Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | //////////////////////////////////////////////////////////////////////////////// |
michael@0 | 2 | /// |
michael@0 | 3 | /// MMX optimized routines. All MMX optimized functions have been gathered into |
michael@0 | 4 | /// this single source code file, regardless to their class or original source |
michael@0 | 5 | /// code file, in order to ease porting the library to other compiler and |
michael@0 | 6 | /// processor platforms. |
michael@0 | 7 | /// |
michael@0 | 8 | /// The MMX-optimizations are programmed using MMX compiler intrinsics that |
michael@0 | 9 | /// are supported both by Microsoft Visual C++ and GCC compilers, so this file |
michael@0 | 10 | /// should compile with both toolsets. |
michael@0 | 11 | /// |
michael@0 | 12 | /// NOTICE: If using Visual Studio 6.0, you'll need to install the "Visual C++ |
michael@0 | 13 | /// 6.0 processor pack" update to support compiler intrinsic syntax. The update |
michael@0 | 14 | /// is available for download at Microsoft Developers Network, see here: |
michael@0 | 15 | /// http://msdn.microsoft.com/en-us/vstudio/aa718349.aspx |
michael@0 | 16 | /// |
michael@0 | 17 | /// Author : Copyright (c) Olli Parviainen |
michael@0 | 18 | /// Author e-mail : oparviai 'at' iki.fi |
michael@0 | 19 | /// SoundTouch WWW: http://www.surina.net/soundtouch |
michael@0 | 20 | /// |
michael@0 | 21 | //////////////////////////////////////////////////////////////////////////////// |
michael@0 | 22 | // |
michael@0 | 23 | // Last changed : $Date: 2014-01-07 12:25:40 -0600 (Tue, 07 Jan 2014) $ |
michael@0 | 24 | // File revision : $Revision: 4 $ |
michael@0 | 25 | // |
michael@0 | 26 | // $Id: mmx_optimized.cpp 184 2014-01-07 18:25:40Z oparviai $ |
michael@0 | 27 | // |
michael@0 | 28 | //////////////////////////////////////////////////////////////////////////////// |
michael@0 | 29 | // |
michael@0 | 30 | // License : |
michael@0 | 31 | // |
michael@0 | 32 | // SoundTouch audio processing library |
michael@0 | 33 | // Copyright (c) Olli Parviainen |
michael@0 | 34 | // |
michael@0 | 35 | // This library is free software; you can redistribute it and/or |
michael@0 | 36 | // modify it under the terms of the GNU Lesser General Public |
michael@0 | 37 | // License as published by the Free Software Foundation; either |
michael@0 | 38 | // version 2.1 of the License, or (at your option) any later version. |
michael@0 | 39 | // |
michael@0 | 40 | // This library is distributed in the hope that it will be useful, |
michael@0 | 41 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
michael@0 | 42 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
michael@0 | 43 | // Lesser General Public License for more details. |
michael@0 | 44 | // |
michael@0 | 45 | // You should have received a copy of the GNU Lesser General Public |
michael@0 | 46 | // License along with this library; if not, write to the Free Software |
michael@0 | 47 | // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
michael@0 | 48 | // |
michael@0 | 49 | //////////////////////////////////////////////////////////////////////////////// |
michael@0 | 50 | |
michael@0 | 51 | #include "STTypes.h" |
michael@0 | 52 | |
michael@0 | 53 | #ifdef SOUNDTOUCH_ALLOW_MMX |
michael@0 | 54 | // MMX routines available only with integer sample type |
michael@0 | 55 | |
michael@0 | 56 | using namespace soundtouch; |
michael@0 | 57 | |
michael@0 | 58 | ////////////////////////////////////////////////////////////////////////////// |
michael@0 | 59 | // |
michael@0 | 60 | // implementation of MMX optimized functions of class 'TDStretchMMX' |
michael@0 | 61 | // |
michael@0 | 62 | ////////////////////////////////////////////////////////////////////////////// |
michael@0 | 63 | |
michael@0 | 64 | #include "TDStretch.h" |
michael@0 | 65 | #include <mmintrin.h> |
michael@0 | 66 | #include <limits.h> |
michael@0 | 67 | #include <math.h> |
michael@0 | 68 | |
michael@0 | 69 | |
michael@0 | 70 | // Calculates cross correlation of two buffers |
michael@0 | 71 | double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2, double &dnorm) const |
michael@0 | 72 | { |
michael@0 | 73 | const __m64 *pVec1, *pVec2; |
michael@0 | 74 | __m64 shifter; |
michael@0 | 75 | __m64 accu, normaccu; |
michael@0 | 76 | long corr, norm; |
michael@0 | 77 | int i; |
michael@0 | 78 | |
michael@0 | 79 | pVec1 = (__m64*)pV1; |
michael@0 | 80 | pVec2 = (__m64*)pV2; |
michael@0 | 81 | |
michael@0 | 82 | shifter = _m_from_int(overlapDividerBits); |
michael@0 | 83 | normaccu = accu = _mm_setzero_si64(); |
michael@0 | 84 | |
michael@0 | 85 | // Process 4 parallel sets of 2 * stereo samples or 4 * mono samples |
michael@0 | 86 | // during each round for improved CPU-level parallellization. |
michael@0 | 87 | for (i = 0; i < channels * overlapLength / 16; i ++) |
michael@0 | 88 | { |
michael@0 | 89 | __m64 temp, temp2; |
michael@0 | 90 | |
michael@0 | 91 | // dictionary of instructions: |
michael@0 | 92 | // _m_pmaddwd : 4*16bit multiply-add, resulting two 32bits = [a0*b0+a1*b1 ; a2*b2+a3*b3] |
michael@0 | 93 | // _mm_add_pi32 : 2*32bit add |
michael@0 | 94 | // _m_psrad : 32bit right-shift |
michael@0 | 95 | |
michael@0 | 96 | temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[0], pVec2[0]), shifter), |
michael@0 | 97 | _mm_sra_pi32(_mm_madd_pi16(pVec1[1], pVec2[1]), shifter)); |
michael@0 | 98 | temp2 = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[0], pVec1[0]), shifter), |
michael@0 | 99 | _mm_sra_pi32(_mm_madd_pi16(pVec1[1], pVec1[1]), shifter)); |
michael@0 | 100 | accu = _mm_add_pi32(accu, temp); |
michael@0 | 101 | normaccu = _mm_add_pi32(normaccu, temp2); |
michael@0 | 102 | |
michael@0 | 103 | temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[2], pVec2[2]), shifter), |
michael@0 | 104 | _mm_sra_pi32(_mm_madd_pi16(pVec1[3], pVec2[3]), shifter)); |
michael@0 | 105 | temp2 = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[2], pVec1[2]), shifter), |
michael@0 | 106 | _mm_sra_pi32(_mm_madd_pi16(pVec1[3], pVec1[3]), shifter)); |
michael@0 | 107 | accu = _mm_add_pi32(accu, temp); |
michael@0 | 108 | normaccu = _mm_add_pi32(normaccu, temp2); |
michael@0 | 109 | |
michael@0 | 110 | pVec1 += 4; |
michael@0 | 111 | pVec2 += 4; |
michael@0 | 112 | } |
michael@0 | 113 | |
michael@0 | 114 | // copy hi-dword of mm0 to lo-dword of mm1, then sum mmo+mm1 |
michael@0 | 115 | // and finally store the result into the variable "corr" |
michael@0 | 116 | |
michael@0 | 117 | accu = _mm_add_pi32(accu, _mm_srli_si64(accu, 32)); |
michael@0 | 118 | corr = _m_to_int(accu); |
michael@0 | 119 | |
michael@0 | 120 | normaccu = _mm_add_pi32(normaccu, _mm_srli_si64(normaccu, 32)); |
michael@0 | 121 | norm = _m_to_int(normaccu); |
michael@0 | 122 | |
michael@0 | 123 | // Clear MMS state |
michael@0 | 124 | _m_empty(); |
michael@0 | 125 | |
michael@0 | 126 | // Normalize result by dividing by sqrt(norm) - this step is easiest |
michael@0 | 127 | // done using floating point operation |
michael@0 | 128 | dnorm = (double)norm; |
michael@0 | 129 | |
michael@0 | 130 | return (double)corr / sqrt(dnorm < 1e-9 ? 1.0 : dnorm); |
michael@0 | 131 | // Note: Warning about the missing EMMS instruction is harmless |
michael@0 | 132 | // as it'll be called elsewhere. |
michael@0 | 133 | } |
michael@0 | 134 | |
michael@0 | 135 | |
michael@0 | 136 | /// Update cross-correlation by accumulating "norm" coefficient by previously calculated value |
michael@0 | 137 | double TDStretchMMX::calcCrossCorrAccumulate(const short *pV1, const short *pV2, double &dnorm) const |
michael@0 | 138 | { |
michael@0 | 139 | const __m64 *pVec1, *pVec2; |
michael@0 | 140 | __m64 shifter; |
michael@0 | 141 | __m64 accu; |
michael@0 | 142 | long corr, lnorm; |
michael@0 | 143 | int i; |
michael@0 | 144 | |
michael@0 | 145 | // cancel first normalizer tap from previous round |
michael@0 | 146 | lnorm = 0; |
michael@0 | 147 | for (i = 1; i <= channels; i ++) |
michael@0 | 148 | { |
michael@0 | 149 | lnorm -= (pV1[-i] * pV1[-i]) >> overlapDividerBits; |
michael@0 | 150 | } |
michael@0 | 151 | |
michael@0 | 152 | pVec1 = (__m64*)pV1; |
michael@0 | 153 | pVec2 = (__m64*)pV2; |
michael@0 | 154 | |
michael@0 | 155 | shifter = _m_from_int(overlapDividerBits); |
michael@0 | 156 | accu = _mm_setzero_si64(); |
michael@0 | 157 | |
michael@0 | 158 | // Process 4 parallel sets of 2 * stereo samples or 4 * mono samples |
michael@0 | 159 | // during each round for improved CPU-level parallellization. |
michael@0 | 160 | for (i = 0; i < channels * overlapLength / 16; i ++) |
michael@0 | 161 | { |
michael@0 | 162 | __m64 temp; |
michael@0 | 163 | |
michael@0 | 164 | // dictionary of instructions: |
michael@0 | 165 | // _m_pmaddwd : 4*16bit multiply-add, resulting two 32bits = [a0*b0+a1*b1 ; a2*b2+a3*b3] |
michael@0 | 166 | // _mm_add_pi32 : 2*32bit add |
michael@0 | 167 | // _m_psrad : 32bit right-shift |
michael@0 | 168 | |
michael@0 | 169 | temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[0], pVec2[0]), shifter), |
michael@0 | 170 | _mm_sra_pi32(_mm_madd_pi16(pVec1[1], pVec2[1]), shifter)); |
michael@0 | 171 | accu = _mm_add_pi32(accu, temp); |
michael@0 | 172 | |
michael@0 | 173 | temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[2], pVec2[2]), shifter), |
michael@0 | 174 | _mm_sra_pi32(_mm_madd_pi16(pVec1[3], pVec2[3]), shifter)); |
michael@0 | 175 | accu = _mm_add_pi32(accu, temp); |
michael@0 | 176 | |
michael@0 | 177 | pVec1 += 4; |
michael@0 | 178 | pVec2 += 4; |
michael@0 | 179 | } |
michael@0 | 180 | |
michael@0 | 181 | // copy hi-dword of mm0 to lo-dword of mm1, then sum mmo+mm1 |
michael@0 | 182 | // and finally store the result into the variable "corr" |
michael@0 | 183 | |
michael@0 | 184 | accu = _mm_add_pi32(accu, _mm_srli_si64(accu, 32)); |
michael@0 | 185 | corr = _m_to_int(accu); |
michael@0 | 186 | |
michael@0 | 187 | // Clear MMS state |
michael@0 | 188 | _m_empty(); |
michael@0 | 189 | |
michael@0 | 190 | // update normalizer with last samples of this round |
michael@0 | 191 | pV1 = (short *)pVec1; |
michael@0 | 192 | for (int j = 1; j <= channels; j ++) |
michael@0 | 193 | { |
michael@0 | 194 | lnorm += (pV1[-j] * pV1[-j]) >> overlapDividerBits; |
michael@0 | 195 | } |
michael@0 | 196 | dnorm += (double)lnorm; |
michael@0 | 197 | |
michael@0 | 198 | // Normalize result by dividing by sqrt(norm) - this step is easiest |
michael@0 | 199 | // done using floating point operation |
michael@0 | 200 | return (double)corr / sqrt((dnorm < 1e-9) ? 1.0 : dnorm); |
michael@0 | 201 | } |
michael@0 | 202 | |
michael@0 | 203 | |
michael@0 | 204 | void TDStretchMMX::clearCrossCorrState() |
michael@0 | 205 | { |
michael@0 | 206 | // Clear MMS state |
michael@0 | 207 | _m_empty(); |
michael@0 | 208 | //_asm EMMS; |
michael@0 | 209 | } |
michael@0 | 210 | |
michael@0 | 211 | |
michael@0 | 212 | |
michael@0 | 213 | // MMX-optimized version of the function overlapStereo |
michael@0 | 214 | void TDStretchMMX::overlapStereo(short *output, const short *input) const |
michael@0 | 215 | { |
michael@0 | 216 | const __m64 *pVinput, *pVMidBuf; |
michael@0 | 217 | __m64 *pVdest; |
michael@0 | 218 | __m64 mix1, mix2, adder, shifter; |
michael@0 | 219 | int i; |
michael@0 | 220 | |
michael@0 | 221 | pVinput = (const __m64*)input; |
michael@0 | 222 | pVMidBuf = (const __m64*)pMidBuffer; |
michael@0 | 223 | pVdest = (__m64*)output; |
michael@0 | 224 | |
michael@0 | 225 | // mix1 = mixer values for 1st stereo sample |
michael@0 | 226 | // mix1 = mixer values for 2nd stereo sample |
michael@0 | 227 | // adder = adder for updating mixer values after each round |
michael@0 | 228 | |
michael@0 | 229 | mix1 = _mm_set_pi16(0, overlapLength, 0, overlapLength); |
michael@0 | 230 | adder = _mm_set_pi16(1, -1, 1, -1); |
michael@0 | 231 | mix2 = _mm_add_pi16(mix1, adder); |
michael@0 | 232 | adder = _mm_add_pi16(adder, adder); |
michael@0 | 233 | |
michael@0 | 234 | // Overlaplength-division by shifter. "+1" is to account for "-1" deduced in |
michael@0 | 235 | // overlapDividerBits calculation earlier. |
michael@0 | 236 | shifter = _m_from_int(overlapDividerBits + 1); |
michael@0 | 237 | |
michael@0 | 238 | for (i = 0; i < overlapLength / 4; i ++) |
michael@0 | 239 | { |
michael@0 | 240 | __m64 temp1, temp2; |
michael@0 | 241 | |
michael@0 | 242 | // load & shuffle data so that input & mixbuffer data samples are paired |
michael@0 | 243 | temp1 = _mm_unpacklo_pi16(pVMidBuf[0], pVinput[0]); // = i0l m0l i0r m0r |
michael@0 | 244 | temp2 = _mm_unpackhi_pi16(pVMidBuf[0], pVinput[0]); // = i1l m1l i1r m1r |
michael@0 | 245 | |
michael@0 | 246 | // temp = (temp .* mix) >> shifter |
michael@0 | 247 | temp1 = _mm_sra_pi32(_mm_madd_pi16(temp1, mix1), shifter); |
michael@0 | 248 | temp2 = _mm_sra_pi32(_mm_madd_pi16(temp2, mix2), shifter); |
michael@0 | 249 | pVdest[0] = _mm_packs_pi32(temp1, temp2); // pack 2*2*32bit => 4*16bit |
michael@0 | 250 | |
michael@0 | 251 | // update mix += adder |
michael@0 | 252 | mix1 = _mm_add_pi16(mix1, adder); |
michael@0 | 253 | mix2 = _mm_add_pi16(mix2, adder); |
michael@0 | 254 | |
michael@0 | 255 | // --- second round begins here --- |
michael@0 | 256 | |
michael@0 | 257 | // load & shuffle data so that input & mixbuffer data samples are paired |
michael@0 | 258 | temp1 = _mm_unpacklo_pi16(pVMidBuf[1], pVinput[1]); // = i2l m2l i2r m2r |
michael@0 | 259 | temp2 = _mm_unpackhi_pi16(pVMidBuf[1], pVinput[1]); // = i3l m3l i3r m3r |
michael@0 | 260 | |
michael@0 | 261 | // temp = (temp .* mix) >> shifter |
michael@0 | 262 | temp1 = _mm_sra_pi32(_mm_madd_pi16(temp1, mix1), shifter); |
michael@0 | 263 | temp2 = _mm_sra_pi32(_mm_madd_pi16(temp2, mix2), shifter); |
michael@0 | 264 | pVdest[1] = _mm_packs_pi32(temp1, temp2); // pack 2*2*32bit => 4*16bit |
michael@0 | 265 | |
michael@0 | 266 | // update mix += adder |
michael@0 | 267 | mix1 = _mm_add_pi16(mix1, adder); |
michael@0 | 268 | mix2 = _mm_add_pi16(mix2, adder); |
michael@0 | 269 | |
michael@0 | 270 | pVinput += 2; |
michael@0 | 271 | pVMidBuf += 2; |
michael@0 | 272 | pVdest += 2; |
michael@0 | 273 | } |
michael@0 | 274 | |
michael@0 | 275 | _m_empty(); // clear MMS state |
michael@0 | 276 | } |
michael@0 | 277 | |
michael@0 | 278 | |
michael@0 | 279 | ////////////////////////////////////////////////////////////////////////////// |
michael@0 | 280 | // |
michael@0 | 281 | // implementation of MMX optimized functions of class 'FIRFilter' |
michael@0 | 282 | // |
michael@0 | 283 | ////////////////////////////////////////////////////////////////////////////// |
michael@0 | 284 | |
michael@0 | 285 | #include "FIRFilter.h" |
michael@0 | 286 | |
michael@0 | 287 | |
michael@0 | 288 | FIRFilterMMX::FIRFilterMMX() : FIRFilter() |
michael@0 | 289 | { |
michael@0 | 290 | filterCoeffsUnalign = NULL; |
michael@0 | 291 | } |
michael@0 | 292 | |
michael@0 | 293 | |
michael@0 | 294 | FIRFilterMMX::~FIRFilterMMX() |
michael@0 | 295 | { |
michael@0 | 296 | delete[] filterCoeffsUnalign; |
michael@0 | 297 | } |
michael@0 | 298 | |
michael@0 | 299 | |
michael@0 | 300 | // (overloaded) Calculates filter coefficients for MMX routine |
michael@0 | 301 | void FIRFilterMMX::setCoefficients(const short *coeffs, uint newLength, uint uResultDivFactor) |
michael@0 | 302 | { |
michael@0 | 303 | uint i; |
michael@0 | 304 | FIRFilter::setCoefficients(coeffs, newLength, uResultDivFactor); |
michael@0 | 305 | |
michael@0 | 306 | // Ensure that filter coeffs array is aligned to 16-byte boundary |
michael@0 | 307 | delete[] filterCoeffsUnalign; |
michael@0 | 308 | filterCoeffsUnalign = new short[2 * newLength + 8]; |
michael@0 | 309 | filterCoeffsAlign = (short *)SOUNDTOUCH_ALIGN_POINTER_16(filterCoeffsUnalign); |
michael@0 | 310 | |
michael@0 | 311 | // rearrange the filter coefficients for mmx routines |
michael@0 | 312 | for (i = 0;i < length; i += 4) |
michael@0 | 313 | { |
michael@0 | 314 | filterCoeffsAlign[2 * i + 0] = coeffs[i + 0]; |
michael@0 | 315 | filterCoeffsAlign[2 * i + 1] = coeffs[i + 2]; |
michael@0 | 316 | filterCoeffsAlign[2 * i + 2] = coeffs[i + 0]; |
michael@0 | 317 | filterCoeffsAlign[2 * i + 3] = coeffs[i + 2]; |
michael@0 | 318 | |
michael@0 | 319 | filterCoeffsAlign[2 * i + 4] = coeffs[i + 1]; |
michael@0 | 320 | filterCoeffsAlign[2 * i + 5] = coeffs[i + 3]; |
michael@0 | 321 | filterCoeffsAlign[2 * i + 6] = coeffs[i + 1]; |
michael@0 | 322 | filterCoeffsAlign[2 * i + 7] = coeffs[i + 3]; |
michael@0 | 323 | } |
michael@0 | 324 | } |
michael@0 | 325 | |
michael@0 | 326 | |
michael@0 | 327 | |
michael@0 | 328 | // mmx-optimized version of the filter routine for stereo sound |
michael@0 | 329 | uint FIRFilterMMX::evaluateFilterStereo(short *dest, const short *src, uint numSamples) const |
michael@0 | 330 | { |
michael@0 | 331 | // Create stack copies of the needed member variables for asm routines : |
michael@0 | 332 | uint i, j; |
michael@0 | 333 | __m64 *pVdest = (__m64*)dest; |
michael@0 | 334 | |
michael@0 | 335 | if (length < 2) return 0; |
michael@0 | 336 | |
michael@0 | 337 | for (i = 0; i < (numSamples - length) / 2; i ++) |
michael@0 | 338 | { |
michael@0 | 339 | __m64 accu1; |
michael@0 | 340 | __m64 accu2; |
michael@0 | 341 | const __m64 *pVsrc = (const __m64*)src; |
michael@0 | 342 | const __m64 *pVfilter = (const __m64*)filterCoeffsAlign; |
michael@0 | 343 | |
michael@0 | 344 | accu1 = accu2 = _mm_setzero_si64(); |
michael@0 | 345 | for (j = 0; j < lengthDiv8 * 2; j ++) |
michael@0 | 346 | { |
michael@0 | 347 | __m64 temp1, temp2; |
michael@0 | 348 | |
michael@0 | 349 | temp1 = _mm_unpacklo_pi16(pVsrc[0], pVsrc[1]); // = l2 l0 r2 r0 |
michael@0 | 350 | temp2 = _mm_unpackhi_pi16(pVsrc[0], pVsrc[1]); // = l3 l1 r3 r1 |
michael@0 | 351 | |
michael@0 | 352 | accu1 = _mm_add_pi32(accu1, _mm_madd_pi16(temp1, pVfilter[0])); // += l2*f2+l0*f0 r2*f2+r0*f0 |
michael@0 | 353 | accu1 = _mm_add_pi32(accu1, _mm_madd_pi16(temp2, pVfilter[1])); // += l3*f3+l1*f1 r3*f3+r1*f1 |
michael@0 | 354 | |
michael@0 | 355 | temp1 = _mm_unpacklo_pi16(pVsrc[1], pVsrc[2]); // = l4 l2 r4 r2 |
michael@0 | 356 | |
michael@0 | 357 | accu2 = _mm_add_pi32(accu2, _mm_madd_pi16(temp2, pVfilter[0])); // += l3*f2+l1*f0 r3*f2+r1*f0 |
michael@0 | 358 | accu2 = _mm_add_pi32(accu2, _mm_madd_pi16(temp1, pVfilter[1])); // += l4*f3+l2*f1 r4*f3+r2*f1 |
michael@0 | 359 | |
michael@0 | 360 | // accu1 += l2*f2+l0*f0 r2*f2+r0*f0 |
michael@0 | 361 | // += l3*f3+l1*f1 r3*f3+r1*f1 |
michael@0 | 362 | |
michael@0 | 363 | // accu2 += l3*f2+l1*f0 r3*f2+r1*f0 |
michael@0 | 364 | // l4*f3+l2*f1 r4*f3+r2*f1 |
michael@0 | 365 | |
michael@0 | 366 | pVfilter += 2; |
michael@0 | 367 | pVsrc += 2; |
michael@0 | 368 | } |
michael@0 | 369 | // accu >>= resultDivFactor |
michael@0 | 370 | accu1 = _mm_srai_pi32(accu1, resultDivFactor); |
michael@0 | 371 | accu2 = _mm_srai_pi32(accu2, resultDivFactor); |
michael@0 | 372 | |
michael@0 | 373 | // pack 2*2*32bits => 4*16 bits |
michael@0 | 374 | pVdest[0] = _mm_packs_pi32(accu1, accu2); |
michael@0 | 375 | src += 4; |
michael@0 | 376 | pVdest ++; |
michael@0 | 377 | } |
michael@0 | 378 | |
michael@0 | 379 | _m_empty(); // clear emms state |
michael@0 | 380 | |
michael@0 | 381 | return (numSamples & 0xfffffffe) - length; |
michael@0 | 382 | } |
michael@0 | 383 | |
michael@0 | 384 | #endif // SOUNDTOUCH_ALLOW_MMX |