mfbt/double-conversion/fast-dtoa.cc

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 // Copyright 2012 the V8 project authors. All rights reserved.
     2 // Redistribution and use in source and binary forms, with or without
     3 // modification, are permitted provided that the following conditions are
     4 // met:
     5 //
     6 //     * Redistributions of source code must retain the above copyright
     7 //       notice, this list of conditions and the following disclaimer.
     8 //     * Redistributions in binary form must reproduce the above
     9 //       copyright notice, this list of conditions and the following
    10 //       disclaimer in the documentation and/or other materials provided
    11 //       with the distribution.
    12 //     * Neither the name of Google Inc. nor the names of its
    13 //       contributors may be used to endorse or promote products derived
    14 //       from this software without specific prior written permission.
    15 //
    16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    28 #include "fast-dtoa.h"
    30 #include "cached-powers.h"
    31 #include "diy-fp.h"
    32 #include "ieee.h"
    34 namespace double_conversion {
    36 // The minimal and maximal target exponent define the range of w's binary
    37 // exponent, where 'w' is the result of multiplying the input by a cached power
    38 // of ten.
    39 //
    40 // A different range might be chosen on a different platform, to optimize digit
    41 // generation, but a smaller range requires more powers of ten to be cached.
    42 static const int kMinimalTargetExponent = -60;
    43 static const int kMaximalTargetExponent = -32;
    46 // Adjusts the last digit of the generated number, and screens out generated
    47 // solutions that may be inaccurate. A solution may be inaccurate if it is
    48 // outside the safe interval, or if we cannot prove that it is closer to the
    49 // input than a neighboring representation of the same length.
    50 //
    51 // Input: * buffer containing the digits of too_high / 10^kappa
    52 //        * the buffer's length
    53 //        * distance_too_high_w == (too_high - w).f() * unit
    54 //        * unsafe_interval == (too_high - too_low).f() * unit
    55 //        * rest = (too_high - buffer * 10^kappa).f() * unit
    56 //        * ten_kappa = 10^kappa * unit
    57 //        * unit = the common multiplier
    58 // Output: returns true if the buffer is guaranteed to contain the closest
    59 //    representable number to the input.
    60 //  Modifies the generated digits in the buffer to approach (round towards) w.
    61 static bool RoundWeed(Vector<char> buffer,
    62                       int length,
    63                       uint64_t distance_too_high_w,
    64                       uint64_t unsafe_interval,
    65                       uint64_t rest,
    66                       uint64_t ten_kappa,
    67                       uint64_t unit) {
    68   uint64_t small_distance = distance_too_high_w - unit;
    69   uint64_t big_distance = distance_too_high_w + unit;
    70   // Let w_low  = too_high - big_distance, and
    71   //     w_high = too_high - small_distance.
    72   // Note: w_low < w < w_high
    73   //
    74   // The real w (* unit) must lie somewhere inside the interval
    75   // ]w_low; w_high[ (often written as "(w_low; w_high)")
    77   // Basically the buffer currently contains a number in the unsafe interval
    78   // ]too_low; too_high[ with too_low < w < too_high
    79   //
    80   //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    81   //                     ^v 1 unit            ^      ^                 ^      ^
    82   //  boundary_high ---------------------     .      .                 .      .
    83   //                     ^v 1 unit            .      .                 .      .
    84   //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
    85   //                                          .      .         ^       .      .
    86   //                                          .  big_distance  .       .      .
    87   //                                          .      .         .       .    rest
    88   //                              small_distance     .         .       .      .
    89   //                                          v      .         .       .      .
    90   //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
    91   //                     ^v 1 unit                   .         .       .      .
    92   //  w ----------------------------------------     .         .       .      .
    93   //                     ^v 1 unit                   v         .       .      .
    94   //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
    95   //                                                           .       .      v
    96   //  buffer --------------------------------------------------+-------+--------
    97   //                                                           .       .
    98   //                                                  safe_interval    .
    99   //                                                           v       .
   100   //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
   101   //                     ^v 1 unit                                     .
   102   //  boundary_low -------------------------                     unsafe_interval
   103   //                     ^v 1 unit                                     v
   104   //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
   105   //
   106   //
   107   // Note that the value of buffer could lie anywhere inside the range too_low
   108   // to too_high.
   109   //
   110   // boundary_low, boundary_high and w are approximations of the real boundaries
   111   // and v (the input number). They are guaranteed to be precise up to one unit.
   112   // In fact the error is guaranteed to be strictly less than one unit.
   113   //
   114   // Anything that lies outside the unsafe interval is guaranteed not to round
   115   // to v when read again.
   116   // Anything that lies inside the safe interval is guaranteed to round to v
   117   // when read again.
   118   // If the number inside the buffer lies inside the unsafe interval but not
   119   // inside the safe interval then we simply do not know and bail out (returning
   120   // false).
   121   //
   122   // Similarly we have to take into account the imprecision of 'w' when finding
   123   // the closest representation of 'w'. If we have two potential
   124   // representations, and one is closer to both w_low and w_high, then we know
   125   // it is closer to the actual value v.
   126   //
   127   // By generating the digits of too_high we got the largest (closest to
   128   // too_high) buffer that is still in the unsafe interval. In the case where
   129   // w_high < buffer < too_high we try to decrement the buffer.
   130   // This way the buffer approaches (rounds towards) w.
   131   // There are 3 conditions that stop the decrementation process:
   132   //   1) the buffer is already below w_high
   133   //   2) decrementing the buffer would make it leave the unsafe interval
   134   //   3) decrementing the buffer would yield a number below w_high and farther
   135   //      away than the current number. In other words:
   136   //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
   137   // Instead of using the buffer directly we use its distance to too_high.
   138   // Conceptually rest ~= too_high - buffer
   139   // We need to do the following tests in this order to avoid over- and
   140   // underflows.
   141   ASSERT(rest <= unsafe_interval);
   142   while (rest < small_distance &&  // Negated condition 1
   143          unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
   144          (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
   145           small_distance - rest >= rest + ten_kappa - small_distance)) {
   146     buffer[length - 1]--;
   147     rest += ten_kappa;
   148   }
   150   // We have approached w+ as much as possible. We now test if approaching w-
   151   // would require changing the buffer. If yes, then we have two possible
   152   // representations close to w, but we cannot decide which one is closer.
   153   if (rest < big_distance &&
   154       unsafe_interval - rest >= ten_kappa &&
   155       (rest + ten_kappa < big_distance ||
   156        big_distance - rest > rest + ten_kappa - big_distance)) {
   157     return false;
   158   }
   160   // Weeding test.
   161   //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
   162   //   Since too_low = too_high - unsafe_interval this is equivalent to
   163   //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
   164   //   Conceptually we have: rest ~= too_high - buffer
   165   return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
   166 }
   169 // Rounds the buffer upwards if the result is closer to v by possibly adding
   170 // 1 to the buffer. If the precision of the calculation is not sufficient to
   171 // round correctly, return false.
   172 // The rounding might shift the whole buffer in which case the kappa is
   173 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
   174 //
   175 // If 2*rest > ten_kappa then the buffer needs to be round up.
   176 // rest can have an error of +/- 1 unit. This function accounts for the
   177 // imprecision and returns false, if the rounding direction cannot be
   178 // unambiguously determined.
   179 //
   180 // Precondition: rest < ten_kappa.
   181 static bool RoundWeedCounted(Vector<char> buffer,
   182                              int length,
   183                              uint64_t rest,
   184                              uint64_t ten_kappa,
   185                              uint64_t unit,
   186                              int* kappa) {
   187   ASSERT(rest < ten_kappa);
   188   // The following tests are done in a specific order to avoid overflows. They
   189   // will work correctly with any uint64 values of rest < ten_kappa and unit.
   190   //
   191   // If the unit is too big, then we don't know which way to round. For example
   192   // a unit of 50 means that the real number lies within rest +/- 50. If
   193   // 10^kappa == 40 then there is no way to tell which way to round.
   194   if (unit >= ten_kappa) return false;
   195   // Even if unit is just half the size of 10^kappa we are already completely
   196   // lost. (And after the previous test we know that the expression will not
   197   // over/underflow.)
   198   if (ten_kappa - unit <= unit) return false;
   199   // If 2 * (rest + unit) <= 10^kappa we can safely round down.
   200   if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
   201     return true;
   202   }
   203   // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
   204   if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
   205     // Increment the last digit recursively until we find a non '9' digit.
   206     buffer[length - 1]++;
   207     for (int i = length - 1; i > 0; --i) {
   208       if (buffer[i] != '0' + 10) break;
   209       buffer[i] = '0';
   210       buffer[i - 1]++;
   211     }
   212     // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
   213     // exception of the first digit all digits are now '0'. Simply switch the
   214     // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
   215     // the power (the kappa) is increased.
   216     if (buffer[0] == '0' + 10) {
   217       buffer[0] = '1';
   218       (*kappa) += 1;
   219     }
   220     return true;
   221   }
   222   return false;
   223 }
   225 // Returns the biggest power of ten that is less than or equal to the given
   226 // number. We furthermore receive the maximum number of bits 'number' has.
   227 //
   228 // Returns power == 10^(exponent_plus_one-1) such that
   229 //    power <= number < power * 10.
   230 // If number_bits == 0 then 0^(0-1) is returned.
   231 // The number of bits must be <= 32.
   232 // Precondition: number < (1 << (number_bits + 1)).
   234 // Inspired by the method for finding an integer log base 10 from here:
   235 // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
   236 static unsigned int const kSmallPowersOfTen[] =
   237     {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
   238      1000000000};
   240 static void BiggestPowerTen(uint32_t number,
   241                             int number_bits,
   242                             uint32_t* power,
   243                             int* exponent_plus_one) {
   244   ASSERT(number < (1u << (number_bits + 1)));
   245   // 1233/4096 is approximately 1/lg(10).
   246   int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12);
   247   // We increment to skip over the first entry in the kPowersOf10 table.
   248   // Note: kPowersOf10[i] == 10^(i-1).
   249   exponent_plus_one_guess++;
   250   // We don't have any guarantees that 2^number_bits <= number.
   251   // TODO(floitsch): can we change the 'while' into an 'if'? We definitely see
   252   // number < (2^number_bits - 1), but I haven't encountered
   253   // number < (2^number_bits - 2) yet.
   254   while (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
   255     exponent_plus_one_guess--;
   256   }
   257   *power = kSmallPowersOfTen[exponent_plus_one_guess];
   258   *exponent_plus_one = exponent_plus_one_guess;
   259 }
   261 // Generates the digits of input number w.
   262 // w is a floating-point number (DiyFp), consisting of a significand and an
   263 // exponent. Its exponent is bounded by kMinimalTargetExponent and
   264 // kMaximalTargetExponent.
   265 //       Hence -60 <= w.e() <= -32.
   266 //
   267 // Returns false if it fails, in which case the generated digits in the buffer
   268 // should not be used.
   269 // Preconditions:
   270 //  * low, w and high are correct up to 1 ulp (unit in the last place). That
   271 //    is, their error must be less than a unit of their last digits.
   272 //  * low.e() == w.e() == high.e()
   273 //  * low < w < high, and taking into account their error: low~ <= high~
   274 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
   275 // Postconditions: returns false if procedure fails.
   276 //   otherwise:
   277 //     * buffer is not null-terminated, but len contains the number of digits.
   278 //     * buffer contains the shortest possible decimal digit-sequence
   279 //       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
   280 //       correct values of low and high (without their error).
   281 //     * if more than one decimal representation gives the minimal number of
   282 //       decimal digits then the one closest to W (where W is the correct value
   283 //       of w) is chosen.
   284 // Remark: this procedure takes into account the imprecision of its input
   285 //   numbers. If the precision is not enough to guarantee all the postconditions
   286 //   then false is returned. This usually happens rarely (~0.5%).
   287 //
   288 // Say, for the sake of example, that
   289 //   w.e() == -48, and w.f() == 0x1234567890abcdef
   290 // w's value can be computed by w.f() * 2^w.e()
   291 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
   292 //  -> w's integral part is 0x1234
   293 //  w's fractional part is therefore 0x567890abcdef.
   294 // Printing w's integral part is easy (simply print 0x1234 in decimal).
   295 // In order to print its fraction we repeatedly multiply the fraction by 10 and
   296 // get each digit. Example the first digit after the point would be computed by
   297 //   (0x567890abcdef * 10) >> 48. -> 3
   298 // The whole thing becomes slightly more complicated because we want to stop
   299 // once we have enough digits. That is, once the digits inside the buffer
   300 // represent 'w' we can stop. Everything inside the interval low - high
   301 // represents w. However we have to pay attention to low, high and w's
   302 // imprecision.
   303 static bool DigitGen(DiyFp low,
   304                      DiyFp w,
   305                      DiyFp high,
   306                      Vector<char> buffer,
   307                      int* length,
   308                      int* kappa) {
   309   ASSERT(low.e() == w.e() && w.e() == high.e());
   310   ASSERT(low.f() + 1 <= high.f() - 1);
   311   ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
   312   // low, w and high are imprecise, but by less than one ulp (unit in the last
   313   // place).
   314   // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
   315   // the new numbers are outside of the interval we want the final
   316   // representation to lie in.
   317   // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
   318   // numbers that are certain to lie in the interval. We will use this fact
   319   // later on.
   320   // We will now start by generating the digits within the uncertain
   321   // interval. Later we will weed out representations that lie outside the safe
   322   // interval and thus _might_ lie outside the correct interval.
   323   uint64_t unit = 1;
   324   DiyFp too_low = DiyFp(low.f() - unit, low.e());
   325   DiyFp too_high = DiyFp(high.f() + unit, high.e());
   326   // too_low and too_high are guaranteed to lie outside the interval we want the
   327   // generated number in.
   328   DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
   329   // We now cut the input number into two parts: the integral digits and the
   330   // fractionals. We will not write any decimal separator though, but adapt
   331   // kappa instead.
   332   // Reminder: we are currently computing the digits (stored inside the buffer)
   333   // such that:   too_low < buffer * 10^kappa < too_high
   334   // We use too_high for the digit_generation and stop as soon as possible.
   335   // If we stop early we effectively round down.
   336   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
   337   // Division by one is a shift.
   338   uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
   339   // Modulo by one is an and.
   340   uint64_t fractionals = too_high.f() & (one.f() - 1);
   341   uint32_t divisor;
   342   int divisor_exponent_plus_one;
   343   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
   344                   &divisor, &divisor_exponent_plus_one);
   345   *kappa = divisor_exponent_plus_one;
   346   *length = 0;
   347   // Loop invariant: buffer = too_high / 10^kappa  (integer division)
   348   // The invariant holds for the first iteration: kappa has been initialized
   349   // with the divisor exponent + 1. And the divisor is the biggest power of ten
   350   // that is smaller than integrals.
   351   while (*kappa > 0) {
   352     int digit = integrals / divisor;
   353     buffer[*length] = '0' + digit;
   354     (*length)++;
   355     integrals %= divisor;
   356     (*kappa)--;
   357     // Note that kappa now equals the exponent of the divisor and that the
   358     // invariant thus holds again.
   359     uint64_t rest =
   360         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
   361     // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
   362     // Reminder: unsafe_interval.e() == one.e()
   363     if (rest < unsafe_interval.f()) {
   364       // Rounding down (by not emitting the remaining digits) yields a number
   365       // that lies within the unsafe interval.
   366       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
   367                        unsafe_interval.f(), rest,
   368                        static_cast<uint64_t>(divisor) << -one.e(), unit);
   369     }
   370     divisor /= 10;
   371   }
   373   // The integrals have been generated. We are at the point of the decimal
   374   // separator. In the following loop we simply multiply the remaining digits by
   375   // 10 and divide by one. We just need to pay attention to multiply associated
   376   // data (like the interval or 'unit'), too.
   377   // Note that the multiplication by 10 does not overflow, because w.e >= -60
   378   // and thus one.e >= -60.
   379   ASSERT(one.e() >= -60);
   380   ASSERT(fractionals < one.f());
   381   ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
   382   while (true) {
   383     fractionals *= 10;
   384     unit *= 10;
   385     unsafe_interval.set_f(unsafe_interval.f() * 10);
   386     // Integer division by one.
   387     int digit = static_cast<int>(fractionals >> -one.e());
   388     buffer[*length] = '0' + digit;
   389     (*length)++;
   390     fractionals &= one.f() - 1;  // Modulo by one.
   391     (*kappa)--;
   392     if (fractionals < unsafe_interval.f()) {
   393       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
   394                        unsafe_interval.f(), fractionals, one.f(), unit);
   395     }
   396   }
   397 }
   401 // Generates (at most) requested_digits digits of input number w.
   402 // w is a floating-point number (DiyFp), consisting of a significand and an
   403 // exponent. Its exponent is bounded by kMinimalTargetExponent and
   404 // kMaximalTargetExponent.
   405 //       Hence -60 <= w.e() <= -32.
   406 //
   407 // Returns false if it fails, in which case the generated digits in the buffer
   408 // should not be used.
   409 // Preconditions:
   410 //  * w is correct up to 1 ulp (unit in the last place). That
   411 //    is, its error must be strictly less than a unit of its last digit.
   412 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
   413 //
   414 // Postconditions: returns false if procedure fails.
   415 //   otherwise:
   416 //     * buffer is not null-terminated, but length contains the number of
   417 //       digits.
   418 //     * the representation in buffer is the most precise representation of
   419 //       requested_digits digits.
   420 //     * buffer contains at most requested_digits digits of w. If there are less
   421 //       than requested_digits digits then some trailing '0's have been removed.
   422 //     * kappa is such that
   423 //            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
   424 //
   425 // Remark: This procedure takes into account the imprecision of its input
   426 //   numbers. If the precision is not enough to guarantee all the postconditions
   427 //   then false is returned. This usually happens rarely, but the failure-rate
   428 //   increases with higher requested_digits.
   429 static bool DigitGenCounted(DiyFp w,
   430                             int requested_digits,
   431                             Vector<char> buffer,
   432                             int* length,
   433                             int* kappa) {
   434   ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
   435   ASSERT(kMinimalTargetExponent >= -60);
   436   ASSERT(kMaximalTargetExponent <= -32);
   437   // w is assumed to have an error less than 1 unit. Whenever w is scaled we
   438   // also scale its error.
   439   uint64_t w_error = 1;
   440   // We cut the input number into two parts: the integral digits and the
   441   // fractional digits. We don't emit any decimal separator, but adapt kappa
   442   // instead. Example: instead of writing "1.2" we put "12" into the buffer and
   443   // increase kappa by 1.
   444   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
   445   // Division by one is a shift.
   446   uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
   447   // Modulo by one is an and.
   448   uint64_t fractionals = w.f() & (one.f() - 1);
   449   uint32_t divisor;
   450   int divisor_exponent_plus_one;
   451   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
   452                   &divisor, &divisor_exponent_plus_one);
   453   *kappa = divisor_exponent_plus_one;
   454   *length = 0;
   456   // Loop invariant: buffer = w / 10^kappa  (integer division)
   457   // The invariant holds for the first iteration: kappa has been initialized
   458   // with the divisor exponent + 1. And the divisor is the biggest power of ten
   459   // that is smaller than 'integrals'.
   460   while (*kappa > 0) {
   461     int digit = integrals / divisor;
   462     buffer[*length] = '0' + digit;
   463     (*length)++;
   464     requested_digits--;
   465     integrals %= divisor;
   466     (*kappa)--;
   467     // Note that kappa now equals the exponent of the divisor and that the
   468     // invariant thus holds again.
   469     if (requested_digits == 0) break;
   470     divisor /= 10;
   471   }
   473   if (requested_digits == 0) {
   474     uint64_t rest =
   475         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
   476     return RoundWeedCounted(buffer, *length, rest,
   477                             static_cast<uint64_t>(divisor) << -one.e(), w_error,
   478                             kappa);
   479   }
   481   // The integrals have been generated. We are at the point of the decimal
   482   // separator. In the following loop we simply multiply the remaining digits by
   483   // 10 and divide by one. We just need to pay attention to multiply associated
   484   // data (the 'unit'), too.
   485   // Note that the multiplication by 10 does not overflow, because w.e >= -60
   486   // and thus one.e >= -60.
   487   ASSERT(one.e() >= -60);
   488   ASSERT(fractionals < one.f());
   489   ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
   490   while (requested_digits > 0 && fractionals > w_error) {
   491     fractionals *= 10;
   492     w_error *= 10;
   493     // Integer division by one.
   494     int digit = static_cast<int>(fractionals >> -one.e());
   495     buffer[*length] = '0' + digit;
   496     (*length)++;
   497     requested_digits--;
   498     fractionals &= one.f() - 1;  // Modulo by one.
   499     (*kappa)--;
   500   }
   501   if (requested_digits != 0) return false;
   502   return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
   503                           kappa);
   504 }
   507 // Provides a decimal representation of v.
   508 // Returns true if it succeeds, otherwise the result cannot be trusted.
   509 // There will be *length digits inside the buffer (not null-terminated).
   510 // If the function returns true then
   511 //        v == (double) (buffer * 10^decimal_exponent).
   512 // The digits in the buffer are the shortest representation possible: no
   513 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
   514 // chosen even if the longer one would be closer to v.
   515 // The last digit will be closest to the actual v. That is, even if several
   516 // digits might correctly yield 'v' when read again, the closest will be
   517 // computed.
   518 static bool Grisu3(double v,
   519                    FastDtoaMode mode,
   520                    Vector<char> buffer,
   521                    int* length,
   522                    int* decimal_exponent) {
   523   DiyFp w = Double(v).AsNormalizedDiyFp();
   524   // boundary_minus and boundary_plus are the boundaries between v and its
   525   // closest floating-point neighbors. Any number strictly between
   526   // boundary_minus and boundary_plus will round to v when convert to a double.
   527   // Grisu3 will never output representations that lie exactly on a boundary.
   528   DiyFp boundary_minus, boundary_plus;
   529   if (mode == FAST_DTOA_SHORTEST) {
   530     Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
   531   } else {
   532     ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE);
   533     float single_v = static_cast<float>(v);
   534     Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
   535   }
   536   ASSERT(boundary_plus.e() == w.e());
   537   DiyFp ten_mk;  // Cached power of ten: 10^-k
   538   int mk;        // -k
   539   int ten_mk_minimal_binary_exponent =
   540      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
   541   int ten_mk_maximal_binary_exponent =
   542      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
   543   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
   544       ten_mk_minimal_binary_exponent,
   545       ten_mk_maximal_binary_exponent,
   546       &ten_mk, &mk);
   547   ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
   548           DiyFp::kSignificandSize) &&
   549          (kMaximalTargetExponent >= w.e() + ten_mk.e() +
   550           DiyFp::kSignificandSize));
   551   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
   552   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
   554   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
   555   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
   556   // off by a small amount.
   557   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
   558   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
   559   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
   560   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
   561   ASSERT(scaled_w.e() ==
   562          boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
   563   // In theory it would be possible to avoid some recomputations by computing
   564   // the difference between w and boundary_minus/plus (a power of 2) and to
   565   // compute scaled_boundary_minus/plus by subtracting/adding from
   566   // scaled_w. However the code becomes much less readable and the speed
   567   // enhancements are not terriffic.
   568   DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
   569   DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
   571   // DigitGen will generate the digits of scaled_w. Therefore we have
   572   // v == (double) (scaled_w * 10^-mk).
   573   // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
   574   // integer than it will be updated. For instance if scaled_w == 1.23 then
   575   // the buffer will be filled with "123" und the decimal_exponent will be
   576   // decreased by 2.
   577   int kappa;
   578   bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
   579                          buffer, length, &kappa);
   580   *decimal_exponent = -mk + kappa;
   581   return result;
   582 }
   585 // The "counted" version of grisu3 (see above) only generates requested_digits
   586 // number of digits. This version does not generate the shortest representation,
   587 // and with enough requested digits 0.1 will at some point print as 0.9999999...
   588 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
   589 // therefore the rounding strategy for halfway cases is irrelevant.
   590 static bool Grisu3Counted(double v,
   591                           int requested_digits,
   592                           Vector<char> buffer,
   593                           int* length,
   594                           int* decimal_exponent) {
   595   DiyFp w = Double(v).AsNormalizedDiyFp();
   596   DiyFp ten_mk;  // Cached power of ten: 10^-k
   597   int mk;        // -k
   598   int ten_mk_minimal_binary_exponent =
   599      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
   600   int ten_mk_maximal_binary_exponent =
   601      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
   602   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
   603       ten_mk_minimal_binary_exponent,
   604       ten_mk_maximal_binary_exponent,
   605       &ten_mk, &mk);
   606   ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
   607           DiyFp::kSignificandSize) &&
   608          (kMaximalTargetExponent >= w.e() + ten_mk.e() +
   609           DiyFp::kSignificandSize));
   610   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
   611   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
   613   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
   614   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
   615   // off by a small amount.
   616   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
   617   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
   618   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
   619   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
   621   // We now have (double) (scaled_w * 10^-mk).
   622   // DigitGen will generate the first requested_digits digits of scaled_w and
   623   // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
   624   // will not always be exactly the same since DigitGenCounted only produces a
   625   // limited number of digits.)
   626   int kappa;
   627   bool result = DigitGenCounted(scaled_w, requested_digits,
   628                                 buffer, length, &kappa);
   629   *decimal_exponent = -mk + kappa;
   630   return result;
   631 }
   634 bool FastDtoa(double v,
   635               FastDtoaMode mode,
   636               int requested_digits,
   637               Vector<char> buffer,
   638               int* length,
   639               int* decimal_point) {
   640   ASSERT(v > 0);
   641   ASSERT(!Double(v).IsSpecial());
   643   bool result = false;
   644   int decimal_exponent = 0;
   645   switch (mode) {
   646     case FAST_DTOA_SHORTEST:
   647     case FAST_DTOA_SHORTEST_SINGLE:
   648       result = Grisu3(v, mode, buffer, length, &decimal_exponent);
   649       break;
   650     case FAST_DTOA_PRECISION:
   651       result = Grisu3Counted(v, requested_digits,
   652                              buffer, length, &decimal_exponent);
   653       break;
   654     default:
   655       UNREACHABLE();
   656   }
   657   if (result) {
   658     *decimal_point = *length + decimal_exponent;
   659     buffer[*length] = '\0';
   660   }
   661   return result;
   662 }
   664 }  // namespace double_conversion

mercurial