0 | 341 | x = 0.25f * (x + 12); |
michael@0 | 342 | |
michael@0 | 343 | // Compute adaptive release curve using 4th order polynomial. |
michael@0 | 344 | // Normal values for the polynomial coefficients would create a monotonically increasing function. |
michael@0 | 345 | float x2 = x * x; |
michael@0 | 346 | float x3 = x2 * x; |
michael@0 | 347 | float x4 = x2 * x2; |
michael@0 | 348 | float releaseFrames = kA + kB * x + kC * x2 + kD * x3 + kE * x4; |
michael@0 | 349 | |
michael@0 | 350 | #define kSpacingDb 5 |
michael@0 | 351 | float dbPerFrame = kSpacingDb / releaseFrames; |
michael@0 | 352 | |
michael@0 | 353 | envelopeRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame); |
michael@0 | 354 | } else { |
michael@0 | 355 | // Attack mode - compressionDiffDb should be positive dB |
michael@0 | 356 | |
michael@0 | 357 | // Fix gremlins. |
michael@0 | 358 | if (IsNaN(compressionDiffDb)) |
michael@0 | 359 | compressionDiffDb = 1; |
michael@0 | 360 | if (IsInfinite(compressionDiffDb)) |
michael@0 | 361 | compressionDiffDb = 1; |
michael@0 | 362 | |
michael@0 | 363 | // As long as we're still in attack mode, use a rate based off |
michael@0 | 364 | // the largest compressionDiffDb we've encountered so far. |
michael@0 | 365 | if (m_maxAttackCompressionDiffDb == -1 || m_maxAttackCompressionDiffDb < compressionDiffDb) |
michael@0 | 366 | m_maxAttackCompressionDiffDb = compressionDiffDb; |
michael@0 | 367 | |
michael@0 | 368 | float effAttenDiffDb = max(0.5f, m_maxAttackCompressionDiffDb); |
michael@0 | 369 | |
michael@0 | 370 | float x = 0.25f / effAttenDiffDb; |
michael@0 | 371 | envelopeRate = 1 - powf(x, 1 / attackFrames); |
michael@0 | 372 | } |
michael@0 | 373 | |
michael@0 | 374 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
michael@0 | 375 | // Inner loop - calculate shaped power average - apply compression. |
michael@0 | 376 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
michael@0 | 377 | |
michael@0 | 378 | { |
michael@0 | 379 | int preDelayReadIndex = m_preDelayReadIndex; |
michael@0 | 380 | int preDelayWriteIndex = m_preDelayWriteIndex; |
michael@0 | 381 | float detectorAverage = m_detectorAverage; |
michael@0 | 382 | float compressorGain = m_compressorGain; |
michael@0 | 383 | |
michael@0 | 384 | int loopFrames = nDivisionFrames; |
michael@0 | 385 | while (loopFrames--) { |
michael@0 | 386 | float compressorInput = 0; |
michael@0 | 387 | |
michael@0 | 388 | // Predelay signal, computing compression amount from un-delayed version. |
michael@0 | 389 | for (unsigned i = 0; i < numberOfChannels; ++i) { |
michael@0 | 390 | float* delayBuffer = m_preDelayBuffers[i]; |
michael@0 | 391 | float undelayedSource = sourceChannels[i][frameIndex]; |
michael@0 | 392 | delayBuffer[preDelayWriteIndex] = undelayedSource; |
michael@0 | 393 | |
michael@0 | 394 | float absUndelayedSource = undelayedSource > 0 ? undelayedSource : -undelayedSource; |
michael@0 | 395 | if (compressorInput < absUndelayedSource) |
michael@0 | 396 | compressorInput = absUndelayedSource; |
michael@0 | 397 | } |
michael@0 | 398 | |
michael@0 | 399 | // Calculate shaped power on undelayed input. |
michael@0 | 400 | |
michael@0 | 401 | float scaledInput = compressorInput; |
michael@0 | 402 | float absInput = scaledInput > 0 ? scaledInput : -scaledInput; |
michael@0 | 403 | |
michael@0 | 404 | // Put through shaping curve. |
michael@0 | 405 | // This is linear up to the threshold, then enters a "knee" portion followed by the "ratio" portion. |
michael@0 | 406 | // The transition from the threshold to the knee is smooth (1st derivative matched). |
michael@0 | 407 | // The transition from the knee to the ratio portion is smooth (1st derivative matched). |
michael@0 | 408 | float shapedInput = saturate(absInput, k); |
michael@0 | 409 | |
michael@0 | 410 | float attenuation = absInput <= 0.0001f ? 1 : shapedInput / absInput; |
michael@0 | 411 | |
michael@0 | 412 | float attenuationDb = -WebAudioUtils::ConvertLinearToDecibels(attenuation, -1000.0f); |
michael@0 | 413 | attenuationDb = max(2.0f, attenuationDb); |
michael@0 | 414 | |
michael@0 | 415 | float dbPerFrame = attenuationDb / satReleaseFrames; |
michael@0 | 416 | |
michael@0 | 417 | float satReleaseRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame) - 1; |
michael@0 | 418 | |
michael@0 | 419 | bool isRelease = (attenuation > detectorAverage); |
michael@0 | 420 | float rate = isRelease ? satReleaseRate : 1; |
michael@0 | 421 | |
michael@0 | 422 | detectorAverage += (attenuation - detectorAverage) * rate; |
michael@0 | 423 | detectorAverage = min(1.0f, detectorAverage); |
michael@0 | 424 | |
michael@0 | 425 | // Fix gremlins. |
michael@0 | 426 | if (IsNaN(detectorAverage)) |
michael@0 | 427 | detectorAverage = 1; |
michael@0 | 428 | if (IsInfinite(detectorAverage)) |
michael@0 | 429 | detectorAverage = 1; |
michael@0 | 430 | |
michael@0 | 431 | // Exponential approach to desired gain. |
michael@0 | 432 | if (envelopeRate < 1) { |
michael@0 | 433 | // Attack - reduce gain to desired. |
michael@0 | 434 | compressorGain += (scaledDesiredGain - compressorGain) * envelopeRate; |
michael@0 | 435 | } else { |
michael@0 | 436 | // Release - exponentially increase gain to 1.0 |
michael@0 | 437 | compressorGain *= envelopeRate; |
michael@0 | 438 | compressorGain = min(1.0f, compressorGain); |
michael@0 | 439 | } |
michael@0 | 440 | |
michael@0 | 441 | // Warp pre-compression gain to smooth out sharp exponential transition points. |
michael@0 | 442 | float postWarpCompressorGain = sinf(0.5f * M_PI * compressorGain); |
michael@0 | 443 | |
michael@0 | 444 | // Calculate total gain using master gain and effect blend. |
michael@0 | 445 | float totalGain = dryMix + wetMix * masterLinearGain * postWarpCompressorGain; |
michael@0 | 446 | |
michael@0 | 447 | // Calculate metering. |
michael@0 | 448 | float dbRealGain = 20 * log10(postWarpCompressorGain); |
michael@0 | 449 | if (dbRealGain < m_meteringGain) |
michael@0 | 450 | m_meteringGain = dbRealGain; |
michael@0 | 451 | else |
michael@0 | 452 | m_meteringGain += (dbRealGain - m_meteringGain) * m_meteringReleaseK; |
michael@0 | 453 | |
michael@0 | 454 | // Apply final gain. |
michael@0 | 455 | for (unsigned i = 0; i < numberOfChannels; ++i) { |
michael@0 | 456 | float* delayBuffer = m_preDelayBuffers[i]; |
michael@0 | 457 | destinationChannels[i][frameIndex] = delayBuffer[preDelayReadIndex] * totalGain; |
michael@0 | 458 | } |
michael@0 | 459 | |
michael@0 | 460 | frameIndex++; |
michael@0 | 461 | preDelayReadIndex = (preDelayReadIndex + 1) & MaxPreDelayFramesMask; |
michael@0 | 462 | preDelayWriteIndex = (preDelayWriteIndex + 1) & MaxPreDelayFramesMask; |
michael@0 | 463 | } |
michael@0 | 464 | |
michael@0 | 465 | // Locals back to member variables. |
michael@0 | 466 | m_preDelayReadIndex = preDelayReadIndex; |
michael@0 | 467 | m_preDelayWriteIndex = preDelayWriteIndex; |
michael@0 | 468 | m_detectorAverage = DenormalDisabler::flushDenormalFloatToZero(detectorAverage); |
michael@0 | 469 | m_compressorGain = DenormalDisabler::flushDenormalFloatToZero(compressorGain); |
michael@0 | 470 | } |
michael@0 | 471 | } |
michael@0 | 472 | } |
michael@0 | 473 | |
michael@0 | 474 | void DynamicsCompressorKernel::reset() |
michael@0 | 475 | { |
michael@0 | 476 | m_detectorAverage = 0; |
michael@0 | 477 | m_compressorGain = 1; |
michael@0 | 478 | m_meteringGain = 1; |
michael@0 | 479 | |
michael@0 | 480 | // Predelay section. |
michael@0 | 481 | for (unsigned i = 0; i < m_preDelayBuffers.Length(); ++i) |
michael@0 | 482 | memset(m_preDelayBuffers[i], 0, sizeof(float) * MaxPreDelayFrames); |
michael@0 | 483 | |
michael@0 | 484 | m_preDelayReadIndex = 0; |
michael@0 | 485 | m_preDelayWriteIndex = DefaultPreDelayFrames; |
michael@0 | 486 | |
michael@0 | 487 | m_maxAttackCompressionDiffDb = -1; // uninitialized state |
michael@0 | 488 | } |
michael@0 | 489 | |
michael@0 | 490 | } // namespace WebCore |