|
1 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
2 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
4 |
|
5 #include "mozilla/Assertions.h" |
|
6 #include "mozilla/Endian.h" |
|
7 #include "mozilla/SHA1.h" |
|
8 |
|
9 #include <string.h> |
|
10 |
|
11 using mozilla::NativeEndian; |
|
12 using mozilla::SHA1Sum; |
|
13 |
|
14 static inline uint32_t |
|
15 SHA_ROTL(uint32_t t, uint32_t n) |
|
16 { |
|
17 MOZ_ASSERT(n < 32); |
|
18 return (t << n) | (t >> (32 - n)); |
|
19 } |
|
20 |
|
21 static void |
|
22 shaCompress(volatile unsigned* X, const uint32_t* datain); |
|
23 |
|
24 #define SHA_F1(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z)) |
|
25 #define SHA_F2(X, Y, Z) ((X) ^ (Y) ^ (Z)) |
|
26 #define SHA_F3(X, Y, Z) (((X) & (Y)) | ((Z) & ((X) | (Y)))) |
|
27 #define SHA_F4(X, Y, Z) ((X) ^ (Y) ^ (Z)) |
|
28 |
|
29 #define SHA_MIX(n, a, b, c) XW(n) = SHA_ROTL(XW(a) ^ XW(b) ^ XW(c) ^XW(n), 1) |
|
30 |
|
31 SHA1Sum::SHA1Sum() |
|
32 : size(0), mDone(false) |
|
33 { |
|
34 // Initialize H with constants from FIPS180-1. |
|
35 H[0] = 0x67452301L; |
|
36 H[1] = 0xefcdab89L; |
|
37 H[2] = 0x98badcfeL; |
|
38 H[3] = 0x10325476L; |
|
39 H[4] = 0xc3d2e1f0L; |
|
40 } |
|
41 |
|
42 /* |
|
43 * Explanation of H array and index values: |
|
44 * |
|
45 * The context's H array is actually the concatenation of two arrays |
|
46 * defined by SHA1, the H array of state variables (5 elements), |
|
47 * and the W array of intermediate values, of which there are 16 elements. |
|
48 * The W array starts at H[5], that is W[0] is H[5]. |
|
49 * Although these values are defined as 32-bit values, we use 64-bit |
|
50 * variables to hold them because the AMD64 stores 64 bit values in |
|
51 * memory MUCH faster than it stores any smaller values. |
|
52 * |
|
53 * Rather than passing the context structure to shaCompress, we pass |
|
54 * this combined array of H and W values. We do not pass the address |
|
55 * of the first element of this array, but rather pass the address of an |
|
56 * element in the middle of the array, element X. Presently X[0] is H[11]. |
|
57 * So we pass the address of H[11] as the address of array X to shaCompress. |
|
58 * Then shaCompress accesses the members of the array using positive AND |
|
59 * negative indexes. |
|
60 * |
|
61 * Pictorially: (each element is 8 bytes) |
|
62 * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf | |
|
63 * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 | |
|
64 * |
|
65 * The byte offset from X[0] to any member of H and W is always |
|
66 * representable in a signed 8-bit value, which will be encoded |
|
67 * as a single byte offset in the X86-64 instruction set. |
|
68 * If we didn't pass the address of H[11], and instead passed the |
|
69 * address of H[0], the offsets to elements H[16] and above would be |
|
70 * greater than 127, not representable in a signed 8-bit value, and the |
|
71 * x86-64 instruction set would encode every such offset as a 32-bit |
|
72 * signed number in each instruction that accessed element H[16] or |
|
73 * higher. This results in much bigger and slower code. |
|
74 */ |
|
75 #define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */ |
|
76 #define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */ |
|
77 |
|
78 /* |
|
79 * SHA: Add data to context. |
|
80 */ |
|
81 void |
|
82 SHA1Sum::update(const void* dataIn, uint32_t len) |
|
83 { |
|
84 MOZ_ASSERT(!mDone, "SHA1Sum can only be used to compute a single hash."); |
|
85 |
|
86 const uint8_t* data = static_cast<const uint8_t*>(dataIn); |
|
87 |
|
88 if (len == 0) |
|
89 return; |
|
90 |
|
91 /* Accumulate the byte count. */ |
|
92 unsigned int lenB = static_cast<unsigned int>(size) & 63U; |
|
93 |
|
94 size += len; |
|
95 |
|
96 /* Read the data into W and process blocks as they get full. */ |
|
97 unsigned int togo; |
|
98 if (lenB > 0) { |
|
99 togo = 64U - lenB; |
|
100 if (len < togo) |
|
101 togo = len; |
|
102 memcpy(u.b + lenB, data, togo); |
|
103 len -= togo; |
|
104 data += togo; |
|
105 lenB = (lenB + togo) & 63U; |
|
106 if (!lenB) |
|
107 shaCompress(&H[H2X], u.w); |
|
108 } |
|
109 |
|
110 while (len >= 64U) { |
|
111 len -= 64U; |
|
112 shaCompress(&H[H2X], reinterpret_cast<const uint32_t*>(data)); |
|
113 data += 64U; |
|
114 } |
|
115 |
|
116 if (len > 0) |
|
117 memcpy(u.b, data, len); |
|
118 } |
|
119 |
|
120 |
|
121 /* |
|
122 * SHA: Generate hash value |
|
123 */ |
|
124 void |
|
125 SHA1Sum::finish(SHA1Sum::Hash& hashOut) |
|
126 { |
|
127 MOZ_ASSERT(!mDone, "SHA1Sum can only be used to compute a single hash."); |
|
128 |
|
129 uint64_t size2 = size; |
|
130 uint32_t lenB = uint32_t(size2) & 63; |
|
131 |
|
132 static const uint8_t bulk_pad[64] = |
|
133 { 0x80,0,0,0,0,0,0,0,0,0, |
|
134 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
|
135 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
|
136 |
|
137 /* Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits. */ |
|
138 update(bulk_pad, (((55 + 64) - lenB) & 63) + 1); |
|
139 MOZ_ASSERT((uint32_t(size) & 63) == 56); |
|
140 |
|
141 /* Convert size from bytes to bits. */ |
|
142 size2 <<= 3; |
|
143 u.w[14] = NativeEndian::swapToBigEndian(uint32_t(size2 >> 32)); |
|
144 u.w[15] = NativeEndian::swapToBigEndian(uint32_t(size2)); |
|
145 shaCompress(&H[H2X], u.w); |
|
146 |
|
147 /* Output hash. */ |
|
148 u.w[0] = NativeEndian::swapToBigEndian(H[0]); |
|
149 u.w[1] = NativeEndian::swapToBigEndian(H[1]); |
|
150 u.w[2] = NativeEndian::swapToBigEndian(H[2]); |
|
151 u.w[3] = NativeEndian::swapToBigEndian(H[3]); |
|
152 u.w[4] = NativeEndian::swapToBigEndian(H[4]); |
|
153 memcpy(hashOut, u.w, 20); |
|
154 mDone = true; |
|
155 } |
|
156 |
|
157 /* |
|
158 * SHA: Compression function, unrolled. |
|
159 * |
|
160 * Some operations in shaCompress are done as 5 groups of 16 operations. |
|
161 * Others are done as 4 groups of 20 operations. |
|
162 * The code below shows that structure. |
|
163 * |
|
164 * The functions that compute the new values of the 5 state variables |
|
165 * A-E are done in 4 groups of 20 operations (or you may also think |
|
166 * of them as being done in 16 groups of 5 operations). They are |
|
167 * done by the SHA_RNDx macros below, in the right column. |
|
168 * |
|
169 * The functions that set the 16 values of the W array are done in |
|
170 * 5 groups of 16 operations. The first group is done by the |
|
171 * LOAD macros below, the latter 4 groups are done by SHA_MIX below, |
|
172 * in the left column. |
|
173 * |
|
174 * gcc's optimizer observes that each member of the W array is assigned |
|
175 * a value 5 times in this code. It reduces the number of store |
|
176 * operations done to the W array in the context (that is, in the X array) |
|
177 * by creating a W array on the stack, and storing the W values there for |
|
178 * the first 4 groups of operations on W, and storing the values in the |
|
179 * context's W array only in the fifth group. This is undesirable. |
|
180 * It is MUCH bigger code than simply using the context's W array, because |
|
181 * all the offsets to the W array in the stack are 32-bit signed offsets, |
|
182 * and it is no faster than storing the values in the context's W array. |
|
183 * |
|
184 * The original code for sha_fast.c prevented this creation of a separate |
|
185 * W array in the stack by creating a W array of 80 members, each of |
|
186 * whose elements is assigned only once. It also separated the computations |
|
187 * of the W array values and the computations of the values for the 5 |
|
188 * state variables into two separate passes, W's, then A-E's so that the |
|
189 * second pass could be done all in registers (except for accessing the W |
|
190 * array) on machines with fewer registers. The method is suboptimal |
|
191 * for machines with enough registers to do it all in one pass, and it |
|
192 * necessitates using many instructions with 32-bit offsets. |
|
193 * |
|
194 * This code eliminates the separate W array on the stack by a completely |
|
195 * different means: by declaring the X array volatile. This prevents |
|
196 * the optimizer from trying to reduce the use of the X array by the |
|
197 * creation of a MORE expensive W array on the stack. The result is |
|
198 * that all instructions use signed 8-bit offsets and not 32-bit offsets. |
|
199 * |
|
200 * The combination of this code and the -O3 optimizer flag on GCC 3.4.3 |
|
201 * results in code that is 3 times faster than the previous NSS sha_fast |
|
202 * code on AMD64. |
|
203 */ |
|
204 static void |
|
205 shaCompress(volatile unsigned *X, const uint32_t *inbuf) |
|
206 { |
|
207 unsigned A, B, C, D, E; |
|
208 |
|
209 #define XH(n) X[n - H2X] |
|
210 #define XW(n) X[n - W2X] |
|
211 |
|
212 #define K0 0x5a827999L |
|
213 #define K1 0x6ed9eba1L |
|
214 #define K2 0x8f1bbcdcL |
|
215 #define K3 0xca62c1d6L |
|
216 |
|
217 #define SHA_RND1(a, b, c, d, e, n) \ |
|
218 a = SHA_ROTL(b, 5) + SHA_F1(c, d, e) + a + XW(n) + K0; c = SHA_ROTL(c, 30) |
|
219 #define SHA_RND2(a, b, c, d, e, n) \ |
|
220 a = SHA_ROTL(b, 5) + SHA_F2(c, d, e) + a + XW(n) + K1; c = SHA_ROTL(c, 30) |
|
221 #define SHA_RND3(a, b, c, d, e, n) \ |
|
222 a = SHA_ROTL(b, 5) + SHA_F3(c, d, e) + a + XW(n) + K2; c = SHA_ROTL(c, 30) |
|
223 #define SHA_RND4(a, b, c, d, e, n) \ |
|
224 a = SHA_ROTL(b ,5) + SHA_F4(c, d, e) + a + XW(n) + K3; c = SHA_ROTL(c, 30) |
|
225 |
|
226 #define LOAD(n) XW(n) = NativeEndian::swapToBigEndian(inbuf[n]) |
|
227 |
|
228 A = XH(0); |
|
229 B = XH(1); |
|
230 C = XH(2); |
|
231 D = XH(3); |
|
232 E = XH(4); |
|
233 |
|
234 LOAD(0); SHA_RND1(E,A,B,C,D, 0); |
|
235 LOAD(1); SHA_RND1(D,E,A,B,C, 1); |
|
236 LOAD(2); SHA_RND1(C,D,E,A,B, 2); |
|
237 LOAD(3); SHA_RND1(B,C,D,E,A, 3); |
|
238 LOAD(4); SHA_RND1(A,B,C,D,E, 4); |
|
239 LOAD(5); SHA_RND1(E,A,B,C,D, 5); |
|
240 LOAD(6); SHA_RND1(D,E,A,B,C, 6); |
|
241 LOAD(7); SHA_RND1(C,D,E,A,B, 7); |
|
242 LOAD(8); SHA_RND1(B,C,D,E,A, 8); |
|
243 LOAD(9); SHA_RND1(A,B,C,D,E, 9); |
|
244 LOAD(10); SHA_RND1(E,A,B,C,D,10); |
|
245 LOAD(11); SHA_RND1(D,E,A,B,C,11); |
|
246 LOAD(12); SHA_RND1(C,D,E,A,B,12); |
|
247 LOAD(13); SHA_RND1(B,C,D,E,A,13); |
|
248 LOAD(14); SHA_RND1(A,B,C,D,E,14); |
|
249 LOAD(15); SHA_RND1(E,A,B,C,D,15); |
|
250 |
|
251 SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0); |
|
252 SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1); |
|
253 SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2); |
|
254 SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3); |
|
255 |
|
256 SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4); |
|
257 SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5); |
|
258 SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6); |
|
259 SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7); |
|
260 SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8); |
|
261 SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9); |
|
262 SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10); |
|
263 SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11); |
|
264 SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12); |
|
265 SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13); |
|
266 SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14); |
|
267 SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15); |
|
268 |
|
269 SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0); |
|
270 SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1); |
|
271 SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2); |
|
272 SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3); |
|
273 SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4); |
|
274 SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5); |
|
275 SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6); |
|
276 SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7); |
|
277 |
|
278 SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8); |
|
279 SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9); |
|
280 SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10); |
|
281 SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11); |
|
282 SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12); |
|
283 SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13); |
|
284 SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14); |
|
285 SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15); |
|
286 |
|
287 SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0); |
|
288 SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1); |
|
289 SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2); |
|
290 SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3); |
|
291 SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4); |
|
292 SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5); |
|
293 SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6); |
|
294 SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7); |
|
295 SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8); |
|
296 SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9); |
|
297 SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10); |
|
298 SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11); |
|
299 |
|
300 SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12); |
|
301 SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13); |
|
302 SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14); |
|
303 SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15); |
|
304 |
|
305 SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0); |
|
306 SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1); |
|
307 SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2); |
|
308 SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3); |
|
309 SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4); |
|
310 SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5); |
|
311 SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6); |
|
312 SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7); |
|
313 SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8); |
|
314 SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9); |
|
315 SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10); |
|
316 SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11); |
|
317 SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12); |
|
318 SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13); |
|
319 SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14); |
|
320 SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15); |
|
321 |
|
322 XH(0) += A; |
|
323 XH(1) += B; |
|
324 XH(2) += C; |
|
325 XH(3) += D; |
|
326 XH(4) += E; |
|
327 } |