mfbt/double-conversion/double-conversion.h

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

michael@0 1 // Copyright 2012 the V8 project authors. All rights reserved.
michael@0 2 // Redistribution and use in source and binary forms, with or without
michael@0 3 // modification, are permitted provided that the following conditions are
michael@0 4 // met:
michael@0 5 //
michael@0 6 // * Redistributions of source code must retain the above copyright
michael@0 7 // notice, this list of conditions and the following disclaimer.
michael@0 8 // * Redistributions in binary form must reproduce the above
michael@0 9 // copyright notice, this list of conditions and the following
michael@0 10 // disclaimer in the documentation and/or other materials provided
michael@0 11 // with the distribution.
michael@0 12 // * Neither the name of Google Inc. nor the names of its
michael@0 13 // contributors may be used to endorse or promote products derived
michael@0 14 // from this software without specific prior written permission.
michael@0 15 //
michael@0 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
michael@0 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
michael@0 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
michael@0 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
michael@0 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
michael@0 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
michael@0 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
michael@0 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
michael@0 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
michael@0 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
michael@0 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
michael@0 27
michael@0 28 #ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
michael@0 29 #define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
michael@0 30
michael@0 31 #include "mozilla/Types.h"
michael@0 32 #include "utils.h"
michael@0 33
michael@0 34 namespace double_conversion {
michael@0 35
michael@0 36 class DoubleToStringConverter {
michael@0 37 public:
michael@0 38 // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
michael@0 39 // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
michael@0 40 // function returns false.
michael@0 41 static const int kMaxFixedDigitsBeforePoint = 60;
michael@0 42 static const int kMaxFixedDigitsAfterPoint = 60;
michael@0 43
michael@0 44 // When calling ToExponential with a requested_digits
michael@0 45 // parameter > kMaxExponentialDigits then the function returns false.
michael@0 46 static const int kMaxExponentialDigits = 120;
michael@0 47
michael@0 48 // When calling ToPrecision with a requested_digits
michael@0 49 // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
michael@0 50 // then the function returns false.
michael@0 51 static const int kMinPrecisionDigits = 1;
michael@0 52 static const int kMaxPrecisionDigits = 120;
michael@0 53
michael@0 54 enum Flags {
michael@0 55 NO_FLAGS = 0,
michael@0 56 EMIT_POSITIVE_EXPONENT_SIGN = 1,
michael@0 57 EMIT_TRAILING_DECIMAL_POINT = 2,
michael@0 58 EMIT_TRAILING_ZERO_AFTER_POINT = 4,
michael@0 59 UNIQUE_ZERO = 8
michael@0 60 };
michael@0 61
michael@0 62 // Flags should be a bit-or combination of the possible Flags-enum.
michael@0 63 // - NO_FLAGS: no special flags.
michael@0 64 // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
michael@0 65 // form, emits a '+' for positive exponents. Example: 1.2e+2.
michael@0 66 // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
michael@0 67 // converted into decimal format then a trailing decimal point is appended.
michael@0 68 // Example: 2345.0 is converted to "2345.".
michael@0 69 // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
michael@0 70 // emits a trailing '0'-character. This flag requires the
michael@0 71 // EXMIT_TRAILING_DECIMAL_POINT flag.
michael@0 72 // Example: 2345.0 is converted to "2345.0".
michael@0 73 // - UNIQUE_ZERO: "-0.0" is converted to "0.0".
michael@0 74 //
michael@0 75 // Infinity symbol and nan_symbol provide the string representation for these
michael@0 76 // special values. If the string is NULL and the special value is encountered
michael@0 77 // then the conversion functions return false.
michael@0 78 //
michael@0 79 // The exponent_character is used in exponential representations. It is
michael@0 80 // usually 'e' or 'E'.
michael@0 81 //
michael@0 82 // When converting to the shortest representation the converter will
michael@0 83 // represent input numbers in decimal format if they are in the interval
michael@0 84 // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
michael@0 85 // (lower boundary included, greater boundary excluded).
michael@0 86 // Example: with decimal_in_shortest_low = -6 and
michael@0 87 // decimal_in_shortest_high = 21:
michael@0 88 // ToShortest(0.000001) -> "0.000001"
michael@0 89 // ToShortest(0.0000001) -> "1e-7"
michael@0 90 // ToShortest(111111111111111111111.0) -> "111111111111111110000"
michael@0 91 // ToShortest(100000000000000000000.0) -> "100000000000000000000"
michael@0 92 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
michael@0 93 //
michael@0 94 // When converting to precision mode the converter may add
michael@0 95 // max_leading_padding_zeroes before returning the number in exponential
michael@0 96 // format.
michael@0 97 // Example with max_leading_padding_zeroes_in_precision_mode = 6.
michael@0 98 // ToPrecision(0.0000012345, 2) -> "0.0000012"
michael@0 99 // ToPrecision(0.00000012345, 2) -> "1.2e-7"
michael@0 100 // Similarily the converter may add up to
michael@0 101 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
michael@0 102 // returning an exponential representation. A zero added by the
michael@0 103 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
michael@0 104 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
michael@0 105 // ToPrecision(230.0, 2) -> "230"
michael@0 106 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT.
michael@0 107 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
michael@0 108 DoubleToStringConverter(int flags,
michael@0 109 const char* infinity_symbol,
michael@0 110 const char* nan_symbol,
michael@0 111 char exponent_character,
michael@0 112 int decimal_in_shortest_low,
michael@0 113 int decimal_in_shortest_high,
michael@0 114 int max_leading_padding_zeroes_in_precision_mode,
michael@0 115 int max_trailing_padding_zeroes_in_precision_mode)
michael@0 116 : flags_(flags),
michael@0 117 infinity_symbol_(infinity_symbol),
michael@0 118 nan_symbol_(nan_symbol),
michael@0 119 exponent_character_(exponent_character),
michael@0 120 decimal_in_shortest_low_(decimal_in_shortest_low),
michael@0 121 decimal_in_shortest_high_(decimal_in_shortest_high),
michael@0 122 max_leading_padding_zeroes_in_precision_mode_(
michael@0 123 max_leading_padding_zeroes_in_precision_mode),
michael@0 124 max_trailing_padding_zeroes_in_precision_mode_(
michael@0 125 max_trailing_padding_zeroes_in_precision_mode) {
michael@0 126 // When 'trailing zero after the point' is set, then 'trailing point'
michael@0 127 // must be set too.
michael@0 128 ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
michael@0 129 !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
michael@0 130 }
michael@0 131
michael@0 132 // Returns a converter following the EcmaScript specification.
michael@0 133 static MFBT_API const DoubleToStringConverter& EcmaScriptConverter();
michael@0 134
michael@0 135 // Computes the shortest string of digits that correctly represent the input
michael@0 136 // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
michael@0 137 // (see constructor) it then either returns a decimal representation, or an
michael@0 138 // exponential representation.
michael@0 139 // Example with decimal_in_shortest_low = -6,
michael@0 140 // decimal_in_shortest_high = 21,
michael@0 141 // EMIT_POSITIVE_EXPONENT_SIGN activated, and
michael@0 142 // EMIT_TRAILING_DECIMAL_POINT deactived:
michael@0 143 // ToShortest(0.000001) -> "0.000001"
michael@0 144 // ToShortest(0.0000001) -> "1e-7"
michael@0 145 // ToShortest(111111111111111111111.0) -> "111111111111111110000"
michael@0 146 // ToShortest(100000000000000000000.0) -> "100000000000000000000"
michael@0 147 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
michael@0 148 //
michael@0 149 // Note: the conversion may round the output if the returned string
michael@0 150 // is accurate enough to uniquely identify the input-number.
michael@0 151 // For example the most precise representation of the double 9e59 equals
michael@0 152 // "899999999999999918767229449717619953810131273674690656206848", but
michael@0 153 // the converter will return the shorter (but still correct) "9e59".
michael@0 154 //
michael@0 155 // Returns true if the conversion succeeds. The conversion always succeeds
michael@0 156 // except when the input value is special and no infinity_symbol or
michael@0 157 // nan_symbol has been given to the constructor.
michael@0 158 bool ToShortest(double value, StringBuilder* result_builder) const {
michael@0 159 return ToShortestIeeeNumber(value, result_builder, SHORTEST);
michael@0 160 }
michael@0 161
michael@0 162 // Same as ToShortest, but for single-precision floats.
michael@0 163 bool ToShortestSingle(float value, StringBuilder* result_builder) const {
michael@0 164 return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
michael@0 165 }
michael@0 166
michael@0 167
michael@0 168 // Computes a decimal representation with a fixed number of digits after the
michael@0 169 // decimal point. The last emitted digit is rounded.
michael@0 170 //
michael@0 171 // Examples:
michael@0 172 // ToFixed(3.12, 1) -> "3.1"
michael@0 173 // ToFixed(3.1415, 3) -> "3.142"
michael@0 174 // ToFixed(1234.56789, 4) -> "1234.5679"
michael@0 175 // ToFixed(1.23, 5) -> "1.23000"
michael@0 176 // ToFixed(0.1, 4) -> "0.1000"
michael@0 177 // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
michael@0 178 // ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
michael@0 179 // ToFixed(0.1, 17) -> "0.10000000000000001"
michael@0 180 //
michael@0 181 // If requested_digits equals 0, then the tail of the result depends on
michael@0 182 // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
michael@0 183 // Examples, for requested_digits == 0,
michael@0 184 // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
michael@0 185 // - false and false: then 123.45 -> 123
michael@0 186 // 0.678 -> 1
michael@0 187 // - true and false: then 123.45 -> 123.
michael@0 188 // 0.678 -> 1.
michael@0 189 // - true and true: then 123.45 -> 123.0
michael@0 190 // 0.678 -> 1.0
michael@0 191 //
michael@0 192 // Returns true if the conversion succeeds. The conversion always succeeds
michael@0 193 // except for the following cases:
michael@0 194 // - the input value is special and no infinity_symbol or nan_symbol has
michael@0 195 // been provided to the constructor,
michael@0 196 // - 'value' > 10^kMaxFixedDigitsBeforePoint, or
michael@0 197 // - 'requested_digits' > kMaxFixedDigitsAfterPoint.
michael@0 198 // The last two conditions imply that the result will never contain more than
michael@0 199 // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
michael@0 200 // (one additional character for the sign, and one for the decimal point).
michael@0 201 MFBT_API bool ToFixed(double value,
michael@0 202 int requested_digits,
michael@0 203 StringBuilder* result_builder) const;
michael@0 204
michael@0 205 // Computes a representation in exponential format with requested_digits
michael@0 206 // after the decimal point. The last emitted digit is rounded.
michael@0 207 // If requested_digits equals -1, then the shortest exponential representation
michael@0 208 // is computed.
michael@0 209 //
michael@0 210 // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
michael@0 211 // exponent_character set to 'e'.
michael@0 212 // ToExponential(3.12, 1) -> "3.1e0"
michael@0 213 // ToExponential(5.0, 3) -> "5.000e0"
michael@0 214 // ToExponential(0.001, 2) -> "1.00e-3"
michael@0 215 // ToExponential(3.1415, -1) -> "3.1415e0"
michael@0 216 // ToExponential(3.1415, 4) -> "3.1415e0"
michael@0 217 // ToExponential(3.1415, 3) -> "3.142e0"
michael@0 218 // ToExponential(123456789000000, 3) -> "1.235e14"
michael@0 219 // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
michael@0 220 // ToExponential(1000000000000000019884624838656.0, 32) ->
michael@0 221 // "1.00000000000000001988462483865600e30"
michael@0 222 // ToExponential(1234, 0) -> "1e3"
michael@0 223 //
michael@0 224 // Returns true if the conversion succeeds. The conversion always succeeds
michael@0 225 // except for the following cases:
michael@0 226 // - the input value is special and no infinity_symbol or nan_symbol has
michael@0 227 // been provided to the constructor,
michael@0 228 // - 'requested_digits' > kMaxExponentialDigits.
michael@0 229 // The last condition implies that the result will never contain more than
michael@0 230 // kMaxExponentialDigits + 8 characters (the sign, the digit before the
michael@0 231 // decimal point, the decimal point, the exponent character, the
michael@0 232 // exponent's sign, and at most 3 exponent digits).
michael@0 233 MFBT_API bool ToExponential(double value,
michael@0 234 int requested_digits,
michael@0 235 StringBuilder* result_builder) const;
michael@0 236
michael@0 237 // Computes 'precision' leading digits of the given 'value' and returns them
michael@0 238 // either in exponential or decimal format, depending on
michael@0 239 // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
michael@0 240 // constructor).
michael@0 241 // The last computed digit is rounded.
michael@0 242 //
michael@0 243 // Example with max_leading_padding_zeroes_in_precision_mode = 6.
michael@0 244 // ToPrecision(0.0000012345, 2) -> "0.0000012"
michael@0 245 // ToPrecision(0.00000012345, 2) -> "1.2e-7"
michael@0 246 // Similarily the converter may add up to
michael@0 247 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
michael@0 248 // returning an exponential representation. A zero added by the
michael@0 249 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
michael@0 250 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
michael@0 251 // ToPrecision(230.0, 2) -> "230"
michael@0 252 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT.
michael@0 253 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
michael@0 254 // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
michael@0 255 // EMIT_TRAILING_ZERO_AFTER_POINT:
michael@0 256 // ToPrecision(123450.0, 6) -> "123450"
michael@0 257 // ToPrecision(123450.0, 5) -> "123450"
michael@0 258 // ToPrecision(123450.0, 4) -> "123500"
michael@0 259 // ToPrecision(123450.0, 3) -> "123000"
michael@0 260 // ToPrecision(123450.0, 2) -> "1.2e5"
michael@0 261 //
michael@0 262 // Returns true if the conversion succeeds. The conversion always succeeds
michael@0 263 // except for the following cases:
michael@0 264 // - the input value is special and no infinity_symbol or nan_symbol has
michael@0 265 // been provided to the constructor,
michael@0 266 // - precision < kMinPericisionDigits
michael@0 267 // - precision > kMaxPrecisionDigits
michael@0 268 // The last condition implies that the result will never contain more than
michael@0 269 // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
michael@0 270 // exponent character, the exponent's sign, and at most 3 exponent digits).
michael@0 271 MFBT_API bool ToPrecision(double value,
michael@0 272 int precision,
michael@0 273 bool* used_exponential_notation,
michael@0 274 StringBuilder* result_builder) const;
michael@0 275
michael@0 276 enum DtoaMode {
michael@0 277 // Produce the shortest correct representation.
michael@0 278 // For example the output of 0.299999999999999988897 is (the less accurate
michael@0 279 // but correct) 0.3.
michael@0 280 SHORTEST,
michael@0 281 // Same as SHORTEST, but for single-precision floats.
michael@0 282 SHORTEST_SINGLE,
michael@0 283 // Produce a fixed number of digits after the decimal point.
michael@0 284 // For instance fixed(0.1, 4) becomes 0.1000
michael@0 285 // If the input number is big, the output will be big.
michael@0 286 FIXED,
michael@0 287 // Fixed number of digits (independent of the decimal point).
michael@0 288 PRECISION
michael@0 289 };
michael@0 290
michael@0 291 // The maximal number of digits that are needed to emit a double in base 10.
michael@0 292 // A higher precision can be achieved by using more digits, but the shortest
michael@0 293 // accurate representation of any double will never use more digits than
michael@0 294 // kBase10MaximalLength.
michael@0 295 // Note that DoubleToAscii null-terminates its input. So the given buffer
michael@0 296 // should be at least kBase10MaximalLength + 1 characters long.
michael@0 297 static const MFBT_DATA int kBase10MaximalLength = 17;
michael@0 298
michael@0 299 // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
michael@0 300 // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
michael@0 301 // after it has been casted to a single-precision float. That is, in this
michael@0 302 // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
michael@0 303 //
michael@0 304 // The result should be interpreted as buffer * 10^(point-length).
michael@0 305 //
michael@0 306 // The output depends on the given mode:
michael@0 307 // - SHORTEST: produce the least amount of digits for which the internal
michael@0 308 // identity requirement is still satisfied. If the digits are printed
michael@0 309 // (together with the correct exponent) then reading this number will give
michael@0 310 // 'v' again. The buffer will choose the representation that is closest to
michael@0 311 // 'v'. If there are two at the same distance, than the one farther away
michael@0 312 // from 0 is chosen (halfway cases - ending with 5 - are rounded up).
michael@0 313 // In this mode the 'requested_digits' parameter is ignored.
michael@0 314 // - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
michael@0 315 // - FIXED: produces digits necessary to print a given number with
michael@0 316 // 'requested_digits' digits after the decimal point. The produced digits
michael@0 317 // might be too short in which case the caller has to fill the remainder
michael@0 318 // with '0's.
michael@0 319 // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
michael@0 320 // Halfway cases are rounded towards +/-Infinity (away from 0). The call
michael@0 321 // toFixed(0.15, 2) thus returns buffer="2", point=0.
michael@0 322 // The returned buffer may contain digits that would be truncated from the
michael@0 323 // shortest representation of the input.
michael@0 324 // - PRECISION: produces 'requested_digits' where the first digit is not '0'.
michael@0 325 // Even though the length of produced digits usually equals
michael@0 326 // 'requested_digits', the function is allowed to return fewer digits, in
michael@0 327 // which case the caller has to fill the missing digits with '0's.
michael@0 328 // Halfway cases are again rounded away from 0.
michael@0 329 // DoubleToAscii expects the given buffer to be big enough to hold all
michael@0 330 // digits and a terminating null-character. In SHORTEST-mode it expects a
michael@0 331 // buffer of at least kBase10MaximalLength + 1. In all other modes the
michael@0 332 // requested_digits parameter and the padding-zeroes limit the size of the
michael@0 333 // output. Don't forget the decimal point, the exponent character and the
michael@0 334 // terminating null-character when computing the maximal output size.
michael@0 335 // The given length is only used in debug mode to ensure the buffer is big
michael@0 336 // enough.
michael@0 337 static MFBT_API void DoubleToAscii(double v,
michael@0 338 DtoaMode mode,
michael@0 339 int requested_digits,
michael@0 340 char* buffer,
michael@0 341 int buffer_length,
michael@0 342 bool* sign,
michael@0 343 int* length,
michael@0 344 int* point);
michael@0 345
michael@0 346 private:
michael@0 347 // Implementation for ToShortest and ToShortestSingle.
michael@0 348 MFBT_API bool ToShortestIeeeNumber(double value,
michael@0 349 StringBuilder* result_builder,
michael@0 350 DtoaMode mode) const;
michael@0 351
michael@0 352 // If the value is a special value (NaN or Infinity) constructs the
michael@0 353 // corresponding string using the configured infinity/nan-symbol.
michael@0 354 // If either of them is NULL or the value is not special then the
michael@0 355 // function returns false.
michael@0 356 MFBT_API bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
michael@0 357 // Constructs an exponential representation (i.e. 1.234e56).
michael@0 358 // The given exponent assumes a decimal point after the first decimal digit.
michael@0 359 MFBT_API void CreateExponentialRepresentation(const char* decimal_digits,
michael@0 360 int length,
michael@0 361 int exponent,
michael@0 362 StringBuilder* result_builder) const;
michael@0 363 // Creates a decimal representation (i.e 1234.5678).
michael@0 364 MFBT_API void CreateDecimalRepresentation(const char* decimal_digits,
michael@0 365 int length,
michael@0 366 int decimal_point,
michael@0 367 int digits_after_point,
michael@0 368 StringBuilder* result_builder) const;
michael@0 369
michael@0 370 const int flags_;
michael@0 371 const char* const infinity_symbol_;
michael@0 372 const char* const nan_symbol_;
michael@0 373 const char exponent_character_;
michael@0 374 const int decimal_in_shortest_low_;
michael@0 375 const int decimal_in_shortest_high_;
michael@0 376 const int max_leading_padding_zeroes_in_precision_mode_;
michael@0 377 const int max_trailing_padding_zeroes_in_precision_mode_;
michael@0 378
michael@0 379 DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
michael@0 380 };
michael@0 381
michael@0 382
michael@0 383 class StringToDoubleConverter {
michael@0 384 public:
michael@0 385 // Enumeration for allowing octals and ignoring junk when converting
michael@0 386 // strings to numbers.
michael@0 387 enum Flags {
michael@0 388 NO_FLAGS = 0,
michael@0 389 ALLOW_HEX = 1,
michael@0 390 ALLOW_OCTALS = 2,
michael@0 391 ALLOW_TRAILING_JUNK = 4,
michael@0 392 ALLOW_LEADING_SPACES = 8,
michael@0 393 ALLOW_TRAILING_SPACES = 16,
michael@0 394 ALLOW_SPACES_AFTER_SIGN = 32
michael@0 395 };
michael@0 396
michael@0 397 // Flags should be a bit-or combination of the possible Flags-enum.
michael@0 398 // - NO_FLAGS: no special flags.
michael@0 399 // - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
michael@0 400 // Ex: StringToDouble("0x1234") -> 4660.0
michael@0 401 // In StringToDouble("0x1234.56") the characters ".56" are trailing
michael@0 402 // junk. The result of the call is hence dependent on
michael@0 403 // the ALLOW_TRAILING_JUNK flag and/or the junk value.
michael@0 404 // With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
michael@0 405 // the string will not be parsed as "0" followed by junk.
michael@0 406 //
michael@0 407 // - ALLOW_OCTALS: recognizes the prefix "0" for octals:
michael@0 408 // If a sequence of octal digits starts with '0', then the number is
michael@0 409 // read as octal integer. Octal numbers may only be integers.
michael@0 410 // Ex: StringToDouble("01234") -> 668.0
michael@0 411 // StringToDouble("012349") -> 12349.0 // Not a sequence of octal
michael@0 412 // // digits.
michael@0 413 // In StringToDouble("01234.56") the characters ".56" are trailing
michael@0 414 // junk. The result of the call is hence dependent on
michael@0 415 // the ALLOW_TRAILING_JUNK flag and/or the junk value.
michael@0 416 // In StringToDouble("01234e56") the characters "e56" are trailing
michael@0 417 // junk, too.
michael@0 418 // - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
michael@0 419 // a double literal.
michael@0 420 // - ALLOW_LEADING_SPACES: skip over leading spaces.
michael@0 421 // - ALLOW_TRAILING_SPACES: ignore trailing spaces.
michael@0 422 // - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign.
michael@0 423 // Ex: StringToDouble("- 123.2") -> -123.2.
michael@0 424 // StringToDouble("+ 123.2") -> 123.2
michael@0 425 //
michael@0 426 // empty_string_value is returned when an empty string is given as input.
michael@0 427 // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
michael@0 428 // containing only spaces is converted to the 'empty_string_value', too.
michael@0 429 //
michael@0 430 // junk_string_value is returned when
michael@0 431 // a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
michael@0 432 // part of a double-literal) is found.
michael@0 433 // b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
michael@0 434 // double literal.
michael@0 435 //
michael@0 436 // infinity_symbol and nan_symbol are strings that are used to detect
michael@0 437 // inputs that represent infinity and NaN. They can be null, in which case
michael@0 438 // they are ignored.
michael@0 439 // The conversion routine first reads any possible signs. Then it compares the
michael@0 440 // following character of the input-string with the first character of
michael@0 441 // the infinity, and nan-symbol. If either matches, the function assumes, that
michael@0 442 // a match has been found, and expects the following input characters to match
michael@0 443 // the remaining characters of the special-value symbol.
michael@0 444 // This means that the following restrictions apply to special-value symbols:
michael@0 445 // - they must not start with signs ('+', or '-'),
michael@0 446 // - they must not have the same first character.
michael@0 447 // - they must not start with digits.
michael@0 448 //
michael@0 449 // Examples:
michael@0 450 // flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
michael@0 451 // empty_string_value = 0.0,
michael@0 452 // junk_string_value = NaN,
michael@0 453 // infinity_symbol = "infinity",
michael@0 454 // nan_symbol = "nan":
michael@0 455 // StringToDouble("0x1234") -> 4660.0.
michael@0 456 // StringToDouble("0x1234K") -> 4660.0.
michael@0 457 // StringToDouble("") -> 0.0 // empty_string_value.
michael@0 458 // StringToDouble(" ") -> NaN // junk_string_value.
michael@0 459 // StringToDouble(" 1") -> NaN // junk_string_value.
michael@0 460 // StringToDouble("0x") -> NaN // junk_string_value.
michael@0 461 // StringToDouble("-123.45") -> -123.45.
michael@0 462 // StringToDouble("--123.45") -> NaN // junk_string_value.
michael@0 463 // StringToDouble("123e45") -> 123e45.
michael@0 464 // StringToDouble("123E45") -> 123e45.
michael@0 465 // StringToDouble("123e+45") -> 123e45.
michael@0 466 // StringToDouble("123E-45") -> 123e-45.
michael@0 467 // StringToDouble("123e") -> 123.0 // trailing junk ignored.
michael@0 468 // StringToDouble("123e-") -> 123.0 // trailing junk ignored.
michael@0 469 // StringToDouble("+NaN") -> NaN // NaN string literal.
michael@0 470 // StringToDouble("-infinity") -> -inf. // infinity literal.
michael@0 471 // StringToDouble("Infinity") -> NaN // junk_string_value.
michael@0 472 //
michael@0 473 // flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
michael@0 474 // empty_string_value = 0.0,
michael@0 475 // junk_string_value = NaN,
michael@0 476 // infinity_symbol = NULL,
michael@0 477 // nan_symbol = NULL:
michael@0 478 // StringToDouble("0x1234") -> NaN // junk_string_value.
michael@0 479 // StringToDouble("01234") -> 668.0.
michael@0 480 // StringToDouble("") -> 0.0 // empty_string_value.
michael@0 481 // StringToDouble(" ") -> 0.0 // empty_string_value.
michael@0 482 // StringToDouble(" 1") -> 1.0
michael@0 483 // StringToDouble("0x") -> NaN // junk_string_value.
michael@0 484 // StringToDouble("0123e45") -> NaN // junk_string_value.
michael@0 485 // StringToDouble("01239E45") -> 1239e45.
michael@0 486 // StringToDouble("-infinity") -> NaN // junk_string_value.
michael@0 487 // StringToDouble("NaN") -> NaN // junk_string_value.
michael@0 488 StringToDoubleConverter(int flags,
michael@0 489 double empty_string_value,
michael@0 490 double junk_string_value,
michael@0 491 const char* infinity_symbol,
michael@0 492 const char* nan_symbol)
michael@0 493 : flags_(flags),
michael@0 494 empty_string_value_(empty_string_value),
michael@0 495 junk_string_value_(junk_string_value),
michael@0 496 infinity_symbol_(infinity_symbol),
michael@0 497 nan_symbol_(nan_symbol) {
michael@0 498 }
michael@0 499
michael@0 500 // Performs the conversion.
michael@0 501 // The output parameter 'processed_characters_count' is set to the number
michael@0 502 // of characters that have been processed to read the number.
michael@0 503 // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
michael@0 504 // in the 'processed_characters_count'. Trailing junk is never included.
michael@0 505 double StringToDouble(const char* buffer,
michael@0 506 int length,
michael@0 507 int* processed_characters_count) const {
michael@0 508 return StringToIeee(buffer, length, processed_characters_count, true);
michael@0 509 }
michael@0 510
michael@0 511 // Same as StringToDouble but reads a float.
michael@0 512 // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
michael@0 513 // due to potential double-rounding.
michael@0 514 float StringToFloat(const char* buffer,
michael@0 515 int length,
michael@0 516 int* processed_characters_count) const {
michael@0 517 return static_cast<float>(StringToIeee(buffer, length,
michael@0 518 processed_characters_count, false));
michael@0 519 }
michael@0 520
michael@0 521 private:
michael@0 522 const int flags_;
michael@0 523 const double empty_string_value_;
michael@0 524 const double junk_string_value_;
michael@0 525 const char* const infinity_symbol_;
michael@0 526 const char* const nan_symbol_;
michael@0 527
michael@0 528 double StringToIeee(const char* buffer,
michael@0 529 int length,
michael@0 530 int* processed_characters_count,
michael@0 531 bool read_as_double) const;
michael@0 532
michael@0 533 DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
michael@0 534 };
michael@0 535
michael@0 536 } // namespace double_conversion
michael@0 537
michael@0 538 #endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_

mercurial