Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | /* This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 2 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 3 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 4 | |
michael@0 | 5 | #include "mozilla/Assertions.h" |
michael@0 | 6 | #include "mozilla/Endian.h" |
michael@0 | 7 | #include "mozilla/SHA1.h" |
michael@0 | 8 | |
michael@0 | 9 | #include <string.h> |
michael@0 | 10 | |
michael@0 | 11 | using mozilla::NativeEndian; |
michael@0 | 12 | using mozilla::SHA1Sum; |
michael@0 | 13 | |
michael@0 | 14 | static inline uint32_t |
michael@0 | 15 | SHA_ROTL(uint32_t t, uint32_t n) |
michael@0 | 16 | { |
michael@0 | 17 | MOZ_ASSERT(n < 32); |
michael@0 | 18 | return (t << n) | (t >> (32 - n)); |
michael@0 | 19 | } |
michael@0 | 20 | |
michael@0 | 21 | static void |
michael@0 | 22 | shaCompress(volatile unsigned* X, const uint32_t* datain); |
michael@0 | 23 | |
michael@0 | 24 | #define SHA_F1(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z)) |
michael@0 | 25 | #define SHA_F2(X, Y, Z) ((X) ^ (Y) ^ (Z)) |
michael@0 | 26 | #define SHA_F3(X, Y, Z) (((X) & (Y)) | ((Z) & ((X) | (Y)))) |
michael@0 | 27 | #define SHA_F4(X, Y, Z) ((X) ^ (Y) ^ (Z)) |
michael@0 | 28 | |
michael@0 | 29 | #define SHA_MIX(n, a, b, c) XW(n) = SHA_ROTL(XW(a) ^ XW(b) ^ XW(c) ^XW(n), 1) |
michael@0 | 30 | |
michael@0 | 31 | SHA1Sum::SHA1Sum() |
michael@0 | 32 | : size(0), mDone(false) |
michael@0 | 33 | { |
michael@0 | 34 | // Initialize H with constants from FIPS180-1. |
michael@0 | 35 | H[0] = 0x67452301L; |
michael@0 | 36 | H[1] = 0xefcdab89L; |
michael@0 | 37 | H[2] = 0x98badcfeL; |
michael@0 | 38 | H[3] = 0x10325476L; |
michael@0 | 39 | H[4] = 0xc3d2e1f0L; |
michael@0 | 40 | } |
michael@0 | 41 | |
michael@0 | 42 | /* |
michael@0 | 43 | * Explanation of H array and index values: |
michael@0 | 44 | * |
michael@0 | 45 | * The context's H array is actually the concatenation of two arrays |
michael@0 | 46 | * defined by SHA1, the H array of state variables (5 elements), |
michael@0 | 47 | * and the W array of intermediate values, of which there are 16 elements. |
michael@0 | 48 | * The W array starts at H[5], that is W[0] is H[5]. |
michael@0 | 49 | * Although these values are defined as 32-bit values, we use 64-bit |
michael@0 | 50 | * variables to hold them because the AMD64 stores 64 bit values in |
michael@0 | 51 | * memory MUCH faster than it stores any smaller values. |
michael@0 | 52 | * |
michael@0 | 53 | * Rather than passing the context structure to shaCompress, we pass |
michael@0 | 54 | * this combined array of H and W values. We do not pass the address |
michael@0 | 55 | * of the first element of this array, but rather pass the address of an |
michael@0 | 56 | * element in the middle of the array, element X. Presently X[0] is H[11]. |
michael@0 | 57 | * So we pass the address of H[11] as the address of array X to shaCompress. |
michael@0 | 58 | * Then shaCompress accesses the members of the array using positive AND |
michael@0 | 59 | * negative indexes. |
michael@0 | 60 | * |
michael@0 | 61 | * Pictorially: (each element is 8 bytes) |
michael@0 | 62 | * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf | |
michael@0 | 63 | * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 | |
michael@0 | 64 | * |
michael@0 | 65 | * The byte offset from X[0] to any member of H and W is always |
michael@0 | 66 | * representable in a signed 8-bit value, which will be encoded |
michael@0 | 67 | * as a single byte offset in the X86-64 instruction set. |
michael@0 | 68 | * If we didn't pass the address of H[11], and instead passed the |
michael@0 | 69 | * address of H[0], the offsets to elements H[16] and above would be |
michael@0 | 70 | * greater than 127, not representable in a signed 8-bit value, and the |
michael@0 | 71 | * x86-64 instruction set would encode every such offset as a 32-bit |
michael@0 | 72 | * signed number in each instruction that accessed element H[16] or |
michael@0 | 73 | * higher. This results in much bigger and slower code. |
michael@0 | 74 | */ |
michael@0 | 75 | #define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */ |
michael@0 | 76 | #define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */ |
michael@0 | 77 | |
michael@0 | 78 | /* |
michael@0 | 79 | * SHA: Add data to context. |
michael@0 | 80 | */ |
michael@0 | 81 | void |
michael@0 | 82 | SHA1Sum::update(const void* dataIn, uint32_t len) |
michael@0 | 83 | { |
michael@0 | 84 | MOZ_ASSERT(!mDone, "SHA1Sum can only be used to compute a single hash."); |
michael@0 | 85 | |
michael@0 | 86 | const uint8_t* data = static_cast<const uint8_t*>(dataIn); |
michael@0 | 87 | |
michael@0 | 88 | if (len == 0) |
michael@0 | 89 | return; |
michael@0 | 90 | |
michael@0 | 91 | /* Accumulate the byte count. */ |
michael@0 | 92 | unsigned int lenB = static_cast<unsigned int>(size) & 63U; |
michael@0 | 93 | |
michael@0 | 94 | size += len; |
michael@0 | 95 | |
michael@0 | 96 | /* Read the data into W and process blocks as they get full. */ |
michael@0 | 97 | unsigned int togo; |
michael@0 | 98 | if (lenB > 0) { |
michael@0 | 99 | togo = 64U - lenB; |
michael@0 | 100 | if (len < togo) |
michael@0 | 101 | togo = len; |
michael@0 | 102 | memcpy(u.b + lenB, data, togo); |
michael@0 | 103 | len -= togo; |
michael@0 | 104 | data += togo; |
michael@0 | 105 | lenB = (lenB + togo) & 63U; |
michael@0 | 106 | if (!lenB) |
michael@0 | 107 | shaCompress(&H[H2X], u.w); |
michael@0 | 108 | } |
michael@0 | 109 | |
michael@0 | 110 | while (len >= 64U) { |
michael@0 | 111 | len -= 64U; |
michael@0 | 112 | shaCompress(&H[H2X], reinterpret_cast<const uint32_t*>(data)); |
michael@0 | 113 | data += 64U; |
michael@0 | 114 | } |
michael@0 | 115 | |
michael@0 | 116 | if (len > 0) |
michael@0 | 117 | memcpy(u.b, data, len); |
michael@0 | 118 | } |
michael@0 | 119 | |
michael@0 | 120 | |
michael@0 | 121 | /* |
michael@0 | 122 | * SHA: Generate hash value |
michael@0 | 123 | */ |
michael@0 | 124 | void |
michael@0 | 125 | SHA1Sum::finish(SHA1Sum::Hash& hashOut) |
michael@0 | 126 | { |
michael@0 | 127 | MOZ_ASSERT(!mDone, "SHA1Sum can only be used to compute a single hash."); |
michael@0 | 128 | |
michael@0 | 129 | uint64_t size2 = size; |
michael@0 | 130 | uint32_t lenB = uint32_t(size2) & 63; |
michael@0 | 131 | |
michael@0 | 132 | static const uint8_t bulk_pad[64] = |
michael@0 | 133 | { 0x80,0,0,0,0,0,0,0,0,0, |
michael@0 | 134 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
michael@0 | 135 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
michael@0 | 136 | |
michael@0 | 137 | /* Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits. */ |
michael@0 | 138 | update(bulk_pad, (((55 + 64) - lenB) & 63) + 1); |
michael@0 | 139 | MOZ_ASSERT((uint32_t(size) & 63) == 56); |
michael@0 | 140 | |
michael@0 | 141 | /* Convert size from bytes to bits. */ |
michael@0 | 142 | size2 <<= 3; |
michael@0 | 143 | u.w[14] = NativeEndian::swapToBigEndian(uint32_t(size2 >> 32)); |
michael@0 | 144 | u.w[15] = NativeEndian::swapToBigEndian(uint32_t(size2)); |
michael@0 | 145 | shaCompress(&H[H2X], u.w); |
michael@0 | 146 | |
michael@0 | 147 | /* Output hash. */ |
michael@0 | 148 | u.w[0] = NativeEndian::swapToBigEndian(H[0]); |
michael@0 | 149 | u.w[1] = NativeEndian::swapToBigEndian(H[1]); |
michael@0 | 150 | u.w[2] = NativeEndian::swapToBigEndian(H[2]); |
michael@0 | 151 | u.w[3] = NativeEndian::swapToBigEndian(H[3]); |
michael@0 | 152 | u.w[4] = NativeEndian::swapToBigEndian(H[4]); |
michael@0 | 153 | memcpy(hashOut, u.w, 20); |
michael@0 | 154 | mDone = true; |
michael@0 | 155 | } |
michael@0 | 156 | |
michael@0 | 157 | /* |
michael@0 | 158 | * SHA: Compression function, unrolled. |
michael@0 | 159 | * |
michael@0 | 160 | * Some operations in shaCompress are done as 5 groups of 16 operations. |
michael@0 | 161 | * Others are done as 4 groups of 20 operations. |
michael@0 | 162 | * The code below shows that structure. |
michael@0 | 163 | * |
michael@0 | 164 | * The functions that compute the new values of the 5 state variables |
michael@0 | 165 | * A-E are done in 4 groups of 20 operations (or you may also think |
michael@0 | 166 | * of them as being done in 16 groups of 5 operations). They are |
michael@0 | 167 | * done by the SHA_RNDx macros below, in the right column. |
michael@0 | 168 | * |
michael@0 | 169 | * The functions that set the 16 values of the W array are done in |
michael@0 | 170 | * 5 groups of 16 operations. The first group is done by the |
michael@0 | 171 | * LOAD macros below, the latter 4 groups are done by SHA_MIX below, |
michael@0 | 172 | * in the left column. |
michael@0 | 173 | * |
michael@0 | 174 | * gcc's optimizer observes that each member of the W array is assigned |
michael@0 | 175 | * a value 5 times in this code. It reduces the number of store |
michael@0 | 176 | * operations done to the W array in the context (that is, in the X array) |
michael@0 | 177 | * by creating a W array on the stack, and storing the W values there for |
michael@0 | 178 | * the first 4 groups of operations on W, and storing the values in the |
michael@0 | 179 | * context's W array only in the fifth group. This is undesirable. |
michael@0 | 180 | * It is MUCH bigger code than simply using the context's W array, because |
michael@0 | 181 | * all the offsets to the W array in the stack are 32-bit signed offsets, |
michael@0 | 182 | * and it is no faster than storing the values in the context's W array. |
michael@0 | 183 | * |
michael@0 | 184 | * The original code for sha_fast.c prevented this creation of a separate |
michael@0 | 185 | * W array in the stack by creating a W array of 80 members, each of |
michael@0 | 186 | * whose elements is assigned only once. It also separated the computations |
michael@0 | 187 | * of the W array values and the computations of the values for the 5 |
michael@0 | 188 | * state variables into two separate passes, W's, then A-E's so that the |
michael@0 | 189 | * second pass could be done all in registers (except for accessing the W |
michael@0 | 190 | * array) on machines with fewer registers. The method is suboptimal |
michael@0 | 191 | * for machines with enough registers to do it all in one pass, and it |
michael@0 | 192 | * necessitates using many instructions with 32-bit offsets. |
michael@0 | 193 | * |
michael@0 | 194 | * This code eliminates the separate W array on the stack by a completely |
michael@0 | 195 | * different means: by declaring the X array volatile. This prevents |
michael@0 | 196 | * the optimizer from trying to reduce the use of the X array by the |
michael@0 | 197 | * creation of a MORE expensive W array on the stack. The result is |
michael@0 | 198 | * that all instructions use signed 8-bit offsets and not 32-bit offsets. |
michael@0 | 199 | * |
michael@0 | 200 | * The combination of this code and the -O3 optimizer flag on GCC 3.4.3 |
michael@0 | 201 | * results in code that is 3 times faster than the previous NSS sha_fast |
michael@0 | 202 | * code on AMD64. |
michael@0 | 203 | */ |
michael@0 | 204 | static void |
michael@0 | 205 | shaCompress(volatile unsigned *X, const uint32_t *inbuf) |
michael@0 | 206 | { |
michael@0 | 207 | unsigned A, B, C, D, E; |
michael@0 | 208 | |
michael@0 | 209 | #define XH(n) X[n - H2X] |
michael@0 | 210 | #define XW(n) X[n - W2X] |
michael@0 | 211 | |
michael@0 | 212 | #define K0 0x5a827999L |
michael@0 | 213 | #define K1 0x6ed9eba1L |
michael@0 | 214 | #define K2 0x8f1bbcdcL |
michael@0 | 215 | #define K3 0xca62c1d6L |
michael@0 | 216 | |
michael@0 | 217 | #define SHA_RND1(a, b, c, d, e, n) \ |
michael@0 | 218 | a = SHA_ROTL(b, 5) + SHA_F1(c, d, e) + a + XW(n) + K0; c = SHA_ROTL(c, 30) |
michael@0 | 219 | #define SHA_RND2(a, b, c, d, e, n) \ |
michael@0 | 220 | a = SHA_ROTL(b, 5) + SHA_F2(c, d, e) + a + XW(n) + K1; c = SHA_ROTL(c, 30) |
michael@0 | 221 | #define SHA_RND3(a, b, c, d, e, n) \ |
michael@0 | 222 | a = SHA_ROTL(b, 5) + SHA_F3(c, d, e) + a + XW(n) + K2; c = SHA_ROTL(c, 30) |
michael@0 | 223 | #define SHA_RND4(a, b, c, d, e, n) \ |
michael@0 | 224 | a = SHA_ROTL(b ,5) + SHA_F4(c, d, e) + a + XW(n) + K3; c = SHA_ROTL(c, 30) |
michael@0 | 225 | |
michael@0 | 226 | #define LOAD(n) XW(n) = NativeEndian::swapToBigEndian(inbuf[n]) |
michael@0 | 227 | |
michael@0 | 228 | A = XH(0); |
michael@0 | 229 | B = XH(1); |
michael@0 | 230 | C = XH(2); |
michael@0 | 231 | D = XH(3); |
michael@0 | 232 | E = XH(4); |
michael@0 | 233 | |
michael@0 | 234 | LOAD(0); SHA_RND1(E,A,B,C,D, 0); |
michael@0 | 235 | LOAD(1); SHA_RND1(D,E,A,B,C, 1); |
michael@0 | 236 | LOAD(2); SHA_RND1(C,D,E,A,B, 2); |
michael@0 | 237 | LOAD(3); SHA_RND1(B,C,D,E,A, 3); |
michael@0 | 238 | LOAD(4); SHA_RND1(A,B,C,D,E, 4); |
michael@0 | 239 | LOAD(5); SHA_RND1(E,A,B,C,D, 5); |
michael@0 | 240 | LOAD(6); SHA_RND1(D,E,A,B,C, 6); |
michael@0 | 241 | LOAD(7); SHA_RND1(C,D,E,A,B, 7); |
michael@0 | 242 | LOAD(8); SHA_RND1(B,C,D,E,A, 8); |
michael@0 | 243 | LOAD(9); SHA_RND1(A,B,C,D,E, 9); |
michael@0 | 244 | LOAD(10); SHA_RND1(E,A,B,C,D,10); |
michael@0 | 245 | LOAD(11); SHA_RND1(D,E,A,B,C,11); |
michael@0 | 246 | LOAD(12); SHA_RND1(C,D,E,A,B,12); |
michael@0 | 247 | LOAD(13); SHA_RND1(B,C,D,E,A,13); |
michael@0 | 248 | LOAD(14); SHA_RND1(A,B,C,D,E,14); |
michael@0 | 249 | LOAD(15); SHA_RND1(E,A,B,C,D,15); |
michael@0 | 250 | |
michael@0 | 251 | SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0); |
michael@0 | 252 | SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1); |
michael@0 | 253 | SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2); |
michael@0 | 254 | SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3); |
michael@0 | 255 | |
michael@0 | 256 | SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4); |
michael@0 | 257 | SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5); |
michael@0 | 258 | SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6); |
michael@0 | 259 | SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7); |
michael@0 | 260 | SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8); |
michael@0 | 261 | SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9); |
michael@0 | 262 | SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10); |
michael@0 | 263 | SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11); |
michael@0 | 264 | SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12); |
michael@0 | 265 | SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13); |
michael@0 | 266 | SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14); |
michael@0 | 267 | SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15); |
michael@0 | 268 | |
michael@0 | 269 | SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0); |
michael@0 | 270 | SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1); |
michael@0 | 271 | SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2); |
michael@0 | 272 | SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3); |
michael@0 | 273 | SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4); |
michael@0 | 274 | SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5); |
michael@0 | 275 | SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6); |
michael@0 | 276 | SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7); |
michael@0 | 277 | |
michael@0 | 278 | SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8); |
michael@0 | 279 | SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9); |
michael@0 | 280 | SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10); |
michael@0 | 281 | SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11); |
michael@0 | 282 | SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12); |
michael@0 | 283 | SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13); |
michael@0 | 284 | SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14); |
michael@0 | 285 | SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15); |
michael@0 | 286 | |
michael@0 | 287 | SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0); |
michael@0 | 288 | SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1); |
michael@0 | 289 | SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2); |
michael@0 | 290 | SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3); |
michael@0 | 291 | SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4); |
michael@0 | 292 | SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5); |
michael@0 | 293 | SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6); |
michael@0 | 294 | SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7); |
michael@0 | 295 | SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8); |
michael@0 | 296 | SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9); |
michael@0 | 297 | SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10); |
michael@0 | 298 | SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11); |
michael@0 | 299 | |
michael@0 | 300 | SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12); |
michael@0 | 301 | SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13); |
michael@0 | 302 | SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14); |
michael@0 | 303 | SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15); |
michael@0 | 304 | |
michael@0 | 305 | SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0); |
michael@0 | 306 | SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1); |
michael@0 | 307 | SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2); |
michael@0 | 308 | SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3); |
michael@0 | 309 | SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4); |
michael@0 | 310 | SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5); |
michael@0 | 311 | SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6); |
michael@0 | 312 | SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7); |
michael@0 | 313 | SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8); |
michael@0 | 314 | SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9); |
michael@0 | 315 | SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10); |
michael@0 | 316 | SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11); |
michael@0 | 317 | SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12); |
michael@0 | 318 | SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13); |
michael@0 | 319 | SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14); |
michael@0 | 320 | SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15); |
michael@0 | 321 | |
michael@0 | 322 | XH(0) += A; |
michael@0 | 323 | XH(1) += B; |
michael@0 | 324 | XH(2) += C; |
michael@0 | 325 | XH(3) += D; |
michael@0 | 326 | XH(4) += E; |
michael@0 | 327 | } |