mfbt/double-conversion/double-conversion.h

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 // Copyright 2012 the V8 project authors. All rights reserved.
     2 // Redistribution and use in source and binary forms, with or without
     3 // modification, are permitted provided that the following conditions are
     4 // met:
     5 //
     6 //     * Redistributions of source code must retain the above copyright
     7 //       notice, this list of conditions and the following disclaimer.
     8 //     * Redistributions in binary form must reproduce the above
     9 //       copyright notice, this list of conditions and the following
    10 //       disclaimer in the documentation and/or other materials provided
    11 //       with the distribution.
    12 //     * Neither the name of Google Inc. nor the names of its
    13 //       contributors may be used to endorse or promote products derived
    14 //       from this software without specific prior written permission.
    15 //
    16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    28 #ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
    29 #define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
    31 #include "mozilla/Types.h"
    32 #include "utils.h"
    34 namespace double_conversion {
    36 class DoubleToStringConverter {
    37  public:
    38   // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
    39   // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
    40   // function returns false.
    41   static const int kMaxFixedDigitsBeforePoint = 60;
    42   static const int kMaxFixedDigitsAfterPoint = 60;
    44   // When calling ToExponential with a requested_digits
    45   // parameter > kMaxExponentialDigits then the function returns false.
    46   static const int kMaxExponentialDigits = 120;
    48   // When calling ToPrecision with a requested_digits
    49   // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
    50   // then the function returns false.
    51   static const int kMinPrecisionDigits = 1;
    52   static const int kMaxPrecisionDigits = 120;
    54   enum Flags {
    55     NO_FLAGS = 0,
    56     EMIT_POSITIVE_EXPONENT_SIGN = 1,
    57     EMIT_TRAILING_DECIMAL_POINT = 2,
    58     EMIT_TRAILING_ZERO_AFTER_POINT = 4,
    59     UNIQUE_ZERO = 8
    60   };
    62   // Flags should be a bit-or combination of the possible Flags-enum.
    63   //  - NO_FLAGS: no special flags.
    64   //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
    65   //    form, emits a '+' for positive exponents. Example: 1.2e+2.
    66   //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
    67   //    converted into decimal format then a trailing decimal point is appended.
    68   //    Example: 2345.0 is converted to "2345.".
    69   //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
    70   //    emits a trailing '0'-character. This flag requires the
    71   //    EXMIT_TRAILING_DECIMAL_POINT flag.
    72   //    Example: 2345.0 is converted to "2345.0".
    73   //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
    74   //
    75   // Infinity symbol and nan_symbol provide the string representation for these
    76   // special values. If the string is NULL and the special value is encountered
    77   // then the conversion functions return false.
    78   //
    79   // The exponent_character is used in exponential representations. It is
    80   // usually 'e' or 'E'.
    81   //
    82   // When converting to the shortest representation the converter will
    83   // represent input numbers in decimal format if they are in the interval
    84   // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
    85   //    (lower boundary included, greater boundary excluded).
    86   // Example: with decimal_in_shortest_low = -6 and
    87   //               decimal_in_shortest_high = 21:
    88   //   ToShortest(0.000001)  -> "0.000001"
    89   //   ToShortest(0.0000001) -> "1e-7"
    90   //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
    91   //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
    92   //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
    93   //
    94   // When converting to precision mode the converter may add
    95   // max_leading_padding_zeroes before returning the number in exponential
    96   // format.
    97   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
    98   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
    99   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
   100   // Similarily the converter may add up to
   101   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
   102   // returning an exponential representation. A zero added by the
   103   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
   104   // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
   105   //   ToPrecision(230.0, 2) -> "230"
   106   //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
   107   //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
   108   DoubleToStringConverter(int flags,
   109                           const char* infinity_symbol,
   110                           const char* nan_symbol,
   111                           char exponent_character,
   112                           int decimal_in_shortest_low,
   113                           int decimal_in_shortest_high,
   114                           int max_leading_padding_zeroes_in_precision_mode,
   115                           int max_trailing_padding_zeroes_in_precision_mode)
   116       : flags_(flags),
   117         infinity_symbol_(infinity_symbol),
   118         nan_symbol_(nan_symbol),
   119         exponent_character_(exponent_character),
   120         decimal_in_shortest_low_(decimal_in_shortest_low),
   121         decimal_in_shortest_high_(decimal_in_shortest_high),
   122         max_leading_padding_zeroes_in_precision_mode_(
   123             max_leading_padding_zeroes_in_precision_mode),
   124         max_trailing_padding_zeroes_in_precision_mode_(
   125             max_trailing_padding_zeroes_in_precision_mode) {
   126     // When 'trailing zero after the point' is set, then 'trailing point'
   127     // must be set too.
   128     ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
   129         !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
   130   }
   132   // Returns a converter following the EcmaScript specification.
   133   static MFBT_API const DoubleToStringConverter& EcmaScriptConverter();
   135   // Computes the shortest string of digits that correctly represent the input
   136   // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
   137   // (see constructor) it then either returns a decimal representation, or an
   138   // exponential representation.
   139   // Example with decimal_in_shortest_low = -6,
   140   //              decimal_in_shortest_high = 21,
   141   //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
   142   //              EMIT_TRAILING_DECIMAL_POINT deactived:
   143   //   ToShortest(0.000001)  -> "0.000001"
   144   //   ToShortest(0.0000001) -> "1e-7"
   145   //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
   146   //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
   147   //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
   148   //
   149   // Note: the conversion may round the output if the returned string
   150   // is accurate enough to uniquely identify the input-number.
   151   // For example the most precise representation of the double 9e59 equals
   152   // "899999999999999918767229449717619953810131273674690656206848", but
   153   // the converter will return the shorter (but still correct) "9e59".
   154   //
   155   // Returns true if the conversion succeeds. The conversion always succeeds
   156   // except when the input value is special and no infinity_symbol or
   157   // nan_symbol has been given to the constructor.
   158   bool ToShortest(double value, StringBuilder* result_builder) const {
   159     return ToShortestIeeeNumber(value, result_builder, SHORTEST);
   160   }
   162   // Same as ToShortest, but for single-precision floats.
   163   bool ToShortestSingle(float value, StringBuilder* result_builder) const {
   164     return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
   165   }
   168   // Computes a decimal representation with a fixed number of digits after the
   169   // decimal point. The last emitted digit is rounded.
   170   //
   171   // Examples:
   172   //   ToFixed(3.12, 1) -> "3.1"
   173   //   ToFixed(3.1415, 3) -> "3.142"
   174   //   ToFixed(1234.56789, 4) -> "1234.5679"
   175   //   ToFixed(1.23, 5) -> "1.23000"
   176   //   ToFixed(0.1, 4) -> "0.1000"
   177   //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
   178   //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
   179   //   ToFixed(0.1, 17) -> "0.10000000000000001"
   180   //
   181   // If requested_digits equals 0, then the tail of the result depends on
   182   // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
   183   // Examples, for requested_digits == 0,
   184   //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
   185   //    - false and false: then 123.45 -> 123
   186   //                             0.678 -> 1
   187   //    - true and false: then 123.45 -> 123.
   188   //                            0.678 -> 1.
   189   //    - true and true: then 123.45 -> 123.0
   190   //                           0.678 -> 1.0
   191   //
   192   // Returns true if the conversion succeeds. The conversion always succeeds
   193   // except for the following cases:
   194   //   - the input value is special and no infinity_symbol or nan_symbol has
   195   //     been provided to the constructor,
   196   //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
   197   //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
   198   // The last two conditions imply that the result will never contain more than
   199   // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
   200   // (one additional character for the sign, and one for the decimal point).
   201   MFBT_API bool ToFixed(double value,
   202                int requested_digits,
   203                StringBuilder* result_builder) const;
   205   // Computes a representation in exponential format with requested_digits
   206   // after the decimal point. The last emitted digit is rounded.
   207   // If requested_digits equals -1, then the shortest exponential representation
   208   // is computed.
   209   //
   210   // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
   211   //               exponent_character set to 'e'.
   212   //   ToExponential(3.12, 1) -> "3.1e0"
   213   //   ToExponential(5.0, 3) -> "5.000e0"
   214   //   ToExponential(0.001, 2) -> "1.00e-3"
   215   //   ToExponential(3.1415, -1) -> "3.1415e0"
   216   //   ToExponential(3.1415, 4) -> "3.1415e0"
   217   //   ToExponential(3.1415, 3) -> "3.142e0"
   218   //   ToExponential(123456789000000, 3) -> "1.235e14"
   219   //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
   220   //   ToExponential(1000000000000000019884624838656.0, 32) ->
   221   //                     "1.00000000000000001988462483865600e30"
   222   //   ToExponential(1234, 0) -> "1e3"
   223   //
   224   // Returns true if the conversion succeeds. The conversion always succeeds
   225   // except for the following cases:
   226   //   - the input value is special and no infinity_symbol or nan_symbol has
   227   //     been provided to the constructor,
   228   //   - 'requested_digits' > kMaxExponentialDigits.
   229   // The last condition implies that the result will never contain more than
   230   // kMaxExponentialDigits + 8 characters (the sign, the digit before the
   231   // decimal point, the decimal point, the exponent character, the
   232   // exponent's sign, and at most 3 exponent digits).
   233   MFBT_API bool ToExponential(double value,
   234                      int requested_digits,
   235                      StringBuilder* result_builder) const;
   237   // Computes 'precision' leading digits of the given 'value' and returns them
   238   // either in exponential or decimal format, depending on
   239   // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
   240   // constructor).
   241   // The last computed digit is rounded.
   242   //
   243   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
   244   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
   245   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
   246   // Similarily the converter may add up to
   247   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
   248   // returning an exponential representation. A zero added by the
   249   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
   250   // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
   251   //   ToPrecision(230.0, 2) -> "230"
   252   //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
   253   //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
   254   // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
   255   //    EMIT_TRAILING_ZERO_AFTER_POINT:
   256   //   ToPrecision(123450.0, 6) -> "123450"
   257   //   ToPrecision(123450.0, 5) -> "123450"
   258   //   ToPrecision(123450.0, 4) -> "123500"
   259   //   ToPrecision(123450.0, 3) -> "123000"
   260   //   ToPrecision(123450.0, 2) -> "1.2e5"
   261   //
   262   // Returns true if the conversion succeeds. The conversion always succeeds
   263   // except for the following cases:
   264   //   - the input value is special and no infinity_symbol or nan_symbol has
   265   //     been provided to the constructor,
   266   //   - precision < kMinPericisionDigits
   267   //   - precision > kMaxPrecisionDigits
   268   // The last condition implies that the result will never contain more than
   269   // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
   270   // exponent character, the exponent's sign, and at most 3 exponent digits).
   271   MFBT_API bool ToPrecision(double value,
   272                    int precision,
   273                    bool* used_exponential_notation,
   274                    StringBuilder* result_builder) const;
   276   enum DtoaMode {
   277     // Produce the shortest correct representation.
   278     // For example the output of 0.299999999999999988897 is (the less accurate
   279     // but correct) 0.3.
   280     SHORTEST,
   281     // Same as SHORTEST, but for single-precision floats.
   282     SHORTEST_SINGLE,
   283     // Produce a fixed number of digits after the decimal point.
   284     // For instance fixed(0.1, 4) becomes 0.1000
   285     // If the input number is big, the output will be big.
   286     FIXED,
   287     // Fixed number of digits (independent of the decimal point).
   288     PRECISION
   289   };
   291   // The maximal number of digits that are needed to emit a double in base 10.
   292   // A higher precision can be achieved by using more digits, but the shortest
   293   // accurate representation of any double will never use more digits than
   294   // kBase10MaximalLength.
   295   // Note that DoubleToAscii null-terminates its input. So the given buffer
   296   // should be at least kBase10MaximalLength + 1 characters long.
   297   static const MFBT_DATA int kBase10MaximalLength = 17;
   299   // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
   300   // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
   301   // after it has been casted to a single-precision float. That is, in this
   302   // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
   303   //
   304   // The result should be interpreted as buffer * 10^(point-length).
   305   //
   306   // The output depends on the given mode:
   307   //  - SHORTEST: produce the least amount of digits for which the internal
   308   //   identity requirement is still satisfied. If the digits are printed
   309   //   (together with the correct exponent) then reading this number will give
   310   //   'v' again. The buffer will choose the representation that is closest to
   311   //   'v'. If there are two at the same distance, than the one farther away
   312   //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
   313   //   In this mode the 'requested_digits' parameter is ignored.
   314   //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
   315   //  - FIXED: produces digits necessary to print a given number with
   316   //   'requested_digits' digits after the decimal point. The produced digits
   317   //   might be too short in which case the caller has to fill the remainder
   318   //   with '0's.
   319   //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
   320   //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
   321   //   toFixed(0.15, 2) thus returns buffer="2", point=0.
   322   //   The returned buffer may contain digits that would be truncated from the
   323   //   shortest representation of the input.
   324   //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
   325   //   Even though the length of produced digits usually equals
   326   //   'requested_digits', the function is allowed to return fewer digits, in
   327   //   which case the caller has to fill the missing digits with '0's.
   328   //   Halfway cases are again rounded away from 0.
   329   // DoubleToAscii expects the given buffer to be big enough to hold all
   330   // digits and a terminating null-character. In SHORTEST-mode it expects a
   331   // buffer of at least kBase10MaximalLength + 1. In all other modes the
   332   // requested_digits parameter and the padding-zeroes limit the size of the
   333   // output. Don't forget the decimal point, the exponent character and the
   334   // terminating null-character when computing the maximal output size.
   335   // The given length is only used in debug mode to ensure the buffer is big
   336   // enough.
   337   static MFBT_API void DoubleToAscii(double v,
   338                             DtoaMode mode,
   339                             int requested_digits,
   340                             char* buffer,
   341                             int buffer_length,
   342                             bool* sign,
   343                             int* length,
   344                             int* point);
   346  private:
   347   // Implementation for ToShortest and ToShortestSingle.
   348   MFBT_API bool ToShortestIeeeNumber(double value,
   349                             StringBuilder* result_builder,
   350                             DtoaMode mode) const;
   352   // If the value is a special value (NaN or Infinity) constructs the
   353   // corresponding string using the configured infinity/nan-symbol.
   354   // If either of them is NULL or the value is not special then the
   355   // function returns false.
   356   MFBT_API bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
   357   // Constructs an exponential representation (i.e. 1.234e56).
   358   // The given exponent assumes a decimal point after the first decimal digit.
   359   MFBT_API void CreateExponentialRepresentation(const char* decimal_digits,
   360                                        int length,
   361                                        int exponent,
   362                                        StringBuilder* result_builder) const;
   363   // Creates a decimal representation (i.e 1234.5678).
   364   MFBT_API void CreateDecimalRepresentation(const char* decimal_digits,
   365                                    int length,
   366                                    int decimal_point,
   367                                    int digits_after_point,
   368                                    StringBuilder* result_builder) const;
   370   const int flags_;
   371   const char* const infinity_symbol_;
   372   const char* const nan_symbol_;
   373   const char exponent_character_;
   374   const int decimal_in_shortest_low_;
   375   const int decimal_in_shortest_high_;
   376   const int max_leading_padding_zeroes_in_precision_mode_;
   377   const int max_trailing_padding_zeroes_in_precision_mode_;
   379   DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
   380 };
   383 class StringToDoubleConverter {
   384  public:
   385   // Enumeration for allowing octals and ignoring junk when converting
   386   // strings to numbers.
   387   enum Flags {
   388     NO_FLAGS = 0,
   389     ALLOW_HEX = 1,
   390     ALLOW_OCTALS = 2,
   391     ALLOW_TRAILING_JUNK = 4,
   392     ALLOW_LEADING_SPACES = 8,
   393     ALLOW_TRAILING_SPACES = 16,
   394     ALLOW_SPACES_AFTER_SIGN = 32
   395   };
   397   // Flags should be a bit-or combination of the possible Flags-enum.
   398   //  - NO_FLAGS: no special flags.
   399   //  - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
   400   //      Ex: StringToDouble("0x1234") -> 4660.0
   401   //          In StringToDouble("0x1234.56") the characters ".56" are trailing
   402   //          junk. The result of the call is hence dependent on
   403   //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
   404   //      With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
   405   //      the string will not be parsed as "0" followed by junk.
   406   //
   407   //  - ALLOW_OCTALS: recognizes the prefix "0" for octals:
   408   //      If a sequence of octal digits starts with '0', then the number is
   409   //      read as octal integer. Octal numbers may only be integers.
   410   //      Ex: StringToDouble("01234") -> 668.0
   411   //          StringToDouble("012349") -> 12349.0  // Not a sequence of octal
   412   //                                               // digits.
   413   //          In StringToDouble("01234.56") the characters ".56" are trailing
   414   //          junk. The result of the call is hence dependent on
   415   //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
   416   //          In StringToDouble("01234e56") the characters "e56" are trailing
   417   //          junk, too.
   418   //  - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
   419   //      a double literal.
   420   //  - ALLOW_LEADING_SPACES: skip over leading spaces.
   421   //  - ALLOW_TRAILING_SPACES: ignore trailing spaces.
   422   //  - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign.
   423   //       Ex: StringToDouble("-   123.2") -> -123.2.
   424   //           StringToDouble("+   123.2") -> 123.2
   425   //
   426   // empty_string_value is returned when an empty string is given as input.
   427   // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
   428   // containing only spaces is converted to the 'empty_string_value', too.
   429   //
   430   // junk_string_value is returned when
   431   //  a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
   432   //     part of a double-literal) is found.
   433   //  b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
   434   //     double literal.
   435   //
   436   // infinity_symbol and nan_symbol are strings that are used to detect
   437   // inputs that represent infinity and NaN. They can be null, in which case
   438   // they are ignored.
   439   // The conversion routine first reads any possible signs. Then it compares the
   440   // following character of the input-string with the first character of
   441   // the infinity, and nan-symbol. If either matches, the function assumes, that
   442   // a match has been found, and expects the following input characters to match
   443   // the remaining characters of the special-value symbol.
   444   // This means that the following restrictions apply to special-value symbols:
   445   //  - they must not start with signs ('+', or '-'),
   446   //  - they must not have the same first character.
   447   //  - they must not start with digits.
   448   //
   449   // Examples:
   450   //  flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
   451   //  empty_string_value = 0.0,
   452   //  junk_string_value = NaN,
   453   //  infinity_symbol = "infinity",
   454   //  nan_symbol = "nan":
   455   //    StringToDouble("0x1234") -> 4660.0.
   456   //    StringToDouble("0x1234K") -> 4660.0.
   457   //    StringToDouble("") -> 0.0  // empty_string_value.
   458   //    StringToDouble(" ") -> NaN  // junk_string_value.
   459   //    StringToDouble(" 1") -> NaN  // junk_string_value.
   460   //    StringToDouble("0x") -> NaN  // junk_string_value.
   461   //    StringToDouble("-123.45") -> -123.45.
   462   //    StringToDouble("--123.45") -> NaN  // junk_string_value.
   463   //    StringToDouble("123e45") -> 123e45.
   464   //    StringToDouble("123E45") -> 123e45.
   465   //    StringToDouble("123e+45") -> 123e45.
   466   //    StringToDouble("123E-45") -> 123e-45.
   467   //    StringToDouble("123e") -> 123.0  // trailing junk ignored.
   468   //    StringToDouble("123e-") -> 123.0  // trailing junk ignored.
   469   //    StringToDouble("+NaN") -> NaN  // NaN string literal.
   470   //    StringToDouble("-infinity") -> -inf.  // infinity literal.
   471   //    StringToDouble("Infinity") -> NaN  // junk_string_value.
   472   //
   473   //  flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
   474   //  empty_string_value = 0.0,
   475   //  junk_string_value = NaN,
   476   //  infinity_symbol = NULL,
   477   //  nan_symbol = NULL:
   478   //    StringToDouble("0x1234") -> NaN  // junk_string_value.
   479   //    StringToDouble("01234") -> 668.0.
   480   //    StringToDouble("") -> 0.0  // empty_string_value.
   481   //    StringToDouble(" ") -> 0.0  // empty_string_value.
   482   //    StringToDouble(" 1") -> 1.0
   483   //    StringToDouble("0x") -> NaN  // junk_string_value.
   484   //    StringToDouble("0123e45") -> NaN  // junk_string_value.
   485   //    StringToDouble("01239E45") -> 1239e45.
   486   //    StringToDouble("-infinity") -> NaN  // junk_string_value.
   487   //    StringToDouble("NaN") -> NaN  // junk_string_value.
   488   StringToDoubleConverter(int flags,
   489                           double empty_string_value,
   490                           double junk_string_value,
   491                           const char* infinity_symbol,
   492                           const char* nan_symbol)
   493       : flags_(flags),
   494         empty_string_value_(empty_string_value),
   495         junk_string_value_(junk_string_value),
   496         infinity_symbol_(infinity_symbol),
   497         nan_symbol_(nan_symbol) {
   498   }
   500   // Performs the conversion.
   501   // The output parameter 'processed_characters_count' is set to the number
   502   // of characters that have been processed to read the number.
   503   // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
   504   // in the 'processed_characters_count'. Trailing junk is never included.
   505   double StringToDouble(const char* buffer,
   506                         int length,
   507                         int* processed_characters_count) const {
   508     return StringToIeee(buffer, length, processed_characters_count, true);
   509   }
   511   // Same as StringToDouble but reads a float.
   512   // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
   513   // due to potential double-rounding.
   514   float StringToFloat(const char* buffer,
   515                       int length,
   516                       int* processed_characters_count) const {
   517     return static_cast<float>(StringToIeee(buffer, length,
   518                                            processed_characters_count, false));
   519   }
   521  private:
   522   const int flags_;
   523   const double empty_string_value_;
   524   const double junk_string_value_;
   525   const char* const infinity_symbol_;
   526   const char* const nan_symbol_;
   528   double StringToIeee(const char* buffer,
   529                       int length,
   530                       int* processed_characters_count,
   531                       bool read_as_double) const;
   533   DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
   534 };
   536 }  // namespace double_conversion
   538 #endif  // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_

mercurial