Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | // Copyright 2010 the V8 project authors. All rights reserved. |
michael@0 | 2 | // Redistribution and use in source and binary forms, with or without |
michael@0 | 3 | // modification, are permitted provided that the following conditions are |
michael@0 | 4 | // met: |
michael@0 | 5 | // |
michael@0 | 6 | // * Redistributions of source code must retain the above copyright |
michael@0 | 7 | // notice, this list of conditions and the following disclaimer. |
michael@0 | 8 | // * Redistributions in binary form must reproduce the above |
michael@0 | 9 | // copyright notice, this list of conditions and the following |
michael@0 | 10 | // disclaimer in the documentation and/or other materials provided |
michael@0 | 11 | // with the distribution. |
michael@0 | 12 | // * Neither the name of Google Inc. nor the names of its |
michael@0 | 13 | // contributors may be used to endorse or promote products derived |
michael@0 | 14 | // from this software without specific prior written permission. |
michael@0 | 15 | // |
michael@0 | 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
michael@0 | 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
michael@0 | 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
michael@0 | 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
michael@0 | 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
michael@0 | 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
michael@0 | 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
michael@0 | 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
michael@0 | 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
michael@0 | 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
michael@0 | 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
michael@0 | 27 | |
michael@0 | 28 | #include <math.h> |
michael@0 | 29 | |
michael@0 | 30 | #include "fixed-dtoa.h" |
michael@0 | 31 | #include "ieee.h" |
michael@0 | 32 | |
michael@0 | 33 | namespace double_conversion { |
michael@0 | 34 | |
michael@0 | 35 | // Represents a 128bit type. This class should be replaced by a native type on |
michael@0 | 36 | // platforms that support 128bit integers. |
michael@0 | 37 | class UInt128 { |
michael@0 | 38 | public: |
michael@0 | 39 | UInt128() : high_bits_(0), low_bits_(0) { } |
michael@0 | 40 | UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } |
michael@0 | 41 | |
michael@0 | 42 | void Multiply(uint32_t multiplicand) { |
michael@0 | 43 | uint64_t accumulator; |
michael@0 | 44 | |
michael@0 | 45 | accumulator = (low_bits_ & kMask32) * multiplicand; |
michael@0 | 46 | uint32_t part = static_cast<uint32_t>(accumulator & kMask32); |
michael@0 | 47 | accumulator >>= 32; |
michael@0 | 48 | accumulator = accumulator + (low_bits_ >> 32) * multiplicand; |
michael@0 | 49 | low_bits_ = (accumulator << 32) + part; |
michael@0 | 50 | accumulator >>= 32; |
michael@0 | 51 | accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; |
michael@0 | 52 | part = static_cast<uint32_t>(accumulator & kMask32); |
michael@0 | 53 | accumulator >>= 32; |
michael@0 | 54 | accumulator = accumulator + (high_bits_ >> 32) * multiplicand; |
michael@0 | 55 | high_bits_ = (accumulator << 32) + part; |
michael@0 | 56 | ASSERT((accumulator >> 32) == 0); |
michael@0 | 57 | } |
michael@0 | 58 | |
michael@0 | 59 | void Shift(int shift_amount) { |
michael@0 | 60 | ASSERT(-64 <= shift_amount && shift_amount <= 64); |
michael@0 | 61 | if (shift_amount == 0) { |
michael@0 | 62 | return; |
michael@0 | 63 | } else if (shift_amount == -64) { |
michael@0 | 64 | high_bits_ = low_bits_; |
michael@0 | 65 | low_bits_ = 0; |
michael@0 | 66 | } else if (shift_amount == 64) { |
michael@0 | 67 | low_bits_ = high_bits_; |
michael@0 | 68 | high_bits_ = 0; |
michael@0 | 69 | } else if (shift_amount <= 0) { |
michael@0 | 70 | high_bits_ <<= -shift_amount; |
michael@0 | 71 | high_bits_ += low_bits_ >> (64 + shift_amount); |
michael@0 | 72 | low_bits_ <<= -shift_amount; |
michael@0 | 73 | } else { |
michael@0 | 74 | low_bits_ >>= shift_amount; |
michael@0 | 75 | low_bits_ += high_bits_ << (64 - shift_amount); |
michael@0 | 76 | high_bits_ >>= shift_amount; |
michael@0 | 77 | } |
michael@0 | 78 | } |
michael@0 | 79 | |
michael@0 | 80 | // Modifies *this to *this MOD (2^power). |
michael@0 | 81 | // Returns *this DIV (2^power). |
michael@0 | 82 | int DivModPowerOf2(int power) { |
michael@0 | 83 | if (power >= 64) { |
michael@0 | 84 | int result = static_cast<int>(high_bits_ >> (power - 64)); |
michael@0 | 85 | high_bits_ -= static_cast<uint64_t>(result) << (power - 64); |
michael@0 | 86 | return result; |
michael@0 | 87 | } else { |
michael@0 | 88 | uint64_t part_low = low_bits_ >> power; |
michael@0 | 89 | uint64_t part_high = high_bits_ << (64 - power); |
michael@0 | 90 | int result = static_cast<int>(part_low + part_high); |
michael@0 | 91 | high_bits_ = 0; |
michael@0 | 92 | low_bits_ -= part_low << power; |
michael@0 | 93 | return result; |
michael@0 | 94 | } |
michael@0 | 95 | } |
michael@0 | 96 | |
michael@0 | 97 | bool IsZero() const { |
michael@0 | 98 | return high_bits_ == 0 && low_bits_ == 0; |
michael@0 | 99 | } |
michael@0 | 100 | |
michael@0 | 101 | int BitAt(int position) { |
michael@0 | 102 | if (position >= 64) { |
michael@0 | 103 | return static_cast<int>(high_bits_ >> (position - 64)) & 1; |
michael@0 | 104 | } else { |
michael@0 | 105 | return static_cast<int>(low_bits_ >> position) & 1; |
michael@0 | 106 | } |
michael@0 | 107 | } |
michael@0 | 108 | |
michael@0 | 109 | private: |
michael@0 | 110 | static const uint64_t kMask32 = 0xFFFFFFFF; |
michael@0 | 111 | // Value == (high_bits_ << 64) + low_bits_ |
michael@0 | 112 | uint64_t high_bits_; |
michael@0 | 113 | uint64_t low_bits_; |
michael@0 | 114 | }; |
michael@0 | 115 | |
michael@0 | 116 | |
michael@0 | 117 | static const int kDoubleSignificandSize = 53; // Includes the hidden bit. |
michael@0 | 118 | |
michael@0 | 119 | |
michael@0 | 120 | static void FillDigits32FixedLength(uint32_t number, int requested_length, |
michael@0 | 121 | Vector<char> buffer, int* length) { |
michael@0 | 122 | for (int i = requested_length - 1; i >= 0; --i) { |
michael@0 | 123 | buffer[(*length) + i] = '0' + number % 10; |
michael@0 | 124 | number /= 10; |
michael@0 | 125 | } |
michael@0 | 126 | *length += requested_length; |
michael@0 | 127 | } |
michael@0 | 128 | |
michael@0 | 129 | |
michael@0 | 130 | static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) { |
michael@0 | 131 | int number_length = 0; |
michael@0 | 132 | // We fill the digits in reverse order and exchange them afterwards. |
michael@0 | 133 | while (number != 0) { |
michael@0 | 134 | int digit = number % 10; |
michael@0 | 135 | number /= 10; |
michael@0 | 136 | buffer[(*length) + number_length] = '0' + digit; |
michael@0 | 137 | number_length++; |
michael@0 | 138 | } |
michael@0 | 139 | // Exchange the digits. |
michael@0 | 140 | int i = *length; |
michael@0 | 141 | int j = *length + number_length - 1; |
michael@0 | 142 | while (i < j) { |
michael@0 | 143 | char tmp = buffer[i]; |
michael@0 | 144 | buffer[i] = buffer[j]; |
michael@0 | 145 | buffer[j] = tmp; |
michael@0 | 146 | i++; |
michael@0 | 147 | j--; |
michael@0 | 148 | } |
michael@0 | 149 | *length += number_length; |
michael@0 | 150 | } |
michael@0 | 151 | |
michael@0 | 152 | |
michael@0 | 153 | static void FillDigits64FixedLength(uint64_t number, int requested_length, |
michael@0 | 154 | Vector<char> buffer, int* length) { |
michael@0 | 155 | const uint32_t kTen7 = 10000000; |
michael@0 | 156 | // For efficiency cut the number into 3 uint32_t parts, and print those. |
michael@0 | 157 | uint32_t part2 = static_cast<uint32_t>(number % kTen7); |
michael@0 | 158 | number /= kTen7; |
michael@0 | 159 | uint32_t part1 = static_cast<uint32_t>(number % kTen7); |
michael@0 | 160 | uint32_t part0 = static_cast<uint32_t>(number / kTen7); |
michael@0 | 161 | |
michael@0 | 162 | FillDigits32FixedLength(part0, 3, buffer, length); |
michael@0 | 163 | FillDigits32FixedLength(part1, 7, buffer, length); |
michael@0 | 164 | FillDigits32FixedLength(part2, 7, buffer, length); |
michael@0 | 165 | } |
michael@0 | 166 | |
michael@0 | 167 | |
michael@0 | 168 | static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) { |
michael@0 | 169 | const uint32_t kTen7 = 10000000; |
michael@0 | 170 | // For efficiency cut the number into 3 uint32_t parts, and print those. |
michael@0 | 171 | uint32_t part2 = static_cast<uint32_t>(number % kTen7); |
michael@0 | 172 | number /= kTen7; |
michael@0 | 173 | uint32_t part1 = static_cast<uint32_t>(number % kTen7); |
michael@0 | 174 | uint32_t part0 = static_cast<uint32_t>(number / kTen7); |
michael@0 | 175 | |
michael@0 | 176 | if (part0 != 0) { |
michael@0 | 177 | FillDigits32(part0, buffer, length); |
michael@0 | 178 | FillDigits32FixedLength(part1, 7, buffer, length); |
michael@0 | 179 | FillDigits32FixedLength(part2, 7, buffer, length); |
michael@0 | 180 | } else if (part1 != 0) { |
michael@0 | 181 | FillDigits32(part1, buffer, length); |
michael@0 | 182 | FillDigits32FixedLength(part2, 7, buffer, length); |
michael@0 | 183 | } else { |
michael@0 | 184 | FillDigits32(part2, buffer, length); |
michael@0 | 185 | } |
michael@0 | 186 | } |
michael@0 | 187 | |
michael@0 | 188 | |
michael@0 | 189 | static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) { |
michael@0 | 190 | // An empty buffer represents 0. |
michael@0 | 191 | if (*length == 0) { |
michael@0 | 192 | buffer[0] = '1'; |
michael@0 | 193 | *decimal_point = 1; |
michael@0 | 194 | *length = 1; |
michael@0 | 195 | return; |
michael@0 | 196 | } |
michael@0 | 197 | // Round the last digit until we either have a digit that was not '9' or until |
michael@0 | 198 | // we reached the first digit. |
michael@0 | 199 | buffer[(*length) - 1]++; |
michael@0 | 200 | for (int i = (*length) - 1; i > 0; --i) { |
michael@0 | 201 | if (buffer[i] != '0' + 10) { |
michael@0 | 202 | return; |
michael@0 | 203 | } |
michael@0 | 204 | buffer[i] = '0'; |
michael@0 | 205 | buffer[i - 1]++; |
michael@0 | 206 | } |
michael@0 | 207 | // If the first digit is now '0' + 10, we would need to set it to '0' and add |
michael@0 | 208 | // a '1' in front. However we reach the first digit only if all following |
michael@0 | 209 | // digits had been '9' before rounding up. Now all trailing digits are '0' and |
michael@0 | 210 | // we simply switch the first digit to '1' and update the decimal-point |
michael@0 | 211 | // (indicating that the point is now one digit to the right). |
michael@0 | 212 | if (buffer[0] == '0' + 10) { |
michael@0 | 213 | buffer[0] = '1'; |
michael@0 | 214 | (*decimal_point)++; |
michael@0 | 215 | } |
michael@0 | 216 | } |
michael@0 | 217 | |
michael@0 | 218 | |
michael@0 | 219 | // The given fractionals number represents a fixed-point number with binary |
michael@0 | 220 | // point at bit (-exponent). |
michael@0 | 221 | // Preconditions: |
michael@0 | 222 | // -128 <= exponent <= 0. |
michael@0 | 223 | // 0 <= fractionals * 2^exponent < 1 |
michael@0 | 224 | // The buffer holds the result. |
michael@0 | 225 | // The function will round its result. During the rounding-process digits not |
michael@0 | 226 | // generated by this function might be updated, and the decimal-point variable |
michael@0 | 227 | // might be updated. If this function generates the digits 99 and the buffer |
michael@0 | 228 | // already contained "199" (thus yielding a buffer of "19999") then a |
michael@0 | 229 | // rounding-up will change the contents of the buffer to "20000". |
michael@0 | 230 | static void FillFractionals(uint64_t fractionals, int exponent, |
michael@0 | 231 | int fractional_count, Vector<char> buffer, |
michael@0 | 232 | int* length, int* decimal_point) { |
michael@0 | 233 | ASSERT(-128 <= exponent && exponent <= 0); |
michael@0 | 234 | // 'fractionals' is a fixed-point number, with binary point at bit |
michael@0 | 235 | // (-exponent). Inside the function the non-converted remainder of fractionals |
michael@0 | 236 | // is a fixed-point number, with binary point at bit 'point'. |
michael@0 | 237 | if (-exponent <= 64) { |
michael@0 | 238 | // One 64 bit number is sufficient. |
michael@0 | 239 | ASSERT(fractionals >> 56 == 0); |
michael@0 | 240 | int point = -exponent; |
michael@0 | 241 | for (int i = 0; i < fractional_count; ++i) { |
michael@0 | 242 | if (fractionals == 0) break; |
michael@0 | 243 | // Instead of multiplying by 10 we multiply by 5 and adjust the point |
michael@0 | 244 | // location. This way the fractionals variable will not overflow. |
michael@0 | 245 | // Invariant at the beginning of the loop: fractionals < 2^point. |
michael@0 | 246 | // Initially we have: point <= 64 and fractionals < 2^56 |
michael@0 | 247 | // After each iteration the point is decremented by one. |
michael@0 | 248 | // Note that 5^3 = 125 < 128 = 2^7. |
michael@0 | 249 | // Therefore three iterations of this loop will not overflow fractionals |
michael@0 | 250 | // (even without the subtraction at the end of the loop body). At this |
michael@0 | 251 | // time point will satisfy point <= 61 and therefore fractionals < 2^point |
michael@0 | 252 | // and any further multiplication of fractionals by 5 will not overflow. |
michael@0 | 253 | fractionals *= 5; |
michael@0 | 254 | point--; |
michael@0 | 255 | int digit = static_cast<int>(fractionals >> point); |
michael@0 | 256 | buffer[*length] = '0' + digit; |
michael@0 | 257 | (*length)++; |
michael@0 | 258 | fractionals -= static_cast<uint64_t>(digit) << point; |
michael@0 | 259 | } |
michael@0 | 260 | // If the first bit after the point is set we have to round up. |
michael@0 | 261 | if (((fractionals >> (point - 1)) & 1) == 1) { |
michael@0 | 262 | RoundUp(buffer, length, decimal_point); |
michael@0 | 263 | } |
michael@0 | 264 | } else { // We need 128 bits. |
michael@0 | 265 | ASSERT(64 < -exponent && -exponent <= 128); |
michael@0 | 266 | UInt128 fractionals128 = UInt128(fractionals, 0); |
michael@0 | 267 | fractionals128.Shift(-exponent - 64); |
michael@0 | 268 | int point = 128; |
michael@0 | 269 | for (int i = 0; i < fractional_count; ++i) { |
michael@0 | 270 | if (fractionals128.IsZero()) break; |
michael@0 | 271 | // As before: instead of multiplying by 10 we multiply by 5 and adjust the |
michael@0 | 272 | // point location. |
michael@0 | 273 | // This multiplication will not overflow for the same reasons as before. |
michael@0 | 274 | fractionals128.Multiply(5); |
michael@0 | 275 | point--; |
michael@0 | 276 | int digit = fractionals128.DivModPowerOf2(point); |
michael@0 | 277 | buffer[*length] = '0' + digit; |
michael@0 | 278 | (*length)++; |
michael@0 | 279 | } |
michael@0 | 280 | if (fractionals128.BitAt(point - 1) == 1) { |
michael@0 | 281 | RoundUp(buffer, length, decimal_point); |
michael@0 | 282 | } |
michael@0 | 283 | } |
michael@0 | 284 | } |
michael@0 | 285 | |
michael@0 | 286 | |
michael@0 | 287 | // Removes leading and trailing zeros. |
michael@0 | 288 | // If leading zeros are removed then the decimal point position is adjusted. |
michael@0 | 289 | static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) { |
michael@0 | 290 | while (*length > 0 && buffer[(*length) - 1] == '0') { |
michael@0 | 291 | (*length)--; |
michael@0 | 292 | } |
michael@0 | 293 | int first_non_zero = 0; |
michael@0 | 294 | while (first_non_zero < *length && buffer[first_non_zero] == '0') { |
michael@0 | 295 | first_non_zero++; |
michael@0 | 296 | } |
michael@0 | 297 | if (first_non_zero != 0) { |
michael@0 | 298 | for (int i = first_non_zero; i < *length; ++i) { |
michael@0 | 299 | buffer[i - first_non_zero] = buffer[i]; |
michael@0 | 300 | } |
michael@0 | 301 | *length -= first_non_zero; |
michael@0 | 302 | *decimal_point -= first_non_zero; |
michael@0 | 303 | } |
michael@0 | 304 | } |
michael@0 | 305 | |
michael@0 | 306 | |
michael@0 | 307 | bool FastFixedDtoa(double v, |
michael@0 | 308 | int fractional_count, |
michael@0 | 309 | Vector<char> buffer, |
michael@0 | 310 | int* length, |
michael@0 | 311 | int* decimal_point) { |
michael@0 | 312 | const uint32_t kMaxUInt32 = 0xFFFFFFFF; |
michael@0 | 313 | uint64_t significand = Double(v).Significand(); |
michael@0 | 314 | int exponent = Double(v).Exponent(); |
michael@0 | 315 | // v = significand * 2^exponent (with significand a 53bit integer). |
michael@0 | 316 | // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we |
michael@0 | 317 | // don't know how to compute the representation. 2^73 ~= 9.5*10^21. |
michael@0 | 318 | // If necessary this limit could probably be increased, but we don't need |
michael@0 | 319 | // more. |
michael@0 | 320 | if (exponent > 20) return false; |
michael@0 | 321 | if (fractional_count > 20) return false; |
michael@0 | 322 | *length = 0; |
michael@0 | 323 | // At most kDoubleSignificandSize bits of the significand are non-zero. |
michael@0 | 324 | // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero |
michael@0 | 325 | // bits: 0..11*..0xxx..53*..xx |
michael@0 | 326 | if (exponent + kDoubleSignificandSize > 64) { |
michael@0 | 327 | // The exponent must be > 11. |
michael@0 | 328 | // |
michael@0 | 329 | // We know that v = significand * 2^exponent. |
michael@0 | 330 | // And the exponent > 11. |
michael@0 | 331 | // We simplify the task by dividing v by 10^17. |
michael@0 | 332 | // The quotient delivers the first digits, and the remainder fits into a 64 |
michael@0 | 333 | // bit number. |
michael@0 | 334 | // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. |
michael@0 | 335 | const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5); // 5^17 |
michael@0 | 336 | uint64_t divisor = kFive17; |
michael@0 | 337 | int divisor_power = 17; |
michael@0 | 338 | uint64_t dividend = significand; |
michael@0 | 339 | uint32_t quotient; |
michael@0 | 340 | uint64_t remainder; |
michael@0 | 341 | // Let v = f * 2^e with f == significand and e == exponent. |
michael@0 | 342 | // Then need q (quotient) and r (remainder) as follows: |
michael@0 | 343 | // v = q * 10^17 + r |
michael@0 | 344 | // f * 2^e = q * 10^17 + r |
michael@0 | 345 | // f * 2^e = q * 5^17 * 2^17 + r |
michael@0 | 346 | // If e > 17 then |
michael@0 | 347 | // f * 2^(e-17) = q * 5^17 + r/2^17 |
michael@0 | 348 | // else |
michael@0 | 349 | // f = q * 5^17 * 2^(17-e) + r/2^e |
michael@0 | 350 | if (exponent > divisor_power) { |
michael@0 | 351 | // We only allow exponents of up to 20 and therefore (17 - e) <= 3 |
michael@0 | 352 | dividend <<= exponent - divisor_power; |
michael@0 | 353 | quotient = static_cast<uint32_t>(dividend / divisor); |
michael@0 | 354 | remainder = (dividend % divisor) << divisor_power; |
michael@0 | 355 | } else { |
michael@0 | 356 | divisor <<= divisor_power - exponent; |
michael@0 | 357 | quotient = static_cast<uint32_t>(dividend / divisor); |
michael@0 | 358 | remainder = (dividend % divisor) << exponent; |
michael@0 | 359 | } |
michael@0 | 360 | FillDigits32(quotient, buffer, length); |
michael@0 | 361 | FillDigits64FixedLength(remainder, divisor_power, buffer, length); |
michael@0 | 362 | *decimal_point = *length; |
michael@0 | 363 | } else if (exponent >= 0) { |
michael@0 | 364 | // 0 <= exponent <= 11 |
michael@0 | 365 | significand <<= exponent; |
michael@0 | 366 | FillDigits64(significand, buffer, length); |
michael@0 | 367 | *decimal_point = *length; |
michael@0 | 368 | } else if (exponent > -kDoubleSignificandSize) { |
michael@0 | 369 | // We have to cut the number. |
michael@0 | 370 | uint64_t integrals = significand >> -exponent; |
michael@0 | 371 | uint64_t fractionals = significand - (integrals << -exponent); |
michael@0 | 372 | if (integrals > kMaxUInt32) { |
michael@0 | 373 | FillDigits64(integrals, buffer, length); |
michael@0 | 374 | } else { |
michael@0 | 375 | FillDigits32(static_cast<uint32_t>(integrals), buffer, length); |
michael@0 | 376 | } |
michael@0 | 377 | *decimal_point = *length; |
michael@0 | 378 | FillFractionals(fractionals, exponent, fractional_count, |
michael@0 | 379 | buffer, length, decimal_point); |
michael@0 | 380 | } else if (exponent < -128) { |
michael@0 | 381 | // This configuration (with at most 20 digits) means that all digits must be |
michael@0 | 382 | // 0. |
michael@0 | 383 | ASSERT(fractional_count <= 20); |
michael@0 | 384 | buffer[0] = '\0'; |
michael@0 | 385 | *length = 0; |
michael@0 | 386 | *decimal_point = -fractional_count; |
michael@0 | 387 | } else { |
michael@0 | 388 | *decimal_point = 0; |
michael@0 | 389 | FillFractionals(significand, exponent, fractional_count, |
michael@0 | 390 | buffer, length, decimal_point); |
michael@0 | 391 | } |
michael@0 | 392 | TrimZeros(buffer, length, decimal_point); |
michael@0 | 393 | buffer[*length] = '\0'; |
michael@0 | 394 | if ((*length) == 0) { |
michael@0 | 395 | // The string is empty and the decimal_point thus has no importance. Mimick |
michael@0 | 396 | // Gay's dtoa and and set it to -fractional_count. |
michael@0 | 397 | *decimal_point = -fractional_count; |
michael@0 | 398 | } |
michael@0 | 399 | return true; |
michael@0 | 400 | } |
michael@0 | 401 | |
michael@0 | 402 | } // namespace double_conversion |