mfbt/double-conversion/fixed-dtoa.cc

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 // Copyright 2010 the V8 project authors. All rights reserved.
     2 // Redistribution and use in source and binary forms, with or without
     3 // modification, are permitted provided that the following conditions are
     4 // met:
     5 //
     6 //     * Redistributions of source code must retain the above copyright
     7 //       notice, this list of conditions and the following disclaimer.
     8 //     * Redistributions in binary form must reproduce the above
     9 //       copyright notice, this list of conditions and the following
    10 //       disclaimer in the documentation and/or other materials provided
    11 //       with the distribution.
    12 //     * Neither the name of Google Inc. nor the names of its
    13 //       contributors may be used to endorse or promote products derived
    14 //       from this software without specific prior written permission.
    15 //
    16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    28 #include <math.h>
    30 #include "fixed-dtoa.h"
    31 #include "ieee.h"
    33 namespace double_conversion {
    35 // Represents a 128bit type. This class should be replaced by a native type on
    36 // platforms that support 128bit integers.
    37 class UInt128 {
    38  public:
    39   UInt128() : high_bits_(0), low_bits_(0) { }
    40   UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
    42   void Multiply(uint32_t multiplicand) {
    43     uint64_t accumulator;
    45     accumulator = (low_bits_ & kMask32) * multiplicand;
    46     uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
    47     accumulator >>= 32;
    48     accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
    49     low_bits_ = (accumulator << 32) + part;
    50     accumulator >>= 32;
    51     accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
    52     part = static_cast<uint32_t>(accumulator & kMask32);
    53     accumulator >>= 32;
    54     accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
    55     high_bits_ = (accumulator << 32) + part;
    56     ASSERT((accumulator >> 32) == 0);
    57   }
    59   void Shift(int shift_amount) {
    60     ASSERT(-64 <= shift_amount && shift_amount <= 64);
    61     if (shift_amount == 0) {
    62       return;
    63     } else if (shift_amount == -64) {
    64       high_bits_ = low_bits_;
    65       low_bits_ = 0;
    66     } else if (shift_amount == 64) {
    67       low_bits_ = high_bits_;
    68       high_bits_ = 0;
    69     } else if (shift_amount <= 0) {
    70       high_bits_ <<= -shift_amount;
    71       high_bits_ += low_bits_ >> (64 + shift_amount);
    72       low_bits_ <<= -shift_amount;
    73     } else {
    74       low_bits_ >>= shift_amount;
    75       low_bits_ += high_bits_ << (64 - shift_amount);
    76       high_bits_ >>= shift_amount;
    77     }
    78   }
    80   // Modifies *this to *this MOD (2^power).
    81   // Returns *this DIV (2^power).
    82   int DivModPowerOf2(int power) {
    83     if (power >= 64) {
    84       int result = static_cast<int>(high_bits_ >> (power - 64));
    85       high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
    86       return result;
    87     } else {
    88       uint64_t part_low = low_bits_ >> power;
    89       uint64_t part_high = high_bits_ << (64 - power);
    90       int result = static_cast<int>(part_low + part_high);
    91       high_bits_ = 0;
    92       low_bits_ -= part_low << power;
    93       return result;
    94     }
    95   }
    97   bool IsZero() const {
    98     return high_bits_ == 0 && low_bits_ == 0;
    99   }
   101   int BitAt(int position) {
   102     if (position >= 64) {
   103       return static_cast<int>(high_bits_ >> (position - 64)) & 1;
   104     } else {
   105       return static_cast<int>(low_bits_ >> position) & 1;
   106     }
   107   }
   109  private:
   110   static const uint64_t kMask32 = 0xFFFFFFFF;
   111   // Value == (high_bits_ << 64) + low_bits_
   112   uint64_t high_bits_;
   113   uint64_t low_bits_;
   114 };
   117 static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
   120 static void FillDigits32FixedLength(uint32_t number, int requested_length,
   121                                     Vector<char> buffer, int* length) {
   122   for (int i = requested_length - 1; i >= 0; --i) {
   123     buffer[(*length) + i] = '0' + number % 10;
   124     number /= 10;
   125   }
   126   *length += requested_length;
   127 }
   130 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
   131   int number_length = 0;
   132   // We fill the digits in reverse order and exchange them afterwards.
   133   while (number != 0) {
   134     int digit = number % 10;
   135     number /= 10;
   136     buffer[(*length) + number_length] = '0' + digit;
   137     number_length++;
   138   }
   139   // Exchange the digits.
   140   int i = *length;
   141   int j = *length + number_length - 1;
   142   while (i < j) {
   143     char tmp = buffer[i];
   144     buffer[i] = buffer[j];
   145     buffer[j] = tmp;
   146     i++;
   147     j--;
   148   }
   149   *length += number_length;
   150 }
   153 static void FillDigits64FixedLength(uint64_t number, int requested_length,
   154                                     Vector<char> buffer, int* length) {
   155   const uint32_t kTen7 = 10000000;
   156   // For efficiency cut the number into 3 uint32_t parts, and print those.
   157   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
   158   number /= kTen7;
   159   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
   160   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
   162   FillDigits32FixedLength(part0, 3, buffer, length);
   163   FillDigits32FixedLength(part1, 7, buffer, length);
   164   FillDigits32FixedLength(part2, 7, buffer, length);
   165 }
   168 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
   169   const uint32_t kTen7 = 10000000;
   170   // For efficiency cut the number into 3 uint32_t parts, and print those.
   171   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
   172   number /= kTen7;
   173   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
   174   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
   176   if (part0 != 0) {
   177     FillDigits32(part0, buffer, length);
   178     FillDigits32FixedLength(part1, 7, buffer, length);
   179     FillDigits32FixedLength(part2, 7, buffer, length);
   180   } else if (part1 != 0) {
   181     FillDigits32(part1, buffer, length);
   182     FillDigits32FixedLength(part2, 7, buffer, length);
   183   } else {
   184     FillDigits32(part2, buffer, length);
   185   }
   186 }
   189 static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
   190   // An empty buffer represents 0.
   191   if (*length == 0) {
   192     buffer[0] = '1';
   193     *decimal_point = 1;
   194     *length = 1;
   195     return;
   196   }
   197   // Round the last digit until we either have a digit that was not '9' or until
   198   // we reached the first digit.
   199   buffer[(*length) - 1]++;
   200   for (int i = (*length) - 1; i > 0; --i) {
   201     if (buffer[i] != '0' + 10) {
   202       return;
   203     }
   204     buffer[i] = '0';
   205     buffer[i - 1]++;
   206   }
   207   // If the first digit is now '0' + 10, we would need to set it to '0' and add
   208   // a '1' in front. However we reach the first digit only if all following
   209   // digits had been '9' before rounding up. Now all trailing digits are '0' and
   210   // we simply switch the first digit to '1' and update the decimal-point
   211   // (indicating that the point is now one digit to the right).
   212   if (buffer[0] == '0' + 10) {
   213     buffer[0] = '1';
   214     (*decimal_point)++;
   215   }
   216 }
   219 // The given fractionals number represents a fixed-point number with binary
   220 // point at bit (-exponent).
   221 // Preconditions:
   222 //   -128 <= exponent <= 0.
   223 //   0 <= fractionals * 2^exponent < 1
   224 //   The buffer holds the result.
   225 // The function will round its result. During the rounding-process digits not
   226 // generated by this function might be updated, and the decimal-point variable
   227 // might be updated. If this function generates the digits 99 and the buffer
   228 // already contained "199" (thus yielding a buffer of "19999") then a
   229 // rounding-up will change the contents of the buffer to "20000".
   230 static void FillFractionals(uint64_t fractionals, int exponent,
   231                             int fractional_count, Vector<char> buffer,
   232                             int* length, int* decimal_point) {
   233   ASSERT(-128 <= exponent && exponent <= 0);
   234   // 'fractionals' is a fixed-point number, with binary point at bit
   235   // (-exponent). Inside the function the non-converted remainder of fractionals
   236   // is a fixed-point number, with binary point at bit 'point'.
   237   if (-exponent <= 64) {
   238     // One 64 bit number is sufficient.
   239     ASSERT(fractionals >> 56 == 0);
   240     int point = -exponent;
   241     for (int i = 0; i < fractional_count; ++i) {
   242       if (fractionals == 0) break;
   243       // Instead of multiplying by 10 we multiply by 5 and adjust the point
   244       // location. This way the fractionals variable will not overflow.
   245       // Invariant at the beginning of the loop: fractionals < 2^point.
   246       // Initially we have: point <= 64 and fractionals < 2^56
   247       // After each iteration the point is decremented by one.
   248       // Note that 5^3 = 125 < 128 = 2^7.
   249       // Therefore three iterations of this loop will not overflow fractionals
   250       // (even without the subtraction at the end of the loop body). At this
   251       // time point will satisfy point <= 61 and therefore fractionals < 2^point
   252       // and any further multiplication of fractionals by 5 will not overflow.
   253       fractionals *= 5;
   254       point--;
   255       int digit = static_cast<int>(fractionals >> point);
   256       buffer[*length] = '0' + digit;
   257       (*length)++;
   258       fractionals -= static_cast<uint64_t>(digit) << point;
   259     }
   260     // If the first bit after the point is set we have to round up.
   261     if (((fractionals >> (point - 1)) & 1) == 1) {
   262       RoundUp(buffer, length, decimal_point);
   263     }
   264   } else {  // We need 128 bits.
   265     ASSERT(64 < -exponent && -exponent <= 128);
   266     UInt128 fractionals128 = UInt128(fractionals, 0);
   267     fractionals128.Shift(-exponent - 64);
   268     int point = 128;
   269     for (int i = 0; i < fractional_count; ++i) {
   270       if (fractionals128.IsZero()) break;
   271       // As before: instead of multiplying by 10 we multiply by 5 and adjust the
   272       // point location.
   273       // This multiplication will not overflow for the same reasons as before.
   274       fractionals128.Multiply(5);
   275       point--;
   276       int digit = fractionals128.DivModPowerOf2(point);
   277       buffer[*length] = '0' + digit;
   278       (*length)++;
   279     }
   280     if (fractionals128.BitAt(point - 1) == 1) {
   281       RoundUp(buffer, length, decimal_point);
   282     }
   283   }
   284 }
   287 // Removes leading and trailing zeros.
   288 // If leading zeros are removed then the decimal point position is adjusted.
   289 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
   290   while (*length > 0 && buffer[(*length) - 1] == '0') {
   291     (*length)--;
   292   }
   293   int first_non_zero = 0;
   294   while (first_non_zero < *length && buffer[first_non_zero] == '0') {
   295     first_non_zero++;
   296   }
   297   if (first_non_zero != 0) {
   298     for (int i = first_non_zero; i < *length; ++i) {
   299       buffer[i - first_non_zero] = buffer[i];
   300     }
   301     *length -= first_non_zero;
   302     *decimal_point -= first_non_zero;
   303   }
   304 }
   307 bool FastFixedDtoa(double v,
   308                    int fractional_count,
   309                    Vector<char> buffer,
   310                    int* length,
   311                    int* decimal_point) {
   312   const uint32_t kMaxUInt32 = 0xFFFFFFFF;
   313   uint64_t significand = Double(v).Significand();
   314   int exponent = Double(v).Exponent();
   315   // v = significand * 2^exponent (with significand a 53bit integer).
   316   // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
   317   // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
   318   // If necessary this limit could probably be increased, but we don't need
   319   // more.
   320   if (exponent > 20) return false;
   321   if (fractional_count > 20) return false;
   322   *length = 0;
   323   // At most kDoubleSignificandSize bits of the significand are non-zero.
   324   // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
   325   // bits:  0..11*..0xxx..53*..xx
   326   if (exponent + kDoubleSignificandSize > 64) {
   327     // The exponent must be > 11.
   328     //
   329     // We know that v = significand * 2^exponent.
   330     // And the exponent > 11.
   331     // We simplify the task by dividing v by 10^17.
   332     // The quotient delivers the first digits, and the remainder fits into a 64
   333     // bit number.
   334     // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
   335     const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5);  // 5^17
   336     uint64_t divisor = kFive17;
   337     int divisor_power = 17;
   338     uint64_t dividend = significand;
   339     uint32_t quotient;
   340     uint64_t remainder;
   341     // Let v = f * 2^e with f == significand and e == exponent.
   342     // Then need q (quotient) and r (remainder) as follows:
   343     //   v            = q * 10^17       + r
   344     //   f * 2^e      = q * 10^17       + r
   345     //   f * 2^e      = q * 5^17 * 2^17 + r
   346     // If e > 17 then
   347     //   f * 2^(e-17) = q * 5^17        + r/2^17
   348     // else
   349     //   f  = q * 5^17 * 2^(17-e) + r/2^e
   350     if (exponent > divisor_power) {
   351       // We only allow exponents of up to 20 and therefore (17 - e) <= 3
   352       dividend <<= exponent - divisor_power;
   353       quotient = static_cast<uint32_t>(dividend / divisor);
   354       remainder = (dividend % divisor) << divisor_power;
   355     } else {
   356       divisor <<= divisor_power - exponent;
   357       quotient = static_cast<uint32_t>(dividend / divisor);
   358       remainder = (dividend % divisor) << exponent;
   359     }
   360     FillDigits32(quotient, buffer, length);
   361     FillDigits64FixedLength(remainder, divisor_power, buffer, length);
   362     *decimal_point = *length;
   363   } else if (exponent >= 0) {
   364     // 0 <= exponent <= 11
   365     significand <<= exponent;
   366     FillDigits64(significand, buffer, length);
   367     *decimal_point = *length;
   368   } else if (exponent > -kDoubleSignificandSize) {
   369     // We have to cut the number.
   370     uint64_t integrals = significand >> -exponent;
   371     uint64_t fractionals = significand - (integrals << -exponent);
   372     if (integrals > kMaxUInt32) {
   373       FillDigits64(integrals, buffer, length);
   374     } else {
   375       FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
   376     }
   377     *decimal_point = *length;
   378     FillFractionals(fractionals, exponent, fractional_count,
   379                     buffer, length, decimal_point);
   380   } else if (exponent < -128) {
   381     // This configuration (with at most 20 digits) means that all digits must be
   382     // 0.
   383     ASSERT(fractional_count <= 20);
   384     buffer[0] = '\0';
   385     *length = 0;
   386     *decimal_point = -fractional_count;
   387   } else {
   388     *decimal_point = 0;
   389     FillFractionals(significand, exponent, fractional_count,
   390                     buffer, length, decimal_point);
   391   }
   392   TrimZeros(buffer, length, decimal_point);
   393   buffer[*length] = '\0';
   394   if ((*length) == 0) {
   395     // The string is empty and the decimal_point thus has no importance. Mimick
   396     // Gay's dtoa and and set it to -fractional_count.
   397     *decimal_point = -fractional_count;
   398   }
   399   return true;
   400 }
   402 }  // namespace double_conversion

mercurial