media/libjpeg/jchuff.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

michael@0 1 /*
michael@0 2 * jchuff.c
michael@0 3 *
michael@0 4 * This file was part of the Independent JPEG Group's software:
michael@0 5 * Copyright (C) 1991-1997, Thomas G. Lane.
michael@0 6 * libjpeg-turbo Modifications:
michael@0 7 * Copyright (C) 2009-2011, D. R. Commander.
michael@0 8 * For conditions of distribution and use, see the accompanying README file.
michael@0 9 *
michael@0 10 * This file contains Huffman entropy encoding routines.
michael@0 11 *
michael@0 12 * Much of the complexity here has to do with supporting output suspension.
michael@0 13 * If the data destination module demands suspension, we want to be able to
michael@0 14 * back up to the start of the current MCU. To do this, we copy state
michael@0 15 * variables into local working storage, and update them back to the
michael@0 16 * permanent JPEG objects only upon successful completion of an MCU.
michael@0 17 */
michael@0 18
michael@0 19 #define JPEG_INTERNALS
michael@0 20 #include "jinclude.h"
michael@0 21 #include "jpeglib.h"
michael@0 22 #include "jchuff.h" /* Declarations shared with jcphuff.c */
michael@0 23 #include <limits.h>
michael@0 24
michael@0 25 static const unsigned char jpeg_nbits_table[65536] = {
michael@0 26 /* Number i needs jpeg_nbits_table[i] bits to be represented. */
michael@0 27 #include "jpeg_nbits_table.h"
michael@0 28 };
michael@0 29
michael@0 30 #ifndef min
michael@0 31 #define min(a,b) ((a)<(b)?(a):(b))
michael@0 32 #endif
michael@0 33
michael@0 34
michael@0 35 /* Expanded entropy encoder object for Huffman encoding.
michael@0 36 *
michael@0 37 * The savable_state subrecord contains fields that change within an MCU,
michael@0 38 * but must not be updated permanently until we complete the MCU.
michael@0 39 */
michael@0 40
michael@0 41 typedef struct {
michael@0 42 size_t put_buffer; /* current bit-accumulation buffer */
michael@0 43 int put_bits; /* # of bits now in it */
michael@0 44 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
michael@0 45 } savable_state;
michael@0 46
michael@0 47 /* This macro is to work around compilers with missing or broken
michael@0 48 * structure assignment. You'll need to fix this code if you have
michael@0 49 * such a compiler and you change MAX_COMPS_IN_SCAN.
michael@0 50 */
michael@0 51
michael@0 52 #ifndef NO_STRUCT_ASSIGN
michael@0 53 #define ASSIGN_STATE(dest,src) ((dest) = (src))
michael@0 54 #else
michael@0 55 #if MAX_COMPS_IN_SCAN == 4
michael@0 56 #define ASSIGN_STATE(dest,src) \
michael@0 57 ((dest).put_buffer = (src).put_buffer, \
michael@0 58 (dest).put_bits = (src).put_bits, \
michael@0 59 (dest).last_dc_val[0] = (src).last_dc_val[0], \
michael@0 60 (dest).last_dc_val[1] = (src).last_dc_val[1], \
michael@0 61 (dest).last_dc_val[2] = (src).last_dc_val[2], \
michael@0 62 (dest).last_dc_val[3] = (src).last_dc_val[3])
michael@0 63 #endif
michael@0 64 #endif
michael@0 65
michael@0 66
michael@0 67 typedef struct {
michael@0 68 struct jpeg_entropy_encoder pub; /* public fields */
michael@0 69
michael@0 70 savable_state saved; /* Bit buffer & DC state at start of MCU */
michael@0 71
michael@0 72 /* These fields are NOT loaded into local working state. */
michael@0 73 unsigned int restarts_to_go; /* MCUs left in this restart interval */
michael@0 74 int next_restart_num; /* next restart number to write (0-7) */
michael@0 75
michael@0 76 /* Pointers to derived tables (these workspaces have image lifespan) */
michael@0 77 c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
michael@0 78 c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
michael@0 79
michael@0 80 #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
michael@0 81 long * dc_count_ptrs[NUM_HUFF_TBLS];
michael@0 82 long * ac_count_ptrs[NUM_HUFF_TBLS];
michael@0 83 #endif
michael@0 84 } huff_entropy_encoder;
michael@0 85
michael@0 86 typedef huff_entropy_encoder * huff_entropy_ptr;
michael@0 87
michael@0 88 /* Working state while writing an MCU.
michael@0 89 * This struct contains all the fields that are needed by subroutines.
michael@0 90 */
michael@0 91
michael@0 92 typedef struct {
michael@0 93 JOCTET * next_output_byte; /* => next byte to write in buffer */
michael@0 94 size_t free_in_buffer; /* # of byte spaces remaining in buffer */
michael@0 95 savable_state cur; /* Current bit buffer & DC state */
michael@0 96 j_compress_ptr cinfo; /* dump_buffer needs access to this */
michael@0 97 } working_state;
michael@0 98
michael@0 99
michael@0 100 /* Forward declarations */
michael@0 101 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
michael@0 102 JBLOCKROW *MCU_data));
michael@0 103 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
michael@0 104 #ifdef ENTROPY_OPT_SUPPORTED
michael@0 105 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
michael@0 106 JBLOCKROW *MCU_data));
michael@0 107 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
michael@0 108 #endif
michael@0 109
michael@0 110
michael@0 111 /*
michael@0 112 * Initialize for a Huffman-compressed scan.
michael@0 113 * If gather_statistics is TRUE, we do not output anything during the scan,
michael@0 114 * just count the Huffman symbols used and generate Huffman code tables.
michael@0 115 */
michael@0 116
michael@0 117 METHODDEF(void)
michael@0 118 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
michael@0 119 {
michael@0 120 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
michael@0 121 int ci, dctbl, actbl;
michael@0 122 jpeg_component_info * compptr;
michael@0 123
michael@0 124 if (gather_statistics) {
michael@0 125 #ifdef ENTROPY_OPT_SUPPORTED
michael@0 126 entropy->pub.encode_mcu = encode_mcu_gather;
michael@0 127 entropy->pub.finish_pass = finish_pass_gather;
michael@0 128 #else
michael@0 129 ERREXIT(cinfo, JERR_NOT_COMPILED);
michael@0 130 #endif
michael@0 131 } else {
michael@0 132 entropy->pub.encode_mcu = encode_mcu_huff;
michael@0 133 entropy->pub.finish_pass = finish_pass_huff;
michael@0 134 }
michael@0 135
michael@0 136 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
michael@0 137 compptr = cinfo->cur_comp_info[ci];
michael@0 138 dctbl = compptr->dc_tbl_no;
michael@0 139 actbl = compptr->ac_tbl_no;
michael@0 140 if (gather_statistics) {
michael@0 141 #ifdef ENTROPY_OPT_SUPPORTED
michael@0 142 /* Check for invalid table indexes */
michael@0 143 /* (make_c_derived_tbl does this in the other path) */
michael@0 144 if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
michael@0 145 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
michael@0 146 if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
michael@0 147 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
michael@0 148 /* Allocate and zero the statistics tables */
michael@0 149 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
michael@0 150 if (entropy->dc_count_ptrs[dctbl] == NULL)
michael@0 151 entropy->dc_count_ptrs[dctbl] = (long *)
michael@0 152 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
michael@0 153 257 * SIZEOF(long));
michael@0 154 MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
michael@0 155 if (entropy->ac_count_ptrs[actbl] == NULL)
michael@0 156 entropy->ac_count_ptrs[actbl] = (long *)
michael@0 157 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
michael@0 158 257 * SIZEOF(long));
michael@0 159 MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
michael@0 160 #endif
michael@0 161 } else {
michael@0 162 /* Compute derived values for Huffman tables */
michael@0 163 /* We may do this more than once for a table, but it's not expensive */
michael@0 164 jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
michael@0 165 & entropy->dc_derived_tbls[dctbl]);
michael@0 166 jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
michael@0 167 & entropy->ac_derived_tbls[actbl]);
michael@0 168 }
michael@0 169 /* Initialize DC predictions to 0 */
michael@0 170 entropy->saved.last_dc_val[ci] = 0;
michael@0 171 }
michael@0 172
michael@0 173 /* Initialize bit buffer to empty */
michael@0 174 entropy->saved.put_buffer = 0;
michael@0 175 entropy->saved.put_bits = 0;
michael@0 176
michael@0 177 /* Initialize restart stuff */
michael@0 178 entropy->restarts_to_go = cinfo->restart_interval;
michael@0 179 entropy->next_restart_num = 0;
michael@0 180 }
michael@0 181
michael@0 182
michael@0 183 /*
michael@0 184 * Compute the derived values for a Huffman table.
michael@0 185 * This routine also performs some validation checks on the table.
michael@0 186 *
michael@0 187 * Note this is also used by jcphuff.c.
michael@0 188 */
michael@0 189
michael@0 190 GLOBAL(void)
michael@0 191 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
michael@0 192 c_derived_tbl ** pdtbl)
michael@0 193 {
michael@0 194 JHUFF_TBL *htbl;
michael@0 195 c_derived_tbl *dtbl;
michael@0 196 int p, i, l, lastp, si, maxsymbol;
michael@0 197 char huffsize[257];
michael@0 198 unsigned int huffcode[257];
michael@0 199 unsigned int code;
michael@0 200
michael@0 201 /* Note that huffsize[] and huffcode[] are filled in code-length order,
michael@0 202 * paralleling the order of the symbols themselves in htbl->huffval[].
michael@0 203 */
michael@0 204
michael@0 205 /* Find the input Huffman table */
michael@0 206 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
michael@0 207 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
michael@0 208 htbl =
michael@0 209 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
michael@0 210 if (htbl == NULL)
michael@0 211 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
michael@0 212
michael@0 213 /* Allocate a workspace if we haven't already done so. */
michael@0 214 if (*pdtbl == NULL)
michael@0 215 *pdtbl = (c_derived_tbl *)
michael@0 216 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
michael@0 217 SIZEOF(c_derived_tbl));
michael@0 218 dtbl = *pdtbl;
michael@0 219
michael@0 220 /* Figure C.1: make table of Huffman code length for each symbol */
michael@0 221
michael@0 222 p = 0;
michael@0 223 for (l = 1; l <= 16; l++) {
michael@0 224 i = (int) htbl->bits[l];
michael@0 225 if (i < 0 || p + i > 256) /* protect against table overrun */
michael@0 226 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
michael@0 227 while (i--)
michael@0 228 huffsize[p++] = (char) l;
michael@0 229 }
michael@0 230 huffsize[p] = 0;
michael@0 231 lastp = p;
michael@0 232
michael@0 233 /* Figure C.2: generate the codes themselves */
michael@0 234 /* We also validate that the counts represent a legal Huffman code tree. */
michael@0 235
michael@0 236 code = 0;
michael@0 237 si = huffsize[0];
michael@0 238 p = 0;
michael@0 239 while (huffsize[p]) {
michael@0 240 while (((int) huffsize[p]) == si) {
michael@0 241 huffcode[p++] = code;
michael@0 242 code++;
michael@0 243 }
michael@0 244 /* code is now 1 more than the last code used for codelength si; but
michael@0 245 * it must still fit in si bits, since no code is allowed to be all ones.
michael@0 246 */
michael@0 247 if (((INT32) code) >= (((INT32) 1) << si))
michael@0 248 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
michael@0 249 code <<= 1;
michael@0 250 si++;
michael@0 251 }
michael@0 252
michael@0 253 /* Figure C.3: generate encoding tables */
michael@0 254 /* These are code and size indexed by symbol value */
michael@0 255
michael@0 256 /* Set all codeless symbols to have code length 0;
michael@0 257 * this lets us detect duplicate VAL entries here, and later
michael@0 258 * allows emit_bits to detect any attempt to emit such symbols.
michael@0 259 */
michael@0 260 MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
michael@0 261
michael@0 262 /* This is also a convenient place to check for out-of-range
michael@0 263 * and duplicated VAL entries. We allow 0..255 for AC symbols
michael@0 264 * but only 0..15 for DC. (We could constrain them further
michael@0 265 * based on data depth and mode, but this seems enough.)
michael@0 266 */
michael@0 267 maxsymbol = isDC ? 15 : 255;
michael@0 268
michael@0 269 for (p = 0; p < lastp; p++) {
michael@0 270 i = htbl->huffval[p];
michael@0 271 if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
michael@0 272 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
michael@0 273 dtbl->ehufco[i] = huffcode[p];
michael@0 274 dtbl->ehufsi[i] = huffsize[p];
michael@0 275 }
michael@0 276 }
michael@0 277
michael@0 278
michael@0 279 /* Outputting bytes to the file */
michael@0 280
michael@0 281 /* Emit a byte, taking 'action' if must suspend. */
michael@0 282 #define emit_byte(state,val,action) \
michael@0 283 { *(state)->next_output_byte++ = (JOCTET) (val); \
michael@0 284 if (--(state)->free_in_buffer == 0) \
michael@0 285 if (! dump_buffer(state)) \
michael@0 286 { action; } }
michael@0 287
michael@0 288
michael@0 289 LOCAL(boolean)
michael@0 290 dump_buffer (working_state * state)
michael@0 291 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
michael@0 292 {
michael@0 293 struct jpeg_destination_mgr * dest = state->cinfo->dest;
michael@0 294
michael@0 295 if (! (*dest->empty_output_buffer) (state->cinfo))
michael@0 296 return FALSE;
michael@0 297 /* After a successful buffer dump, must reset buffer pointers */
michael@0 298 state->next_output_byte = dest->next_output_byte;
michael@0 299 state->free_in_buffer = dest->free_in_buffer;
michael@0 300 return TRUE;
michael@0 301 }
michael@0 302
michael@0 303
michael@0 304 /* Outputting bits to the file */
michael@0 305
michael@0 306 /* These macros perform the same task as the emit_bits() function in the
michael@0 307 * original libjpeg code. In addition to reducing overhead by explicitly
michael@0 308 * inlining the code, additional performance is achieved by taking into
michael@0 309 * account the size of the bit buffer and waiting until it is almost full
michael@0 310 * before emptying it. This mostly benefits 64-bit platforms, since 6
michael@0 311 * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
michael@0 312 */
michael@0 313
michael@0 314 #define EMIT_BYTE() { \
michael@0 315 JOCTET c; \
michael@0 316 put_bits -= 8; \
michael@0 317 c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
michael@0 318 *buffer++ = c; \
michael@0 319 if (c == 0xFF) /* need to stuff a zero byte? */ \
michael@0 320 *buffer++ = 0; \
michael@0 321 }
michael@0 322
michael@0 323 #define PUT_BITS(code, size) { \
michael@0 324 put_bits += size; \
michael@0 325 put_buffer = (put_buffer << size) | code; \
michael@0 326 }
michael@0 327
michael@0 328 #define CHECKBUF15() { \
michael@0 329 if (put_bits > 15) { \
michael@0 330 EMIT_BYTE() \
michael@0 331 EMIT_BYTE() \
michael@0 332 } \
michael@0 333 }
michael@0 334
michael@0 335 #define CHECKBUF31() { \
michael@0 336 if (put_bits > 31) { \
michael@0 337 EMIT_BYTE() \
michael@0 338 EMIT_BYTE() \
michael@0 339 EMIT_BYTE() \
michael@0 340 EMIT_BYTE() \
michael@0 341 } \
michael@0 342 }
michael@0 343
michael@0 344 #define CHECKBUF47() { \
michael@0 345 if (put_bits > 47) { \
michael@0 346 EMIT_BYTE() \
michael@0 347 EMIT_BYTE() \
michael@0 348 EMIT_BYTE() \
michael@0 349 EMIT_BYTE() \
michael@0 350 EMIT_BYTE() \
michael@0 351 EMIT_BYTE() \
michael@0 352 } \
michael@0 353 }
michael@0 354
michael@0 355 #if __WORDSIZE==64 || defined(_WIN64)
michael@0 356
michael@0 357 #define EMIT_BITS(code, size) { \
michael@0 358 CHECKBUF47() \
michael@0 359 PUT_BITS(code, size) \
michael@0 360 }
michael@0 361
michael@0 362 #define EMIT_CODE(code, size) { \
michael@0 363 temp2 &= (((INT32) 1)<<nbits) - 1; \
michael@0 364 CHECKBUF31() \
michael@0 365 PUT_BITS(code, size) \
michael@0 366 PUT_BITS(temp2, nbits) \
michael@0 367 }
michael@0 368
michael@0 369 #else
michael@0 370
michael@0 371 #define EMIT_BITS(code, size) { \
michael@0 372 PUT_BITS(code, size) \
michael@0 373 CHECKBUF15() \
michael@0 374 }
michael@0 375
michael@0 376 #define EMIT_CODE(code, size) { \
michael@0 377 temp2 &= (((INT32) 1)<<nbits) - 1; \
michael@0 378 PUT_BITS(code, size) \
michael@0 379 CHECKBUF15() \
michael@0 380 PUT_BITS(temp2, nbits) \
michael@0 381 CHECKBUF15() \
michael@0 382 }
michael@0 383
michael@0 384 #endif
michael@0 385
michael@0 386
michael@0 387 #define BUFSIZE (DCTSIZE2 * 2)
michael@0 388
michael@0 389 #define LOAD_BUFFER() { \
michael@0 390 if (state->free_in_buffer < BUFSIZE) { \
michael@0 391 localbuf = 1; \
michael@0 392 buffer = _buffer; \
michael@0 393 } \
michael@0 394 else buffer = state->next_output_byte; \
michael@0 395 }
michael@0 396
michael@0 397 #define STORE_BUFFER() { \
michael@0 398 if (localbuf) { \
michael@0 399 bytes = buffer - _buffer; \
michael@0 400 buffer = _buffer; \
michael@0 401 while (bytes > 0) { \
michael@0 402 bytestocopy = min(bytes, state->free_in_buffer); \
michael@0 403 MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
michael@0 404 state->next_output_byte += bytestocopy; \
michael@0 405 buffer += bytestocopy; \
michael@0 406 state->free_in_buffer -= bytestocopy; \
michael@0 407 if (state->free_in_buffer == 0) \
michael@0 408 if (! dump_buffer(state)) return FALSE; \
michael@0 409 bytes -= bytestocopy; \
michael@0 410 } \
michael@0 411 } \
michael@0 412 else { \
michael@0 413 state->free_in_buffer -= (buffer - state->next_output_byte); \
michael@0 414 state->next_output_byte = buffer; \
michael@0 415 } \
michael@0 416 }
michael@0 417
michael@0 418
michael@0 419 LOCAL(boolean)
michael@0 420 flush_bits (working_state * state)
michael@0 421 {
michael@0 422 JOCTET _buffer[BUFSIZE], *buffer;
michael@0 423 size_t put_buffer; int put_bits;
michael@0 424 size_t bytes, bytestocopy; int localbuf = 0;
michael@0 425
michael@0 426 put_buffer = state->cur.put_buffer;
michael@0 427 put_bits = state->cur.put_bits;
michael@0 428 LOAD_BUFFER()
michael@0 429
michael@0 430 /* fill any partial byte with ones */
michael@0 431 PUT_BITS(0x7F, 7)
michael@0 432 while (put_bits >= 8) EMIT_BYTE()
michael@0 433
michael@0 434 state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
michael@0 435 state->cur.put_bits = 0;
michael@0 436 STORE_BUFFER()
michael@0 437
michael@0 438 return TRUE;
michael@0 439 }
michael@0 440
michael@0 441
michael@0 442 /* Encode a single block's worth of coefficients */
michael@0 443
michael@0 444 LOCAL(boolean)
michael@0 445 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
michael@0 446 c_derived_tbl *dctbl, c_derived_tbl *actbl)
michael@0 447 {
michael@0 448 int temp, temp2, temp3;
michael@0 449 int nbits;
michael@0 450 int r, code, size;
michael@0 451 JOCTET _buffer[BUFSIZE], *buffer;
michael@0 452 size_t put_buffer; int put_bits;
michael@0 453 int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
michael@0 454 size_t bytes, bytestocopy; int localbuf = 0;
michael@0 455
michael@0 456 put_buffer = state->cur.put_buffer;
michael@0 457 put_bits = state->cur.put_bits;
michael@0 458 LOAD_BUFFER()
michael@0 459
michael@0 460 /* Encode the DC coefficient difference per section F.1.2.1 */
michael@0 461
michael@0 462 temp = temp2 = block[0] - last_dc_val;
michael@0 463
michael@0 464 /* This is a well-known technique for obtaining the absolute value without a
michael@0 465 * branch. It is derived from an assembly language technique presented in
michael@0 466 * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
michael@0 467 * Agner Fog.
michael@0 468 */
michael@0 469 temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
michael@0 470 temp ^= temp3;
michael@0 471 temp -= temp3;
michael@0 472
michael@0 473 /* For a negative input, want temp2 = bitwise complement of abs(input) */
michael@0 474 /* This code assumes we are on a two's complement machine */
michael@0 475 temp2 += temp3;
michael@0 476
michael@0 477 /* Find the number of bits needed for the magnitude of the coefficient */
michael@0 478 nbits = jpeg_nbits_table[temp];
michael@0 479
michael@0 480 /* Emit the Huffman-coded symbol for the number of bits */
michael@0 481 code = dctbl->ehufco[nbits];
michael@0 482 size = dctbl->ehufsi[nbits];
michael@0 483 PUT_BITS(code, size)
michael@0 484 CHECKBUF15()
michael@0 485
michael@0 486 /* Mask off any extra bits in code */
michael@0 487 temp2 &= (((INT32) 1)<<nbits) - 1;
michael@0 488
michael@0 489 /* Emit that number of bits of the value, if positive, */
michael@0 490 /* or the complement of its magnitude, if negative. */
michael@0 491 PUT_BITS(temp2, nbits)
michael@0 492 CHECKBUF15()
michael@0 493
michael@0 494 /* Encode the AC coefficients per section F.1.2.2 */
michael@0 495
michael@0 496 r = 0; /* r = run length of zeros */
michael@0 497
michael@0 498 /* Manually unroll the k loop to eliminate the counter variable. This
michael@0 499 * improves performance greatly on systems with a limited number of
michael@0 500 * registers (such as x86.)
michael@0 501 */
michael@0 502 #define kloop(jpeg_natural_order_of_k) { \
michael@0 503 if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
michael@0 504 r++; \
michael@0 505 } else { \
michael@0 506 temp2 = temp; \
michael@0 507 /* Branch-less absolute value, bitwise complement, etc., same as above */ \
michael@0 508 temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
michael@0 509 temp ^= temp3; \
michael@0 510 temp -= temp3; \
michael@0 511 temp2 += temp3; \
michael@0 512 nbits = jpeg_nbits_table[temp]; \
michael@0 513 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
michael@0 514 while (r > 15) { \
michael@0 515 EMIT_BITS(code_0xf0, size_0xf0) \
michael@0 516 r -= 16; \
michael@0 517 } \
michael@0 518 /* Emit Huffman symbol for run length / number of bits */ \
michael@0 519 temp3 = (r << 4) + nbits; \
michael@0 520 code = actbl->ehufco[temp3]; \
michael@0 521 size = actbl->ehufsi[temp3]; \
michael@0 522 EMIT_CODE(code, size) \
michael@0 523 r = 0; \
michael@0 524 } \
michael@0 525 }
michael@0 526
michael@0 527 /* One iteration for each value in jpeg_natural_order[] */
michael@0 528 kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3);
michael@0 529 kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18);
michael@0 530 kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26);
michael@0 531 kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27);
michael@0 532 kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21);
michael@0 533 kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57);
michael@0 534 kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15);
michael@0 535 kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58);
michael@0 536 kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39);
michael@0 537 kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47);
michael@0 538 kloop(55); kloop(62); kloop(63);
michael@0 539
michael@0 540 /* If the last coef(s) were zero, emit an end-of-block code */
michael@0 541 if (r > 0) {
michael@0 542 code = actbl->ehufco[0];
michael@0 543 size = actbl->ehufsi[0];
michael@0 544 EMIT_BITS(code, size)
michael@0 545 }
michael@0 546
michael@0 547 state->cur.put_buffer = put_buffer;
michael@0 548 state->cur.put_bits = put_bits;
michael@0 549 STORE_BUFFER()
michael@0 550
michael@0 551 return TRUE;
michael@0 552 }
michael@0 553
michael@0 554
michael@0 555 /*
michael@0 556 * Emit a restart marker & resynchronize predictions.
michael@0 557 */
michael@0 558
michael@0 559 LOCAL(boolean)
michael@0 560 emit_restart (working_state * state, int restart_num)
michael@0 561 {
michael@0 562 int ci;
michael@0 563
michael@0 564 if (! flush_bits(state))
michael@0 565 return FALSE;
michael@0 566
michael@0 567 emit_byte(state, 0xFF, return FALSE);
michael@0 568 emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
michael@0 569
michael@0 570 /* Re-initialize DC predictions to 0 */
michael@0 571 for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
michael@0 572 state->cur.last_dc_val[ci] = 0;
michael@0 573
michael@0 574 /* The restart counter is not updated until we successfully write the MCU. */
michael@0 575
michael@0 576 return TRUE;
michael@0 577 }
michael@0 578
michael@0 579
michael@0 580 /*
michael@0 581 * Encode and output one MCU's worth of Huffman-compressed coefficients.
michael@0 582 */
michael@0 583
michael@0 584 METHODDEF(boolean)
michael@0 585 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
michael@0 586 {
michael@0 587 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
michael@0 588 working_state state;
michael@0 589 int blkn, ci;
michael@0 590 jpeg_component_info * compptr;
michael@0 591
michael@0 592 /* Load up working state */
michael@0 593 state.next_output_byte = cinfo->dest->next_output_byte;
michael@0 594 state.free_in_buffer = cinfo->dest->free_in_buffer;
michael@0 595 ASSIGN_STATE(state.cur, entropy->saved);
michael@0 596 state.cinfo = cinfo;
michael@0 597
michael@0 598 /* Emit restart marker if needed */
michael@0 599 if (cinfo->restart_interval) {
michael@0 600 if (entropy->restarts_to_go == 0)
michael@0 601 if (! emit_restart(&state, entropy->next_restart_num))
michael@0 602 return FALSE;
michael@0 603 }
michael@0 604
michael@0 605 /* Encode the MCU data blocks */
michael@0 606 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
michael@0 607 ci = cinfo->MCU_membership[blkn];
michael@0 608 compptr = cinfo->cur_comp_info[ci];
michael@0 609 if (! encode_one_block(&state,
michael@0 610 MCU_data[blkn][0], state.cur.last_dc_val[ci],
michael@0 611 entropy->dc_derived_tbls[compptr->dc_tbl_no],
michael@0 612 entropy->ac_derived_tbls[compptr->ac_tbl_no]))
michael@0 613 return FALSE;
michael@0 614 /* Update last_dc_val */
michael@0 615 state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
michael@0 616 }
michael@0 617
michael@0 618 /* Completed MCU, so update state */
michael@0 619 cinfo->dest->next_output_byte = state.next_output_byte;
michael@0 620 cinfo->dest->free_in_buffer = state.free_in_buffer;
michael@0 621 ASSIGN_STATE(entropy->saved, state.cur);
michael@0 622
michael@0 623 /* Update restart-interval state too */
michael@0 624 if (cinfo->restart_interval) {
michael@0 625 if (entropy->restarts_to_go == 0) {
michael@0 626 entropy->restarts_to_go = cinfo->restart_interval;
michael@0 627 entropy->next_restart_num++;
michael@0 628 entropy->next_restart_num &= 7;
michael@0 629 }
michael@0 630 entropy->restarts_to_go--;
michael@0 631 }
michael@0 632
michael@0 633 return TRUE;
michael@0 634 }
michael@0 635
michael@0 636
michael@0 637 /*
michael@0 638 * Finish up at the end of a Huffman-compressed scan.
michael@0 639 */
michael@0 640
michael@0 641 METHODDEF(void)
michael@0 642 finish_pass_huff (j_compress_ptr cinfo)
michael@0 643 {
michael@0 644 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
michael@0 645 working_state state;
michael@0 646
michael@0 647 /* Load up working state ... flush_bits needs it */
michael@0 648 state.next_output_byte = cinfo->dest->next_output_byte;
michael@0 649 state.free_in_buffer = cinfo->dest->free_in_buffer;
michael@0 650 ASSIGN_STATE(state.cur, entropy->saved);
michael@0 651 state.cinfo = cinfo;
michael@0 652
michael@0 653 /* Flush out the last data */
michael@0 654 if (! flush_bits(&state))
michael@0 655 ERREXIT(cinfo, JERR_CANT_SUSPEND);
michael@0 656
michael@0 657 /* Update state */
michael@0 658 cinfo->dest->next_output_byte = state.next_output_byte;
michael@0 659 cinfo->dest->free_in_buffer = state.free_in_buffer;
michael@0 660 ASSIGN_STATE(entropy->saved, state.cur);
michael@0 661 }
michael@0 662
michael@0 663
michael@0 664 /*
michael@0 665 * Huffman coding optimization.
michael@0 666 *
michael@0 667 * We first scan the supplied data and count the number of uses of each symbol
michael@0 668 * that is to be Huffman-coded. (This process MUST agree with the code above.)
michael@0 669 * Then we build a Huffman coding tree for the observed counts.
michael@0 670 * Symbols which are not needed at all for the particular image are not
michael@0 671 * assigned any code, which saves space in the DHT marker as well as in
michael@0 672 * the compressed data.
michael@0 673 */
michael@0 674
michael@0 675 #ifdef ENTROPY_OPT_SUPPORTED
michael@0 676
michael@0 677
michael@0 678 /* Process a single block's worth of coefficients */
michael@0 679
michael@0 680 LOCAL(void)
michael@0 681 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
michael@0 682 long dc_counts[], long ac_counts[])
michael@0 683 {
michael@0 684 register int temp;
michael@0 685 register int nbits;
michael@0 686 register int k, r;
michael@0 687
michael@0 688 /* Encode the DC coefficient difference per section F.1.2.1 */
michael@0 689
michael@0 690 temp = block[0] - last_dc_val;
michael@0 691 if (temp < 0)
michael@0 692 temp = -temp;
michael@0 693
michael@0 694 /* Find the number of bits needed for the magnitude of the coefficient */
michael@0 695 nbits = 0;
michael@0 696 while (temp) {
michael@0 697 nbits++;
michael@0 698 temp >>= 1;
michael@0 699 }
michael@0 700 /* Check for out-of-range coefficient values.
michael@0 701 * Since we're encoding a difference, the range limit is twice as much.
michael@0 702 */
michael@0 703 if (nbits > MAX_COEF_BITS+1)
michael@0 704 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
michael@0 705
michael@0 706 /* Count the Huffman symbol for the number of bits */
michael@0 707 dc_counts[nbits]++;
michael@0 708
michael@0 709 /* Encode the AC coefficients per section F.1.2.2 */
michael@0 710
michael@0 711 r = 0; /* r = run length of zeros */
michael@0 712
michael@0 713 for (k = 1; k < DCTSIZE2; k++) {
michael@0 714 if ((temp = block[jpeg_natural_order[k]]) == 0) {
michael@0 715 r++;
michael@0 716 } else {
michael@0 717 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
michael@0 718 while (r > 15) {
michael@0 719 ac_counts[0xF0]++;
michael@0 720 r -= 16;
michael@0 721 }
michael@0 722
michael@0 723 /* Find the number of bits needed for the magnitude of the coefficient */
michael@0 724 if (temp < 0)
michael@0 725 temp = -temp;
michael@0 726
michael@0 727 /* Find the number of bits needed for the magnitude of the coefficient */
michael@0 728 nbits = 1; /* there must be at least one 1 bit */
michael@0 729 while ((temp >>= 1))
michael@0 730 nbits++;
michael@0 731 /* Check for out-of-range coefficient values */
michael@0 732 if (nbits > MAX_COEF_BITS)
michael@0 733 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
michael@0 734
michael@0 735 /* Count Huffman symbol for run length / number of bits */
michael@0 736 ac_counts[(r << 4) + nbits]++;
michael@0 737
michael@0 738 r = 0;
michael@0 739 }
michael@0 740 }
michael@0 741
michael@0 742 /* If the last coef(s) were zero, emit an end-of-block code */
michael@0 743 if (r > 0)
michael@0 744 ac_counts[0]++;
michael@0 745 }
michael@0 746
michael@0 747
michael@0 748 /*
michael@0 749 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
michael@0 750 * No data is actually output, so no suspension return is possible.
michael@0 751 */
michael@0 752
michael@0 753 METHODDEF(boolean)
michael@0 754 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
michael@0 755 {
michael@0 756 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
michael@0 757 int blkn, ci;
michael@0 758 jpeg_component_info * compptr;
michael@0 759
michael@0 760 /* Take care of restart intervals if needed */
michael@0 761 if (cinfo->restart_interval) {
michael@0 762 if (entropy->restarts_to_go == 0) {
michael@0 763 /* Re-initialize DC predictions to 0 */
michael@0 764 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
michael@0 765 entropy->saved.last_dc_val[ci] = 0;
michael@0 766 /* Update restart state */
michael@0 767 entropy->restarts_to_go = cinfo->restart_interval;
michael@0 768 }
michael@0 769 entropy->restarts_to_go--;
michael@0 770 }
michael@0 771
michael@0 772 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
michael@0 773 ci = cinfo->MCU_membership[blkn];
michael@0 774 compptr = cinfo->cur_comp_info[ci];
michael@0 775 htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
michael@0 776 entropy->dc_count_ptrs[compptr->dc_tbl_no],
michael@0 777 entropy->ac_count_ptrs[compptr->ac_tbl_no]);
michael@0 778 entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
michael@0 779 }
michael@0 780
michael@0 781 return TRUE;
michael@0 782 }
michael@0 783
michael@0 784
michael@0 785 /*
michael@0 786 * Generate the best Huffman code table for the given counts, fill htbl.
michael@0 787 * Note this is also used by jcphuff.c.
michael@0 788 *
michael@0 789 * The JPEG standard requires that no symbol be assigned a codeword of all
michael@0 790 * one bits (so that padding bits added at the end of a compressed segment
michael@0 791 * can't look like a valid code). Because of the canonical ordering of
michael@0 792 * codewords, this just means that there must be an unused slot in the
michael@0 793 * longest codeword length category. Section K.2 of the JPEG spec suggests
michael@0 794 * reserving such a slot by pretending that symbol 256 is a valid symbol
michael@0 795 * with count 1. In theory that's not optimal; giving it count zero but
michael@0 796 * including it in the symbol set anyway should give a better Huffman code.
michael@0 797 * But the theoretically better code actually seems to come out worse in
michael@0 798 * practice, because it produces more all-ones bytes (which incur stuffed
michael@0 799 * zero bytes in the final file). In any case the difference is tiny.
michael@0 800 *
michael@0 801 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
michael@0 802 * If some symbols have a very small but nonzero probability, the Huffman tree
michael@0 803 * must be adjusted to meet the code length restriction. We currently use
michael@0 804 * the adjustment method suggested in JPEG section K.2. This method is *not*
michael@0 805 * optimal; it may not choose the best possible limited-length code. But
michael@0 806 * typically only very-low-frequency symbols will be given less-than-optimal
michael@0 807 * lengths, so the code is almost optimal. Experimental comparisons against
michael@0 808 * an optimal limited-length-code algorithm indicate that the difference is
michael@0 809 * microscopic --- usually less than a hundredth of a percent of total size.
michael@0 810 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
michael@0 811 */
michael@0 812
michael@0 813 GLOBAL(void)
michael@0 814 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
michael@0 815 {
michael@0 816 #define MAX_CLEN 32 /* assumed maximum initial code length */
michael@0 817 UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
michael@0 818 int codesize[257]; /* codesize[k] = code length of symbol k */
michael@0 819 int others[257]; /* next symbol in current branch of tree */
michael@0 820 int c1, c2;
michael@0 821 int p, i, j;
michael@0 822 long v;
michael@0 823
michael@0 824 /* This algorithm is explained in section K.2 of the JPEG standard */
michael@0 825
michael@0 826 MEMZERO(bits, SIZEOF(bits));
michael@0 827 MEMZERO(codesize, SIZEOF(codesize));
michael@0 828 for (i = 0; i < 257; i++)
michael@0 829 others[i] = -1; /* init links to empty */
michael@0 830
michael@0 831 freq[256] = 1; /* make sure 256 has a nonzero count */
michael@0 832 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
michael@0 833 * that no real symbol is given code-value of all ones, because 256
michael@0 834 * will be placed last in the largest codeword category.
michael@0 835 */
michael@0 836
michael@0 837 /* Huffman's basic algorithm to assign optimal code lengths to symbols */
michael@0 838
michael@0 839 for (;;) {
michael@0 840 /* Find the smallest nonzero frequency, set c1 = its symbol */
michael@0 841 /* In case of ties, take the larger symbol number */
michael@0 842 c1 = -1;
michael@0 843 v = 1000000000L;
michael@0 844 for (i = 0; i <= 256; i++) {
michael@0 845 if (freq[i] && freq[i] <= v) {
michael@0 846 v = freq[i];
michael@0 847 c1 = i;
michael@0 848 }
michael@0 849 }
michael@0 850
michael@0 851 /* Find the next smallest nonzero frequency, set c2 = its symbol */
michael@0 852 /* In case of ties, take the larger symbol number */
michael@0 853 c2 = -1;
michael@0 854 v = 1000000000L;
michael@0 855 for (i = 0; i <= 256; i++) {
michael@0 856 if (freq[i] && freq[i] <= v && i != c1) {
michael@0 857 v = freq[i];
michael@0 858 c2 = i;
michael@0 859 }
michael@0 860 }
michael@0 861
michael@0 862 /* Done if we've merged everything into one frequency */
michael@0 863 if (c2 < 0)
michael@0 864 break;
michael@0 865
michael@0 866 /* Else merge the two counts/trees */
michael@0 867 freq[c1] += freq[c2];
michael@0 868 freq[c2] = 0;
michael@0 869
michael@0 870 /* Increment the codesize of everything in c1's tree branch */
michael@0 871 codesize[c1]++;
michael@0 872 while (others[c1] >= 0) {
michael@0 873 c1 = others[c1];
michael@0 874 codesize[c1]++;
michael@0 875 }
michael@0 876
michael@0 877 others[c1] = c2; /* chain c2 onto c1's tree branch */
michael@0 878
michael@0 879 /* Increment the codesize of everything in c2's tree branch */
michael@0 880 codesize[c2]++;
michael@0 881 while (others[c2] >= 0) {
michael@0 882 c2 = others[c2];
michael@0 883 codesize[c2]++;
michael@0 884 }
michael@0 885 }
michael@0 886
michael@0 887 /* Now count the number of symbols of each code length */
michael@0 888 for (i = 0; i <= 256; i++) {
michael@0 889 if (codesize[i]) {
michael@0 890 /* The JPEG standard seems to think that this can't happen, */
michael@0 891 /* but I'm paranoid... */
michael@0 892 if (codesize[i] > MAX_CLEN)
michael@0 893 ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
michael@0 894
michael@0 895 bits[codesize[i]]++;
michael@0 896 }
michael@0 897 }
michael@0 898
michael@0 899 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
michael@0 900 * Huffman procedure assigned any such lengths, we must adjust the coding.
michael@0 901 * Here is what the JPEG spec says about how this next bit works:
michael@0 902 * Since symbols are paired for the longest Huffman code, the symbols are
michael@0 903 * removed from this length category two at a time. The prefix for the pair
michael@0 904 * (which is one bit shorter) is allocated to one of the pair; then,
michael@0 905 * skipping the BITS entry for that prefix length, a code word from the next
michael@0 906 * shortest nonzero BITS entry is converted into a prefix for two code words
michael@0 907 * one bit longer.
michael@0 908 */
michael@0 909
michael@0 910 for (i = MAX_CLEN; i > 16; i--) {
michael@0 911 while (bits[i] > 0) {
michael@0 912 j = i - 2; /* find length of new prefix to be used */
michael@0 913 while (bits[j] == 0)
michael@0 914 j--;
michael@0 915
michael@0 916 bits[i] -= 2; /* remove two symbols */
michael@0 917 bits[i-1]++; /* one goes in this length */
michael@0 918 bits[j+1] += 2; /* two new symbols in this length */
michael@0 919 bits[j]--; /* symbol of this length is now a prefix */
michael@0 920 }
michael@0 921 }
michael@0 922
michael@0 923 /* Remove the count for the pseudo-symbol 256 from the largest codelength */
michael@0 924 while (bits[i] == 0) /* find largest codelength still in use */
michael@0 925 i--;
michael@0 926 bits[i]--;
michael@0 927
michael@0 928 /* Return final symbol counts (only for lengths 0..16) */
michael@0 929 MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
michael@0 930
michael@0 931 /* Return a list of the symbols sorted by code length */
michael@0 932 /* It's not real clear to me why we don't need to consider the codelength
michael@0 933 * changes made above, but the JPEG spec seems to think this works.
michael@0 934 */
michael@0 935 p = 0;
michael@0 936 for (i = 1; i <= MAX_CLEN; i++) {
michael@0 937 for (j = 0; j <= 255; j++) {
michael@0 938 if (codesize[j] == i) {
michael@0 939 htbl->huffval[p] = (UINT8) j;
michael@0 940 p++;
michael@0 941 }
michael@0 942 }
michael@0 943 }
michael@0 944
michael@0 945 /* Set sent_table FALSE so updated table will be written to JPEG file. */
michael@0 946 htbl->sent_table = FALSE;
michael@0 947 }
michael@0 948
michael@0 949
michael@0 950 /*
michael@0 951 * Finish up a statistics-gathering pass and create the new Huffman tables.
michael@0 952 */
michael@0 953
michael@0 954 METHODDEF(void)
michael@0 955 finish_pass_gather (j_compress_ptr cinfo)
michael@0 956 {
michael@0 957 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
michael@0 958 int ci, dctbl, actbl;
michael@0 959 jpeg_component_info * compptr;
michael@0 960 JHUFF_TBL **htblptr;
michael@0 961 boolean did_dc[NUM_HUFF_TBLS];
michael@0 962 boolean did_ac[NUM_HUFF_TBLS];
michael@0 963
michael@0 964 /* It's important not to apply jpeg_gen_optimal_table more than once
michael@0 965 * per table, because it clobbers the input frequency counts!
michael@0 966 */
michael@0 967 MEMZERO(did_dc, SIZEOF(did_dc));
michael@0 968 MEMZERO(did_ac, SIZEOF(did_ac));
michael@0 969
michael@0 970 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
michael@0 971 compptr = cinfo->cur_comp_info[ci];
michael@0 972 dctbl = compptr->dc_tbl_no;
michael@0 973 actbl = compptr->ac_tbl_no;
michael@0 974 if (! did_dc[dctbl]) {
michael@0 975 htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
michael@0 976 if (*htblptr == NULL)
michael@0 977 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
michael@0 978 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
michael@0 979 did_dc[dctbl] = TRUE;
michael@0 980 }
michael@0 981 if (! did_ac[actbl]) {
michael@0 982 htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
michael@0 983 if (*htblptr == NULL)
michael@0 984 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
michael@0 985 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
michael@0 986 did_ac[actbl] = TRUE;
michael@0 987 }
michael@0 988 }
michael@0 989 }
michael@0 990
michael@0 991
michael@0 992 #endif /* ENTROPY_OPT_SUPPORTED */
michael@0 993
michael@0 994
michael@0 995 /*
michael@0 996 * Module initialization routine for Huffman entropy encoding.
michael@0 997 */
michael@0 998
michael@0 999 GLOBAL(void)
michael@0 1000 jinit_huff_encoder (j_compress_ptr cinfo)
michael@0 1001 {
michael@0 1002 huff_entropy_ptr entropy;
michael@0 1003 int i;
michael@0 1004
michael@0 1005 entropy = (huff_entropy_ptr)
michael@0 1006 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
michael@0 1007 SIZEOF(huff_entropy_encoder));
michael@0 1008 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
michael@0 1009 entropy->pub.start_pass = start_pass_huff;
michael@0 1010
michael@0 1011 /* Mark tables unallocated */
michael@0 1012 for (i = 0; i < NUM_HUFF_TBLS; i++) {
michael@0 1013 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
michael@0 1014 #ifdef ENTROPY_OPT_SUPPORTED
michael@0 1015 entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
michael@0 1016 #endif
michael@0 1017 }
michael@0 1018 }

mercurial