Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | // Copyright 2012 the V8 project authors. All rights reserved. |
michael@0 | 2 | // Redistribution and use in source and binary forms, with or without |
michael@0 | 3 | // modification, are permitted provided that the following conditions are |
michael@0 | 4 | // met: |
michael@0 | 5 | // |
michael@0 | 6 | // * Redistributions of source code must retain the above copyright |
michael@0 | 7 | // notice, this list of conditions and the following disclaimer. |
michael@0 | 8 | // * Redistributions in binary form must reproduce the above |
michael@0 | 9 | // copyright notice, this list of conditions and the following |
michael@0 | 10 | // disclaimer in the documentation and/or other materials provided |
michael@0 | 11 | // with the distribution. |
michael@0 | 12 | // * Neither the name of Google Inc. nor the names of its |
michael@0 | 13 | // contributors may be used to endorse or promote products derived |
michael@0 | 14 | // from this software without specific prior written permission. |
michael@0 | 15 | // |
michael@0 | 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
michael@0 | 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
michael@0 | 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
michael@0 | 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
michael@0 | 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
michael@0 | 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
michael@0 | 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
michael@0 | 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
michael@0 | 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
michael@0 | 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
michael@0 | 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
michael@0 | 27 | |
michael@0 | 28 | #include "fast-dtoa.h" |
michael@0 | 29 | |
michael@0 | 30 | #include "cached-powers.h" |
michael@0 | 31 | #include "diy-fp.h" |
michael@0 | 32 | #include "ieee.h" |
michael@0 | 33 | |
michael@0 | 34 | namespace double_conversion { |
michael@0 | 35 | |
michael@0 | 36 | // The minimal and maximal target exponent define the range of w's binary |
michael@0 | 37 | // exponent, where 'w' is the result of multiplying the input by a cached power |
michael@0 | 38 | // of ten. |
michael@0 | 39 | // |
michael@0 | 40 | // A different range might be chosen on a different platform, to optimize digit |
michael@0 | 41 | // generation, but a smaller range requires more powers of ten to be cached. |
michael@0 | 42 | static const int kMinimalTargetExponent = -60; |
michael@0 | 43 | static const int kMaximalTargetExponent = -32; |
michael@0 | 44 | |
michael@0 | 45 | |
michael@0 | 46 | // Adjusts the last digit of the generated number, and screens out generated |
michael@0 | 47 | // solutions that may be inaccurate. A solution may be inaccurate if it is |
michael@0 | 48 | // outside the safe interval, or if we cannot prove that it is closer to the |
michael@0 | 49 | // input than a neighboring representation of the same length. |
michael@0 | 50 | // |
michael@0 | 51 | // Input: * buffer containing the digits of too_high / 10^kappa |
michael@0 | 52 | // * the buffer's length |
michael@0 | 53 | // * distance_too_high_w == (too_high - w).f() * unit |
michael@0 | 54 | // * unsafe_interval == (too_high - too_low).f() * unit |
michael@0 | 55 | // * rest = (too_high - buffer * 10^kappa).f() * unit |
michael@0 | 56 | // * ten_kappa = 10^kappa * unit |
michael@0 | 57 | // * unit = the common multiplier |
michael@0 | 58 | // Output: returns true if the buffer is guaranteed to contain the closest |
michael@0 | 59 | // representable number to the input. |
michael@0 | 60 | // Modifies the generated digits in the buffer to approach (round towards) w. |
michael@0 | 61 | static bool RoundWeed(Vector<char> buffer, |
michael@0 | 62 | int length, |
michael@0 | 63 | uint64_t distance_too_high_w, |
michael@0 | 64 | uint64_t unsafe_interval, |
michael@0 | 65 | uint64_t rest, |
michael@0 | 66 | uint64_t ten_kappa, |
michael@0 | 67 | uint64_t unit) { |
michael@0 | 68 | uint64_t small_distance = distance_too_high_w - unit; |
michael@0 | 69 | uint64_t big_distance = distance_too_high_w + unit; |
michael@0 | 70 | // Let w_low = too_high - big_distance, and |
michael@0 | 71 | // w_high = too_high - small_distance. |
michael@0 | 72 | // Note: w_low < w < w_high |
michael@0 | 73 | // |
michael@0 | 74 | // The real w (* unit) must lie somewhere inside the interval |
michael@0 | 75 | // ]w_low; w_high[ (often written as "(w_low; w_high)") |
michael@0 | 76 | |
michael@0 | 77 | // Basically the buffer currently contains a number in the unsafe interval |
michael@0 | 78 | // ]too_low; too_high[ with too_low < w < too_high |
michael@0 | 79 | // |
michael@0 | 80 | // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
michael@0 | 81 | // ^v 1 unit ^ ^ ^ ^ |
michael@0 | 82 | // boundary_high --------------------- . . . . |
michael@0 | 83 | // ^v 1 unit . . . . |
michael@0 | 84 | // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . |
michael@0 | 85 | // . . ^ . . |
michael@0 | 86 | // . big_distance . . . |
michael@0 | 87 | // . . . . rest |
michael@0 | 88 | // small_distance . . . . |
michael@0 | 89 | // v . . . . |
michael@0 | 90 | // w_high - - - - - - - - - - - - - - - - - - . . . . |
michael@0 | 91 | // ^v 1 unit . . . . |
michael@0 | 92 | // w ---------------------------------------- . . . . |
michael@0 | 93 | // ^v 1 unit v . . . |
michael@0 | 94 | // w_low - - - - - - - - - - - - - - - - - - - - - . . . |
michael@0 | 95 | // . . v |
michael@0 | 96 | // buffer --------------------------------------------------+-------+-------- |
michael@0 | 97 | // . . |
michael@0 | 98 | // safe_interval . |
michael@0 | 99 | // v . |
michael@0 | 100 | // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . |
michael@0 | 101 | // ^v 1 unit . |
michael@0 | 102 | // boundary_low ------------------------- unsafe_interval |
michael@0 | 103 | // ^v 1 unit v |
michael@0 | 104 | // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
michael@0 | 105 | // |
michael@0 | 106 | // |
michael@0 | 107 | // Note that the value of buffer could lie anywhere inside the range too_low |
michael@0 | 108 | // to too_high. |
michael@0 | 109 | // |
michael@0 | 110 | // boundary_low, boundary_high and w are approximations of the real boundaries |
michael@0 | 111 | // and v (the input number). They are guaranteed to be precise up to one unit. |
michael@0 | 112 | // In fact the error is guaranteed to be strictly less than one unit. |
michael@0 | 113 | // |
michael@0 | 114 | // Anything that lies outside the unsafe interval is guaranteed not to round |
michael@0 | 115 | // to v when read again. |
michael@0 | 116 | // Anything that lies inside the safe interval is guaranteed to round to v |
michael@0 | 117 | // when read again. |
michael@0 | 118 | // If the number inside the buffer lies inside the unsafe interval but not |
michael@0 | 119 | // inside the safe interval then we simply do not know and bail out (returning |
michael@0 | 120 | // false). |
michael@0 | 121 | // |
michael@0 | 122 | // Similarly we have to take into account the imprecision of 'w' when finding |
michael@0 | 123 | // the closest representation of 'w'. If we have two potential |
michael@0 | 124 | // representations, and one is closer to both w_low and w_high, then we know |
michael@0 | 125 | // it is closer to the actual value v. |
michael@0 | 126 | // |
michael@0 | 127 | // By generating the digits of too_high we got the largest (closest to |
michael@0 | 128 | // too_high) buffer that is still in the unsafe interval. In the case where |
michael@0 | 129 | // w_high < buffer < too_high we try to decrement the buffer. |
michael@0 | 130 | // This way the buffer approaches (rounds towards) w. |
michael@0 | 131 | // There are 3 conditions that stop the decrementation process: |
michael@0 | 132 | // 1) the buffer is already below w_high |
michael@0 | 133 | // 2) decrementing the buffer would make it leave the unsafe interval |
michael@0 | 134 | // 3) decrementing the buffer would yield a number below w_high and farther |
michael@0 | 135 | // away than the current number. In other words: |
michael@0 | 136 | // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high |
michael@0 | 137 | // Instead of using the buffer directly we use its distance to too_high. |
michael@0 | 138 | // Conceptually rest ~= too_high - buffer |
michael@0 | 139 | // We need to do the following tests in this order to avoid over- and |
michael@0 | 140 | // underflows. |
michael@0 | 141 | ASSERT(rest <= unsafe_interval); |
michael@0 | 142 | while (rest < small_distance && // Negated condition 1 |
michael@0 | 143 | unsafe_interval - rest >= ten_kappa && // Negated condition 2 |
michael@0 | 144 | (rest + ten_kappa < small_distance || // buffer{-1} > w_high |
michael@0 | 145 | small_distance - rest >= rest + ten_kappa - small_distance)) { |
michael@0 | 146 | buffer[length - 1]--; |
michael@0 | 147 | rest += ten_kappa; |
michael@0 | 148 | } |
michael@0 | 149 | |
michael@0 | 150 | // We have approached w+ as much as possible. We now test if approaching w- |
michael@0 | 151 | // would require changing the buffer. If yes, then we have two possible |
michael@0 | 152 | // representations close to w, but we cannot decide which one is closer. |
michael@0 | 153 | if (rest < big_distance && |
michael@0 | 154 | unsafe_interval - rest >= ten_kappa && |
michael@0 | 155 | (rest + ten_kappa < big_distance || |
michael@0 | 156 | big_distance - rest > rest + ten_kappa - big_distance)) { |
michael@0 | 157 | return false; |
michael@0 | 158 | } |
michael@0 | 159 | |
michael@0 | 160 | // Weeding test. |
michael@0 | 161 | // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] |
michael@0 | 162 | // Since too_low = too_high - unsafe_interval this is equivalent to |
michael@0 | 163 | // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] |
michael@0 | 164 | // Conceptually we have: rest ~= too_high - buffer |
michael@0 | 165 | return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); |
michael@0 | 166 | } |
michael@0 | 167 | |
michael@0 | 168 | |
michael@0 | 169 | // Rounds the buffer upwards if the result is closer to v by possibly adding |
michael@0 | 170 | // 1 to the buffer. If the precision of the calculation is not sufficient to |
michael@0 | 171 | // round correctly, return false. |
michael@0 | 172 | // The rounding might shift the whole buffer in which case the kappa is |
michael@0 | 173 | // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. |
michael@0 | 174 | // |
michael@0 | 175 | // If 2*rest > ten_kappa then the buffer needs to be round up. |
michael@0 | 176 | // rest can have an error of +/- 1 unit. This function accounts for the |
michael@0 | 177 | // imprecision and returns false, if the rounding direction cannot be |
michael@0 | 178 | // unambiguously determined. |
michael@0 | 179 | // |
michael@0 | 180 | // Precondition: rest < ten_kappa. |
michael@0 | 181 | static bool RoundWeedCounted(Vector<char> buffer, |
michael@0 | 182 | int length, |
michael@0 | 183 | uint64_t rest, |
michael@0 | 184 | uint64_t ten_kappa, |
michael@0 | 185 | uint64_t unit, |
michael@0 | 186 | int* kappa) { |
michael@0 | 187 | ASSERT(rest < ten_kappa); |
michael@0 | 188 | // The following tests are done in a specific order to avoid overflows. They |
michael@0 | 189 | // will work correctly with any uint64 values of rest < ten_kappa and unit. |
michael@0 | 190 | // |
michael@0 | 191 | // If the unit is too big, then we don't know which way to round. For example |
michael@0 | 192 | // a unit of 50 means that the real number lies within rest +/- 50. If |
michael@0 | 193 | // 10^kappa == 40 then there is no way to tell which way to round. |
michael@0 | 194 | if (unit >= ten_kappa) return false; |
michael@0 | 195 | // Even if unit is just half the size of 10^kappa we are already completely |
michael@0 | 196 | // lost. (And after the previous test we know that the expression will not |
michael@0 | 197 | // over/underflow.) |
michael@0 | 198 | if (ten_kappa - unit <= unit) return false; |
michael@0 | 199 | // If 2 * (rest + unit) <= 10^kappa we can safely round down. |
michael@0 | 200 | if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { |
michael@0 | 201 | return true; |
michael@0 | 202 | } |
michael@0 | 203 | // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. |
michael@0 | 204 | if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { |
michael@0 | 205 | // Increment the last digit recursively until we find a non '9' digit. |
michael@0 | 206 | buffer[length - 1]++; |
michael@0 | 207 | for (int i = length - 1; i > 0; --i) { |
michael@0 | 208 | if (buffer[i] != '0' + 10) break; |
michael@0 | 209 | buffer[i] = '0'; |
michael@0 | 210 | buffer[i - 1]++; |
michael@0 | 211 | } |
michael@0 | 212 | // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the |
michael@0 | 213 | // exception of the first digit all digits are now '0'. Simply switch the |
michael@0 | 214 | // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and |
michael@0 | 215 | // the power (the kappa) is increased. |
michael@0 | 216 | if (buffer[0] == '0' + 10) { |
michael@0 | 217 | buffer[0] = '1'; |
michael@0 | 218 | (*kappa) += 1; |
michael@0 | 219 | } |
michael@0 | 220 | return true; |
michael@0 | 221 | } |
michael@0 | 222 | return false; |
michael@0 | 223 | } |
michael@0 | 224 | |
michael@0 | 225 | // Returns the biggest power of ten that is less than or equal to the given |
michael@0 | 226 | // number. We furthermore receive the maximum number of bits 'number' has. |
michael@0 | 227 | // |
michael@0 | 228 | // Returns power == 10^(exponent_plus_one-1) such that |
michael@0 | 229 | // power <= number < power * 10. |
michael@0 | 230 | // If number_bits == 0 then 0^(0-1) is returned. |
michael@0 | 231 | // The number of bits must be <= 32. |
michael@0 | 232 | // Precondition: number < (1 << (number_bits + 1)). |
michael@0 | 233 | |
michael@0 | 234 | // Inspired by the method for finding an integer log base 10 from here: |
michael@0 | 235 | // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 |
michael@0 | 236 | static unsigned int const kSmallPowersOfTen[] = |
michael@0 | 237 | {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, |
michael@0 | 238 | 1000000000}; |
michael@0 | 239 | |
michael@0 | 240 | static void BiggestPowerTen(uint32_t number, |
michael@0 | 241 | int number_bits, |
michael@0 | 242 | uint32_t* power, |
michael@0 | 243 | int* exponent_plus_one) { |
michael@0 | 244 | ASSERT(number < (1u << (number_bits + 1))); |
michael@0 | 245 | // 1233/4096 is approximately 1/lg(10). |
michael@0 | 246 | int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12); |
michael@0 | 247 | // We increment to skip over the first entry in the kPowersOf10 table. |
michael@0 | 248 | // Note: kPowersOf10[i] == 10^(i-1). |
michael@0 | 249 | exponent_plus_one_guess++; |
michael@0 | 250 | // We don't have any guarantees that 2^number_bits <= number. |
michael@0 | 251 | // TODO(floitsch): can we change the 'while' into an 'if'? We definitely see |
michael@0 | 252 | // number < (2^number_bits - 1), but I haven't encountered |
michael@0 | 253 | // number < (2^number_bits - 2) yet. |
michael@0 | 254 | while (number < kSmallPowersOfTen[exponent_plus_one_guess]) { |
michael@0 | 255 | exponent_plus_one_guess--; |
michael@0 | 256 | } |
michael@0 | 257 | *power = kSmallPowersOfTen[exponent_plus_one_guess]; |
michael@0 | 258 | *exponent_plus_one = exponent_plus_one_guess; |
michael@0 | 259 | } |
michael@0 | 260 | |
michael@0 | 261 | // Generates the digits of input number w. |
michael@0 | 262 | // w is a floating-point number (DiyFp), consisting of a significand and an |
michael@0 | 263 | // exponent. Its exponent is bounded by kMinimalTargetExponent and |
michael@0 | 264 | // kMaximalTargetExponent. |
michael@0 | 265 | // Hence -60 <= w.e() <= -32. |
michael@0 | 266 | // |
michael@0 | 267 | // Returns false if it fails, in which case the generated digits in the buffer |
michael@0 | 268 | // should not be used. |
michael@0 | 269 | // Preconditions: |
michael@0 | 270 | // * low, w and high are correct up to 1 ulp (unit in the last place). That |
michael@0 | 271 | // is, their error must be less than a unit of their last digits. |
michael@0 | 272 | // * low.e() == w.e() == high.e() |
michael@0 | 273 | // * low < w < high, and taking into account their error: low~ <= high~ |
michael@0 | 274 | // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent |
michael@0 | 275 | // Postconditions: returns false if procedure fails. |
michael@0 | 276 | // otherwise: |
michael@0 | 277 | // * buffer is not null-terminated, but len contains the number of digits. |
michael@0 | 278 | // * buffer contains the shortest possible decimal digit-sequence |
michael@0 | 279 | // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the |
michael@0 | 280 | // correct values of low and high (without their error). |
michael@0 | 281 | // * if more than one decimal representation gives the minimal number of |
michael@0 | 282 | // decimal digits then the one closest to W (where W is the correct value |
michael@0 | 283 | // of w) is chosen. |
michael@0 | 284 | // Remark: this procedure takes into account the imprecision of its input |
michael@0 | 285 | // numbers. If the precision is not enough to guarantee all the postconditions |
michael@0 | 286 | // then false is returned. This usually happens rarely (~0.5%). |
michael@0 | 287 | // |
michael@0 | 288 | // Say, for the sake of example, that |
michael@0 | 289 | // w.e() == -48, and w.f() == 0x1234567890abcdef |
michael@0 | 290 | // w's value can be computed by w.f() * 2^w.e() |
michael@0 | 291 | // We can obtain w's integral digits by simply shifting w.f() by -w.e(). |
michael@0 | 292 | // -> w's integral part is 0x1234 |
michael@0 | 293 | // w's fractional part is therefore 0x567890abcdef. |
michael@0 | 294 | // Printing w's integral part is easy (simply print 0x1234 in decimal). |
michael@0 | 295 | // In order to print its fraction we repeatedly multiply the fraction by 10 and |
michael@0 | 296 | // get each digit. Example the first digit after the point would be computed by |
michael@0 | 297 | // (0x567890abcdef * 10) >> 48. -> 3 |
michael@0 | 298 | // The whole thing becomes slightly more complicated because we want to stop |
michael@0 | 299 | // once we have enough digits. That is, once the digits inside the buffer |
michael@0 | 300 | // represent 'w' we can stop. Everything inside the interval low - high |
michael@0 | 301 | // represents w. However we have to pay attention to low, high and w's |
michael@0 | 302 | // imprecision. |
michael@0 | 303 | static bool DigitGen(DiyFp low, |
michael@0 | 304 | DiyFp w, |
michael@0 | 305 | DiyFp high, |
michael@0 | 306 | Vector<char> buffer, |
michael@0 | 307 | int* length, |
michael@0 | 308 | int* kappa) { |
michael@0 | 309 | ASSERT(low.e() == w.e() && w.e() == high.e()); |
michael@0 | 310 | ASSERT(low.f() + 1 <= high.f() - 1); |
michael@0 | 311 | ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
michael@0 | 312 | // low, w and high are imprecise, but by less than one ulp (unit in the last |
michael@0 | 313 | // place). |
michael@0 | 314 | // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that |
michael@0 | 315 | // the new numbers are outside of the interval we want the final |
michael@0 | 316 | // representation to lie in. |
michael@0 | 317 | // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield |
michael@0 | 318 | // numbers that are certain to lie in the interval. We will use this fact |
michael@0 | 319 | // later on. |
michael@0 | 320 | // We will now start by generating the digits within the uncertain |
michael@0 | 321 | // interval. Later we will weed out representations that lie outside the safe |
michael@0 | 322 | // interval and thus _might_ lie outside the correct interval. |
michael@0 | 323 | uint64_t unit = 1; |
michael@0 | 324 | DiyFp too_low = DiyFp(low.f() - unit, low.e()); |
michael@0 | 325 | DiyFp too_high = DiyFp(high.f() + unit, high.e()); |
michael@0 | 326 | // too_low and too_high are guaranteed to lie outside the interval we want the |
michael@0 | 327 | // generated number in. |
michael@0 | 328 | DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); |
michael@0 | 329 | // We now cut the input number into two parts: the integral digits and the |
michael@0 | 330 | // fractionals. We will not write any decimal separator though, but adapt |
michael@0 | 331 | // kappa instead. |
michael@0 | 332 | // Reminder: we are currently computing the digits (stored inside the buffer) |
michael@0 | 333 | // such that: too_low < buffer * 10^kappa < too_high |
michael@0 | 334 | // We use too_high for the digit_generation and stop as soon as possible. |
michael@0 | 335 | // If we stop early we effectively round down. |
michael@0 | 336 | DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); |
michael@0 | 337 | // Division by one is a shift. |
michael@0 | 338 | uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); |
michael@0 | 339 | // Modulo by one is an and. |
michael@0 | 340 | uint64_t fractionals = too_high.f() & (one.f() - 1); |
michael@0 | 341 | uint32_t divisor; |
michael@0 | 342 | int divisor_exponent_plus_one; |
michael@0 | 343 | BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), |
michael@0 | 344 | &divisor, &divisor_exponent_plus_one); |
michael@0 | 345 | *kappa = divisor_exponent_plus_one; |
michael@0 | 346 | *length = 0; |
michael@0 | 347 | // Loop invariant: buffer = too_high / 10^kappa (integer division) |
michael@0 | 348 | // The invariant holds for the first iteration: kappa has been initialized |
michael@0 | 349 | // with the divisor exponent + 1. And the divisor is the biggest power of ten |
michael@0 | 350 | // that is smaller than integrals. |
michael@0 | 351 | while (*kappa > 0) { |
michael@0 | 352 | int digit = integrals / divisor; |
michael@0 | 353 | buffer[*length] = '0' + digit; |
michael@0 | 354 | (*length)++; |
michael@0 | 355 | integrals %= divisor; |
michael@0 | 356 | (*kappa)--; |
michael@0 | 357 | // Note that kappa now equals the exponent of the divisor and that the |
michael@0 | 358 | // invariant thus holds again. |
michael@0 | 359 | uint64_t rest = |
michael@0 | 360 | (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; |
michael@0 | 361 | // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) |
michael@0 | 362 | // Reminder: unsafe_interval.e() == one.e() |
michael@0 | 363 | if (rest < unsafe_interval.f()) { |
michael@0 | 364 | // Rounding down (by not emitting the remaining digits) yields a number |
michael@0 | 365 | // that lies within the unsafe interval. |
michael@0 | 366 | return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), |
michael@0 | 367 | unsafe_interval.f(), rest, |
michael@0 | 368 | static_cast<uint64_t>(divisor) << -one.e(), unit); |
michael@0 | 369 | } |
michael@0 | 370 | divisor /= 10; |
michael@0 | 371 | } |
michael@0 | 372 | |
michael@0 | 373 | // The integrals have been generated. We are at the point of the decimal |
michael@0 | 374 | // separator. In the following loop we simply multiply the remaining digits by |
michael@0 | 375 | // 10 and divide by one. We just need to pay attention to multiply associated |
michael@0 | 376 | // data (like the interval or 'unit'), too. |
michael@0 | 377 | // Note that the multiplication by 10 does not overflow, because w.e >= -60 |
michael@0 | 378 | // and thus one.e >= -60. |
michael@0 | 379 | ASSERT(one.e() >= -60); |
michael@0 | 380 | ASSERT(fractionals < one.f()); |
michael@0 | 381 | ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
michael@0 | 382 | while (true) { |
michael@0 | 383 | fractionals *= 10; |
michael@0 | 384 | unit *= 10; |
michael@0 | 385 | unsafe_interval.set_f(unsafe_interval.f() * 10); |
michael@0 | 386 | // Integer division by one. |
michael@0 | 387 | int digit = static_cast<int>(fractionals >> -one.e()); |
michael@0 | 388 | buffer[*length] = '0' + digit; |
michael@0 | 389 | (*length)++; |
michael@0 | 390 | fractionals &= one.f() - 1; // Modulo by one. |
michael@0 | 391 | (*kappa)--; |
michael@0 | 392 | if (fractionals < unsafe_interval.f()) { |
michael@0 | 393 | return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, |
michael@0 | 394 | unsafe_interval.f(), fractionals, one.f(), unit); |
michael@0 | 395 | } |
michael@0 | 396 | } |
michael@0 | 397 | } |
michael@0 | 398 | |
michael@0 | 399 | |
michael@0 | 400 | |
michael@0 | 401 | // Generates (at most) requested_digits digits of input number w. |
michael@0 | 402 | // w is a floating-point number (DiyFp), consisting of a significand and an |
michael@0 | 403 | // exponent. Its exponent is bounded by kMinimalTargetExponent and |
michael@0 | 404 | // kMaximalTargetExponent. |
michael@0 | 405 | // Hence -60 <= w.e() <= -32. |
michael@0 | 406 | // |
michael@0 | 407 | // Returns false if it fails, in which case the generated digits in the buffer |
michael@0 | 408 | // should not be used. |
michael@0 | 409 | // Preconditions: |
michael@0 | 410 | // * w is correct up to 1 ulp (unit in the last place). That |
michael@0 | 411 | // is, its error must be strictly less than a unit of its last digit. |
michael@0 | 412 | // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent |
michael@0 | 413 | // |
michael@0 | 414 | // Postconditions: returns false if procedure fails. |
michael@0 | 415 | // otherwise: |
michael@0 | 416 | // * buffer is not null-terminated, but length contains the number of |
michael@0 | 417 | // digits. |
michael@0 | 418 | // * the representation in buffer is the most precise representation of |
michael@0 | 419 | // requested_digits digits. |
michael@0 | 420 | // * buffer contains at most requested_digits digits of w. If there are less |
michael@0 | 421 | // than requested_digits digits then some trailing '0's have been removed. |
michael@0 | 422 | // * kappa is such that |
michael@0 | 423 | // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. |
michael@0 | 424 | // |
michael@0 | 425 | // Remark: This procedure takes into account the imprecision of its input |
michael@0 | 426 | // numbers. If the precision is not enough to guarantee all the postconditions |
michael@0 | 427 | // then false is returned. This usually happens rarely, but the failure-rate |
michael@0 | 428 | // increases with higher requested_digits. |
michael@0 | 429 | static bool DigitGenCounted(DiyFp w, |
michael@0 | 430 | int requested_digits, |
michael@0 | 431 | Vector<char> buffer, |
michael@0 | 432 | int* length, |
michael@0 | 433 | int* kappa) { |
michael@0 | 434 | ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
michael@0 | 435 | ASSERT(kMinimalTargetExponent >= -60); |
michael@0 | 436 | ASSERT(kMaximalTargetExponent <= -32); |
michael@0 | 437 | // w is assumed to have an error less than 1 unit. Whenever w is scaled we |
michael@0 | 438 | // also scale its error. |
michael@0 | 439 | uint64_t w_error = 1; |
michael@0 | 440 | // We cut the input number into two parts: the integral digits and the |
michael@0 | 441 | // fractional digits. We don't emit any decimal separator, but adapt kappa |
michael@0 | 442 | // instead. Example: instead of writing "1.2" we put "12" into the buffer and |
michael@0 | 443 | // increase kappa by 1. |
michael@0 | 444 | DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); |
michael@0 | 445 | // Division by one is a shift. |
michael@0 | 446 | uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); |
michael@0 | 447 | // Modulo by one is an and. |
michael@0 | 448 | uint64_t fractionals = w.f() & (one.f() - 1); |
michael@0 | 449 | uint32_t divisor; |
michael@0 | 450 | int divisor_exponent_plus_one; |
michael@0 | 451 | BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), |
michael@0 | 452 | &divisor, &divisor_exponent_plus_one); |
michael@0 | 453 | *kappa = divisor_exponent_plus_one; |
michael@0 | 454 | *length = 0; |
michael@0 | 455 | |
michael@0 | 456 | // Loop invariant: buffer = w / 10^kappa (integer division) |
michael@0 | 457 | // The invariant holds for the first iteration: kappa has been initialized |
michael@0 | 458 | // with the divisor exponent + 1. And the divisor is the biggest power of ten |
michael@0 | 459 | // that is smaller than 'integrals'. |
michael@0 | 460 | while (*kappa > 0) { |
michael@0 | 461 | int digit = integrals / divisor; |
michael@0 | 462 | buffer[*length] = '0' + digit; |
michael@0 | 463 | (*length)++; |
michael@0 | 464 | requested_digits--; |
michael@0 | 465 | integrals %= divisor; |
michael@0 | 466 | (*kappa)--; |
michael@0 | 467 | // Note that kappa now equals the exponent of the divisor and that the |
michael@0 | 468 | // invariant thus holds again. |
michael@0 | 469 | if (requested_digits == 0) break; |
michael@0 | 470 | divisor /= 10; |
michael@0 | 471 | } |
michael@0 | 472 | |
michael@0 | 473 | if (requested_digits == 0) { |
michael@0 | 474 | uint64_t rest = |
michael@0 | 475 | (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; |
michael@0 | 476 | return RoundWeedCounted(buffer, *length, rest, |
michael@0 | 477 | static_cast<uint64_t>(divisor) << -one.e(), w_error, |
michael@0 | 478 | kappa); |
michael@0 | 479 | } |
michael@0 | 480 | |
michael@0 | 481 | // The integrals have been generated. We are at the point of the decimal |
michael@0 | 482 | // separator. In the following loop we simply multiply the remaining digits by |
michael@0 | 483 | // 10 and divide by one. We just need to pay attention to multiply associated |
michael@0 | 484 | // data (the 'unit'), too. |
michael@0 | 485 | // Note that the multiplication by 10 does not overflow, because w.e >= -60 |
michael@0 | 486 | // and thus one.e >= -60. |
michael@0 | 487 | ASSERT(one.e() >= -60); |
michael@0 | 488 | ASSERT(fractionals < one.f()); |
michael@0 | 489 | ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
michael@0 | 490 | while (requested_digits > 0 && fractionals > w_error) { |
michael@0 | 491 | fractionals *= 10; |
michael@0 | 492 | w_error *= 10; |
michael@0 | 493 | // Integer division by one. |
michael@0 | 494 | int digit = static_cast<int>(fractionals >> -one.e()); |
michael@0 | 495 | buffer[*length] = '0' + digit; |
michael@0 | 496 | (*length)++; |
michael@0 | 497 | requested_digits--; |
michael@0 | 498 | fractionals &= one.f() - 1; // Modulo by one. |
michael@0 | 499 | (*kappa)--; |
michael@0 | 500 | } |
michael@0 | 501 | if (requested_digits != 0) return false; |
michael@0 | 502 | return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, |
michael@0 | 503 | kappa); |
michael@0 | 504 | } |
michael@0 | 505 | |
michael@0 | 506 | |
michael@0 | 507 | // Provides a decimal representation of v. |
michael@0 | 508 | // Returns true if it succeeds, otherwise the result cannot be trusted. |
michael@0 | 509 | // There will be *length digits inside the buffer (not null-terminated). |
michael@0 | 510 | // If the function returns true then |
michael@0 | 511 | // v == (double) (buffer * 10^decimal_exponent). |
michael@0 | 512 | // The digits in the buffer are the shortest representation possible: no |
michael@0 | 513 | // 0.09999999999999999 instead of 0.1. The shorter representation will even be |
michael@0 | 514 | // chosen even if the longer one would be closer to v. |
michael@0 | 515 | // The last digit will be closest to the actual v. That is, even if several |
michael@0 | 516 | // digits might correctly yield 'v' when read again, the closest will be |
michael@0 | 517 | // computed. |
michael@0 | 518 | static bool Grisu3(double v, |
michael@0 | 519 | FastDtoaMode mode, |
michael@0 | 520 | Vector<char> buffer, |
michael@0 | 521 | int* length, |
michael@0 | 522 | int* decimal_exponent) { |
michael@0 | 523 | DiyFp w = Double(v).AsNormalizedDiyFp(); |
michael@0 | 524 | // boundary_minus and boundary_plus are the boundaries between v and its |
michael@0 | 525 | // closest floating-point neighbors. Any number strictly between |
michael@0 | 526 | // boundary_minus and boundary_plus will round to v when convert to a double. |
michael@0 | 527 | // Grisu3 will never output representations that lie exactly on a boundary. |
michael@0 | 528 | DiyFp boundary_minus, boundary_plus; |
michael@0 | 529 | if (mode == FAST_DTOA_SHORTEST) { |
michael@0 | 530 | Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
michael@0 | 531 | } else { |
michael@0 | 532 | ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE); |
michael@0 | 533 | float single_v = static_cast<float>(v); |
michael@0 | 534 | Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
michael@0 | 535 | } |
michael@0 | 536 | ASSERT(boundary_plus.e() == w.e()); |
michael@0 | 537 | DiyFp ten_mk; // Cached power of ten: 10^-k |
michael@0 | 538 | int mk; // -k |
michael@0 | 539 | int ten_mk_minimal_binary_exponent = |
michael@0 | 540 | kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
michael@0 | 541 | int ten_mk_maximal_binary_exponent = |
michael@0 | 542 | kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
michael@0 | 543 | PowersOfTenCache::GetCachedPowerForBinaryExponentRange( |
michael@0 | 544 | ten_mk_minimal_binary_exponent, |
michael@0 | 545 | ten_mk_maximal_binary_exponent, |
michael@0 | 546 | &ten_mk, &mk); |
michael@0 | 547 | ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
michael@0 | 548 | DiyFp::kSignificandSize) && |
michael@0 | 549 | (kMaximalTargetExponent >= w.e() + ten_mk.e() + |
michael@0 | 550 | DiyFp::kSignificandSize)); |
michael@0 | 551 | // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a |
michael@0 | 552 | // 64 bit significand and ten_mk is thus only precise up to 64 bits. |
michael@0 | 553 | |
michael@0 | 554 | // The DiyFp::Times procedure rounds its result, and ten_mk is approximated |
michael@0 | 555 | // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now |
michael@0 | 556 | // off by a small amount. |
michael@0 | 557 | // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. |
michael@0 | 558 | // In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
michael@0 | 559 | // (f-1) * 2^e < w*10^k < (f+1) * 2^e |
michael@0 | 560 | DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
michael@0 | 561 | ASSERT(scaled_w.e() == |
michael@0 | 562 | boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); |
michael@0 | 563 | // In theory it would be possible to avoid some recomputations by computing |
michael@0 | 564 | // the difference between w and boundary_minus/plus (a power of 2) and to |
michael@0 | 565 | // compute scaled_boundary_minus/plus by subtracting/adding from |
michael@0 | 566 | // scaled_w. However the code becomes much less readable and the speed |
michael@0 | 567 | // enhancements are not terriffic. |
michael@0 | 568 | DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); |
michael@0 | 569 | DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); |
michael@0 | 570 | |
michael@0 | 571 | // DigitGen will generate the digits of scaled_w. Therefore we have |
michael@0 | 572 | // v == (double) (scaled_w * 10^-mk). |
michael@0 | 573 | // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an |
michael@0 | 574 | // integer than it will be updated. For instance if scaled_w == 1.23 then |
michael@0 | 575 | // the buffer will be filled with "123" und the decimal_exponent will be |
michael@0 | 576 | // decreased by 2. |
michael@0 | 577 | int kappa; |
michael@0 | 578 | bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, |
michael@0 | 579 | buffer, length, &kappa); |
michael@0 | 580 | *decimal_exponent = -mk + kappa; |
michael@0 | 581 | return result; |
michael@0 | 582 | } |
michael@0 | 583 | |
michael@0 | 584 | |
michael@0 | 585 | // The "counted" version of grisu3 (see above) only generates requested_digits |
michael@0 | 586 | // number of digits. This version does not generate the shortest representation, |
michael@0 | 587 | // and with enough requested digits 0.1 will at some point print as 0.9999999... |
michael@0 | 588 | // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and |
michael@0 | 589 | // therefore the rounding strategy for halfway cases is irrelevant. |
michael@0 | 590 | static bool Grisu3Counted(double v, |
michael@0 | 591 | int requested_digits, |
michael@0 | 592 | Vector<char> buffer, |
michael@0 | 593 | int* length, |
michael@0 | 594 | int* decimal_exponent) { |
michael@0 | 595 | DiyFp w = Double(v).AsNormalizedDiyFp(); |
michael@0 | 596 | DiyFp ten_mk; // Cached power of ten: 10^-k |
michael@0 | 597 | int mk; // -k |
michael@0 | 598 | int ten_mk_minimal_binary_exponent = |
michael@0 | 599 | kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
michael@0 | 600 | int ten_mk_maximal_binary_exponent = |
michael@0 | 601 | kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
michael@0 | 602 | PowersOfTenCache::GetCachedPowerForBinaryExponentRange( |
michael@0 | 603 | ten_mk_minimal_binary_exponent, |
michael@0 | 604 | ten_mk_maximal_binary_exponent, |
michael@0 | 605 | &ten_mk, &mk); |
michael@0 | 606 | ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
michael@0 | 607 | DiyFp::kSignificandSize) && |
michael@0 | 608 | (kMaximalTargetExponent >= w.e() + ten_mk.e() + |
michael@0 | 609 | DiyFp::kSignificandSize)); |
michael@0 | 610 | // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a |
michael@0 | 611 | // 64 bit significand and ten_mk is thus only precise up to 64 bits. |
michael@0 | 612 | |
michael@0 | 613 | // The DiyFp::Times procedure rounds its result, and ten_mk is approximated |
michael@0 | 614 | // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now |
michael@0 | 615 | // off by a small amount. |
michael@0 | 616 | // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. |
michael@0 | 617 | // In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
michael@0 | 618 | // (f-1) * 2^e < w*10^k < (f+1) * 2^e |
michael@0 | 619 | DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
michael@0 | 620 | |
michael@0 | 621 | // We now have (double) (scaled_w * 10^-mk). |
michael@0 | 622 | // DigitGen will generate the first requested_digits digits of scaled_w and |
michael@0 | 623 | // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It |
michael@0 | 624 | // will not always be exactly the same since DigitGenCounted only produces a |
michael@0 | 625 | // limited number of digits.) |
michael@0 | 626 | int kappa; |
michael@0 | 627 | bool result = DigitGenCounted(scaled_w, requested_digits, |
michael@0 | 628 | buffer, length, &kappa); |
michael@0 | 629 | *decimal_exponent = -mk + kappa; |
michael@0 | 630 | return result; |
michael@0 | 631 | } |
michael@0 | 632 | |
michael@0 | 633 | |
michael@0 | 634 | bool FastDtoa(double v, |
michael@0 | 635 | FastDtoaMode mode, |
michael@0 | 636 | int requested_digits, |
michael@0 | 637 | Vector<char> buffer, |
michael@0 | 638 | int* length, |
michael@0 | 639 | int* decimal_point) { |
michael@0 | 640 | ASSERT(v > 0); |
michael@0 | 641 | ASSERT(!Double(v).IsSpecial()); |
michael@0 | 642 | |
michael@0 | 643 | bool result = false; |
michael@0 | 644 | int decimal_exponent = 0; |
michael@0 | 645 | switch (mode) { |
michael@0 | 646 | case FAST_DTOA_SHORTEST: |
michael@0 | 647 | case FAST_DTOA_SHORTEST_SINGLE: |
michael@0 | 648 | result = Grisu3(v, mode, buffer, length, &decimal_exponent); |
michael@0 | 649 | break; |
michael@0 | 650 | case FAST_DTOA_PRECISION: |
michael@0 | 651 | result = Grisu3Counted(v, requested_digits, |
michael@0 | 652 | buffer, length, &decimal_exponent); |
michael@0 | 653 | break; |
michael@0 | 654 | default: |
michael@0 | 655 | UNREACHABLE(); |
michael@0 | 656 | } |
michael@0 | 657 | if (result) { |
michael@0 | 658 | *decimal_point = *length + decimal_exponent; |
michael@0 | 659 | buffer[*length] = '\0'; |
michael@0 | 660 | } |
michael@0 | 661 | return result; |
michael@0 | 662 | } |
michael@0 | 663 | |
michael@0 | 664 | } // namespace double_conversion |