|
1 /* |
|
2 * Copyright (C) 2011 Google Inc. All rights reserved. |
|
3 * |
|
4 * Redistribution and use in source and binary forms, with or without |
|
5 * modification, are permitted provided that the following conditions |
|
6 * are met: |
|
7 * |
|
8 * 1. Redistributions of source code must retain the above copyright |
|
9 * notice, this list of conditions and the following disclaimer. |
|
10 * 2. Redistributions in binary form must reproduce the above copyright |
|
11 * notice, this list of conditions and the following disclaimer in the |
|
12 * documentation and/or other materials provided with the distribution. |
|
13 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of |
|
14 * its contributors may be used to endorse or promote products derived |
|
15 * from this software without specific prior written permission. |
|
16 * |
|
17 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
|
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
20 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
|
21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
23 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
|
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
27 */ |
|
28 |
|
29 #include "DynamicsCompressorKernel.h" |
|
30 |
|
31 #include "DenormalDisabler.h" |
|
32 #include <algorithm> |
|
33 |
|
34 #include "mozilla/FloatingPoint.h" |
|
35 #include "mozilla/Constants.h" |
|
36 #include "WebAudioUtils.h" |
|
37 |
|
38 using namespace std; |
|
39 |
|
40 using namespace mozilla::dom; // for WebAudioUtils |
|
41 using mozilla::IsInfinite; |
|
42 using mozilla::IsNaN; |
|
43 |
|
44 namespace WebCore { |
|
45 |
|
46 |
|
47 // Metering hits peaks instantly, but releases this fast (in seconds). |
|
48 const float meteringReleaseTimeConstant = 0.325f; |
|
49 |
|
50 const float uninitializedValue = -1; |
|
51 |
|
52 DynamicsCompressorKernel::DynamicsCompressorKernel(float sampleRate, unsigned numberOfChannels) |
|
53 : m_sampleRate(sampleRate) |
|
54 , m_lastPreDelayFrames(DefaultPreDelayFrames) |
|
55 , m_preDelayReadIndex(0) |
|
56 , m_preDelayWriteIndex(DefaultPreDelayFrames) |
|
57 , m_ratio(uninitializedValue) |
|
58 , m_slope(uninitializedValue) |
|
59 , m_linearThreshold(uninitializedValue) |
|
60 , m_dbThreshold(uninitializedValue) |
|
61 , m_dbKnee(uninitializedValue) |
|
62 , m_kneeThreshold(uninitializedValue) |
|
63 , m_kneeThresholdDb(uninitializedValue) |
|
64 , m_ykneeThresholdDb(uninitializedValue) |
|
65 , m_K(uninitializedValue) |
|
66 { |
|
67 setNumberOfChannels(numberOfChannels); |
|
68 |
|
69 // Initializes most member variables |
|
70 reset(); |
|
71 |
|
72 m_meteringReleaseK = |
|
73 static_cast<float>(WebAudioUtils::DiscreteTimeConstantForSampleRate(meteringReleaseTimeConstant, sampleRate)); |
|
74 } |
|
75 |
|
76 size_t DynamicsCompressorKernel::sizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const |
|
77 { |
|
78 size_t amount = 0; |
|
79 amount += m_preDelayBuffers.SizeOfExcludingThis(aMallocSizeOf); |
|
80 for (size_t i = 0; i < m_preDelayBuffers.Length(); i++) { |
|
81 amount += m_preDelayBuffers[i].SizeOfExcludingThis(aMallocSizeOf); |
|
82 } |
|
83 |
|
84 return amount; |
|
85 } |
|
86 |
|
87 void DynamicsCompressorKernel::setNumberOfChannels(unsigned numberOfChannels) |
|
88 { |
|
89 if (m_preDelayBuffers.Length() == numberOfChannels) |
|
90 return; |
|
91 |
|
92 m_preDelayBuffers.Clear(); |
|
93 for (unsigned i = 0; i < numberOfChannels; ++i) |
|
94 m_preDelayBuffers.AppendElement(new float[MaxPreDelayFrames]); |
|
95 } |
|
96 |
|
97 void DynamicsCompressorKernel::setPreDelayTime(float preDelayTime) |
|
98 { |
|
99 // Re-configure look-ahead section pre-delay if delay time has changed. |
|
100 unsigned preDelayFrames = preDelayTime * sampleRate(); |
|
101 if (preDelayFrames > MaxPreDelayFrames - 1) |
|
102 preDelayFrames = MaxPreDelayFrames - 1; |
|
103 |
|
104 if (m_lastPreDelayFrames != preDelayFrames) { |
|
105 m_lastPreDelayFrames = preDelayFrames; |
|
106 for (unsigned i = 0; i < m_preDelayBuffers.Length(); ++i) |
|
107 memset(m_preDelayBuffers[i], 0, sizeof(float) * MaxPreDelayFrames); |
|
108 |
|
109 m_preDelayReadIndex = 0; |
|
110 m_preDelayWriteIndex = preDelayFrames; |
|
111 } |
|
112 } |
|
113 |
|
114 // Exponential curve for the knee. |
|
115 // It is 1st derivative matched at m_linearThreshold and asymptotically approaches the value m_linearThreshold + 1 / k. |
|
116 float DynamicsCompressorKernel::kneeCurve(float x, float k) |
|
117 { |
|
118 // Linear up to threshold. |
|
119 if (x < m_linearThreshold) |
|
120 return x; |
|
121 |
|
122 return m_linearThreshold + (1 - expf(-k * (x - m_linearThreshold))) / k; |
|
123 } |
|
124 |
|
125 // Full compression curve with constant ratio after knee. |
|
126 float DynamicsCompressorKernel::saturate(float x, float k) |
|
127 { |
|
128 float y; |
|
129 |
|
130 if (x < m_kneeThreshold) |
|
131 y = kneeCurve(x, k); |
|
132 else { |
|
133 // Constant ratio after knee. |
|
134 float xDb = WebAudioUtils::ConvertLinearToDecibels(x, -1000.0f); |
|
135 float yDb = m_ykneeThresholdDb + m_slope * (xDb - m_kneeThresholdDb); |
|
136 |
|
137 y = WebAudioUtils::ConvertDecibelsToLinear(yDb); |
|
138 } |
|
139 |
|
140 return y; |
|
141 } |
|
142 |
|
143 // Approximate 1st derivative with input and output expressed in dB. |
|
144 // This slope is equal to the inverse of the compression "ratio". |
|
145 // In other words, a compression ratio of 20 would be a slope of 1/20. |
|
146 float DynamicsCompressorKernel::slopeAt(float x, float k) |
|
147 { |
|
148 if (x < m_linearThreshold) |
|
149 return 1; |
|
150 |
|
151 float x2 = x * 1.001; |
|
152 |
|
153 float xDb = WebAudioUtils::ConvertLinearToDecibels(x, -1000.0f); |
|
154 float x2Db = WebAudioUtils::ConvertLinearToDecibels(x2, -1000.0f); |
|
155 |
|
156 float yDb = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(x, k), -1000.0f); |
|
157 float y2Db = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(x2, k), -1000.0f); |
|
158 |
|
159 float m = (y2Db - yDb) / (x2Db - xDb); |
|
160 |
|
161 return m; |
|
162 } |
|
163 |
|
164 float DynamicsCompressorKernel::kAtSlope(float desiredSlope) |
|
165 { |
|
166 float xDb = m_dbThreshold + m_dbKnee; |
|
167 float x = WebAudioUtils::ConvertDecibelsToLinear(xDb); |
|
168 |
|
169 // Approximate k given initial values. |
|
170 float minK = 0.1; |
|
171 float maxK = 10000; |
|
172 float k = 5; |
|
173 |
|
174 for (int i = 0; i < 15; ++i) { |
|
175 // A high value for k will more quickly asymptotically approach a slope of 0. |
|
176 float slope = slopeAt(x, k); |
|
177 |
|
178 if (slope < desiredSlope) { |
|
179 // k is too high. |
|
180 maxK = k; |
|
181 } else { |
|
182 // k is too low. |
|
183 minK = k; |
|
184 } |
|
185 |
|
186 // Re-calculate based on geometric mean. |
|
187 k = sqrtf(minK * maxK); |
|
188 } |
|
189 |
|
190 return k; |
|
191 } |
|
192 |
|
193 float DynamicsCompressorKernel::updateStaticCurveParameters(float dbThreshold, float dbKnee, float ratio) |
|
194 { |
|
195 if (dbThreshold != m_dbThreshold || dbKnee != m_dbKnee || ratio != m_ratio) { |
|
196 // Threshold and knee. |
|
197 m_dbThreshold = dbThreshold; |
|
198 m_linearThreshold = WebAudioUtils::ConvertDecibelsToLinear(dbThreshold); |
|
199 m_dbKnee = dbKnee; |
|
200 |
|
201 // Compute knee parameters. |
|
202 m_ratio = ratio; |
|
203 m_slope = 1 / m_ratio; |
|
204 |
|
205 float k = kAtSlope(1 / m_ratio); |
|
206 |
|
207 m_kneeThresholdDb = dbThreshold + dbKnee; |
|
208 m_kneeThreshold = WebAudioUtils::ConvertDecibelsToLinear(m_kneeThresholdDb); |
|
209 |
|
210 m_ykneeThresholdDb = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(m_kneeThreshold, k), -1000.0f); |
|
211 |
|
212 m_K = k; |
|
213 } |
|
214 return m_K; |
|
215 } |
|
216 |
|
217 void DynamicsCompressorKernel::process(float* sourceChannels[], |
|
218 float* destinationChannels[], |
|
219 unsigned numberOfChannels, |
|
220 unsigned framesToProcess, |
|
221 |
|
222 float dbThreshold, |
|
223 float dbKnee, |
|
224 float ratio, |
|
225 float attackTime, |
|
226 float releaseTime, |
|
227 float preDelayTime, |
|
228 float dbPostGain, |
|
229 float effectBlend, /* equal power crossfade */ |
|
230 |
|
231 float releaseZone1, |
|
232 float releaseZone2, |
|
233 float releaseZone3, |
|
234 float releaseZone4 |
|
235 ) |
|
236 { |
|
237 MOZ_ASSERT(m_preDelayBuffers.Length() == numberOfChannels); |
|
238 |
|
239 float sampleRate = this->sampleRate(); |
|
240 |
|
241 float dryMix = 1 - effectBlend; |
|
242 float wetMix = effectBlend; |
|
243 |
|
244 float k = updateStaticCurveParameters(dbThreshold, dbKnee, ratio); |
|
245 |
|
246 // Makeup gain. |
|
247 float fullRangeGain = saturate(1, k); |
|
248 float fullRangeMakeupGain = 1 / fullRangeGain; |
|
249 |
|
250 // Empirical/perceptual tuning. |
|
251 fullRangeMakeupGain = powf(fullRangeMakeupGain, 0.6f); |
|
252 |
|
253 float masterLinearGain = WebAudioUtils::ConvertDecibelsToLinear(dbPostGain) * fullRangeMakeupGain; |
|
254 |
|
255 // Attack parameters. |
|
256 attackTime = max(0.001f, attackTime); |
|
257 float attackFrames = attackTime * sampleRate; |
|
258 |
|
259 // Release parameters. |
|
260 float releaseFrames = sampleRate * releaseTime; |
|
261 |
|
262 // Detector release time. |
|
263 float satReleaseTime = 0.0025f; |
|
264 float satReleaseFrames = satReleaseTime * sampleRate; |
|
265 |
|
266 // Create a smooth function which passes through four points. |
|
267 |
|
268 // Polynomial of the form |
|
269 // y = a + b*x + c*x^2 + d*x^3 + e*x^4; |
|
270 |
|
271 float y1 = releaseFrames * releaseZone1; |
|
272 float y2 = releaseFrames * releaseZone2; |
|
273 float y3 = releaseFrames * releaseZone3; |
|
274 float y4 = releaseFrames * releaseZone4; |
|
275 |
|
276 // All of these coefficients were derived for 4th order polynomial curve fitting where the y values |
|
277 // match the evenly spaced x values as follows: (y1 : x == 0, y2 : x == 1, y3 : x == 2, y4 : x == 3) |
|
278 float kA = 0.9999999999999998f*y1 + 1.8432219684323923e-16f*y2 - 1.9373394351676423e-16f*y3 + 8.824516011816245e-18f*y4; |
|
279 float kB = -1.5788320352845888f*y1 + 2.3305837032074286f*y2 - 0.9141194204840429f*y3 + 0.1623677525612032f*y4; |
|
280 float kC = 0.5334142869106424f*y1 - 1.272736789213631f*y2 + 0.9258856042207512f*y3 - 0.18656310191776226f*y4; |
|
281 float kD = 0.08783463138207234f*y1 - 0.1694162967925622f*y2 + 0.08588057951595272f*y3 - 0.00429891410546283f*y4; |
|
282 float kE = -0.042416883008123074f*y1 + 0.1115693827987602f*y2 - 0.09764676325265872f*y3 + 0.028494263462021576f*y4; |
|
283 |
|
284 // x ranges from 0 -> 3 0 1 2 3 |
|
285 // -15 -10 -5 0db |
|
286 |
|
287 // y calculates adaptive release frames depending on the amount of compression. |
|
288 |
|
289 setPreDelayTime(preDelayTime); |
|
290 |
|
291 const int nDivisionFrames = 32; |
|
292 |
|
293 const int nDivisions = framesToProcess / nDivisionFrames; |
|
294 |
|
295 unsigned frameIndex = 0; |
|
296 for (int i = 0; i < nDivisions; ++i) { |
|
297 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
298 // Calculate desired gain |
|
299 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
300 |
|
301 // Fix gremlins. |
|
302 if (IsNaN(m_detectorAverage)) |
|
303 m_detectorAverage = 1; |
|
304 if (IsInfinite(m_detectorAverage)) |
|
305 m_detectorAverage = 1; |
|
306 |
|
307 float desiredGain = m_detectorAverage; |
|
308 |
|
309 // Pre-warp so we get desiredGain after sin() warp below. |
|
310 float scaledDesiredGain = asinf(desiredGain) / (0.5f * M_PI); |
|
311 |
|
312 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
313 // Deal with envelopes |
|
314 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
315 |
|
316 // envelopeRate is the rate we slew from current compressor level to the desired level. |
|
317 // The exact rate depends on if we're attacking or releasing and by how much. |
|
318 float envelopeRate; |
|
319 |
|
320 bool isReleasing = scaledDesiredGain > m_compressorGain; |
|
321 |
|
322 // compressionDiffDb is the difference between current compression level and the desired level. |
|
323 float compressionDiffDb = WebAudioUtils::ConvertLinearToDecibels(m_compressorGain / scaledDesiredGain, -1000.0f); |
|
324 |
|
325 if (isReleasing) { |
|
326 // Release mode - compressionDiffDb should be negative dB |
|
327 m_maxAttackCompressionDiffDb = -1; |
|
328 |
|
329 // Fix gremlins. |
|
330 if (IsNaN(compressionDiffDb)) |
|
331 compressionDiffDb = -1; |
|
332 if (IsInfinite(compressionDiffDb)) |
|
333 compressionDiffDb = -1; |
|
334 |
|
335 // Adaptive release - higher compression (lower compressionDiffDb) releases faster. |
|
336 |
|
337 // Contain within range: -12 -> 0 then scale to go from 0 -> 3 |
|
338 float x = compressionDiffDb; |
|
339 x = max(-12.0f, x); |
|
340 x = min(0.0f, x); |
|
341 x = 0.25f * (x + 12); |
|
342 |
|
343 // Compute adaptive release curve using 4th order polynomial. |
|
344 // Normal values for the polynomial coefficients would create a monotonically increasing function. |
|
345 float x2 = x * x; |
|
346 float x3 = x2 * x; |
|
347 float x4 = x2 * x2; |
|
348 float releaseFrames = kA + kB * x + kC * x2 + kD * x3 + kE * x4; |
|
349 |
|
350 #define kSpacingDb 5 |
|
351 float dbPerFrame = kSpacingDb / releaseFrames; |
|
352 |
|
353 envelopeRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame); |
|
354 } else { |
|
355 // Attack mode - compressionDiffDb should be positive dB |
|
356 |
|
357 // Fix gremlins. |
|
358 if (IsNaN(compressionDiffDb)) |
|
359 compressionDiffDb = 1; |
|
360 if (IsInfinite(compressionDiffDb)) |
|
361 compressionDiffDb = 1; |
|
362 |
|
363 // As long as we're still in attack mode, use a rate based off |
|
364 // the largest compressionDiffDb we've encountered so far. |
|
365 if (m_maxAttackCompressionDiffDb == -1 || m_maxAttackCompressionDiffDb < compressionDiffDb) |
|
366 m_maxAttackCompressionDiffDb = compressionDiffDb; |
|
367 |
|
368 float effAttenDiffDb = max(0.5f, m_maxAttackCompressionDiffDb); |
|
369 |
|
370 float x = 0.25f / effAttenDiffDb; |
|
371 envelopeRate = 1 - powf(x, 1 / attackFrames); |
|
372 } |
|
373 |
|
374 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
375 // Inner loop - calculate shaped power average - apply compression. |
|
376 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
377 |
|
378 { |
|
379 int preDelayReadIndex = m_preDelayReadIndex; |
|
380 int preDelayWriteIndex = m_preDelayWriteIndex; |
|
381 float detectorAverage = m_detectorAverage; |
|
382 float compressorGain = m_compressorGain; |
|
383 |
|
384 int loopFrames = nDivisionFrames; |
|
385 while (loopFrames--) { |
|
386 float compressorInput = 0; |
|
387 |
|
388 // Predelay signal, computing compression amount from un-delayed version. |
|
389 for (unsigned i = 0; i < numberOfChannels; ++i) { |
|
390 float* delayBuffer = m_preDelayBuffers[i]; |
|
391 float undelayedSource = sourceChannels[i][frameIndex]; |
|
392 delayBuffer[preDelayWriteIndex] = undelayedSource; |
|
393 |
|
394 float absUndelayedSource = undelayedSource > 0 ? undelayedSource : -undelayedSource; |
|
395 if (compressorInput < absUndelayedSource) |
|
396 compressorInput = absUndelayedSource; |
|
397 } |
|
398 |
|
399 // Calculate shaped power on undelayed input. |
|
400 |
|
401 float scaledInput = compressorInput; |
|
402 float absInput = scaledInput > 0 ? scaledInput : -scaledInput; |
|
403 |
|
404 // Put through shaping curve. |
|
405 // This is linear up to the threshold, then enters a "knee" portion followed by the "ratio" portion. |
|
406 // The transition from the threshold to the knee is smooth (1st derivative matched). |
|
407 // The transition from the knee to the ratio portion is smooth (1st derivative matched). |
|
408 float shapedInput = saturate(absInput, k); |
|
409 |
|
410 float attenuation = absInput <= 0.0001f ? 1 : shapedInput / absInput; |
|
411 |
|
412 float attenuationDb = -WebAudioUtils::ConvertLinearToDecibels(attenuation, -1000.0f); |
|
413 attenuationDb = max(2.0f, attenuationDb); |
|
414 |
|
415 float dbPerFrame = attenuationDb / satReleaseFrames; |
|
416 |
|
417 float satReleaseRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame) - 1; |
|
418 |
|
419 bool isRelease = (attenuation > detectorAverage); |
|
420 float rate = isRelease ? satReleaseRate : 1; |
|
421 |
|
422 detectorAverage += (attenuation - detectorAverage) * rate; |
|
423 detectorAverage = min(1.0f, detectorAverage); |
|
424 |
|
425 // Fix gremlins. |
|
426 if (IsNaN(detectorAverage)) |
|
427 detectorAverage = 1; |
|
428 if (IsInfinite(detectorAverage)) |
|
429 detectorAverage = 1; |
|
430 |
|
431 // Exponential approach to desired gain. |
|
432 if (envelopeRate < 1) { |
|
433 // Attack - reduce gain to desired. |
|
434 compressorGain += (scaledDesiredGain - compressorGain) * envelopeRate; |
|
435 } else { |
|
436 // Release - exponentially increase gain to 1.0 |
|
437 compressorGain *= envelopeRate; |
|
438 compressorGain = min(1.0f, compressorGain); |
|
439 } |
|
440 |
|
441 // Warp pre-compression gain to smooth out sharp exponential transition points. |
|
442 float postWarpCompressorGain = sinf(0.5f * M_PI * compressorGain); |
|
443 |
|
444 // Calculate total gain using master gain and effect blend. |
|
445 float totalGain = dryMix + wetMix * masterLinearGain * postWarpCompressorGain; |
|
446 |
|
447 // Calculate metering. |
|
448 float dbRealGain = 20 * log10(postWarpCompressorGain); |
|
449 if (dbRealGain < m_meteringGain) |
|
450 m_meteringGain = dbRealGain; |
|
451 else |
|
452 m_meteringGain += (dbRealGain - m_meteringGain) * m_meteringReleaseK; |
|
453 |
|
454 // Apply final gain. |
|
455 for (unsigned i = 0; i < numberOfChannels; ++i) { |
|
456 float* delayBuffer = m_preDelayBuffers[i]; |
|
457 destinationChannels[i][frameIndex] = delayBuffer[preDelayReadIndex] * totalGain; |
|
458 } |
|
459 |
|
460 frameIndex++; |
|
461 preDelayReadIndex = (preDelayReadIndex + 1) & MaxPreDelayFramesMask; |
|
462 preDelayWriteIndex = (preDelayWriteIndex + 1) & MaxPreDelayFramesMask; |
|
463 } |
|
464 |
|
465 // Locals back to member variables. |
|
466 m_preDelayReadIndex = preDelayReadIndex; |
|
467 m_preDelayWriteIndex = preDelayWriteIndex; |
|
468 m_detectorAverage = DenormalDisabler::flushDenormalFloatToZero(detectorAverage); |
|
469 m_compressorGain = DenormalDisabler::flushDenormalFloatToZero(compressorGain); |
|
470 } |
|
471 } |
|
472 } |
|
473 |
|
474 void DynamicsCompressorKernel::reset() |
|
475 { |
|
476 m_detectorAverage = 0; |
|
477 m_compressorGain = 1; |
|
478 m_meteringGain = 1; |
|
479 |
|
480 // Predelay section. |
|
481 for (unsigned i = 0; i < m_preDelayBuffers.Length(); ++i) |
|
482 memset(m_preDelayBuffers[i], 0, sizeof(float) * MaxPreDelayFrames); |
|
483 |
|
484 m_preDelayReadIndex = 0; |
|
485 m_preDelayWriteIndex = DefaultPreDelayFrames; |
|
486 |
|
487 m_maxAttackCompressionDiffDb = -1; // uninitialized state |
|
488 } |
|
489 |
|
490 } // namespace WebCore |