media/libjpeg/jchuff.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * jchuff.c
     3  *
     4  * This file was part of the Independent JPEG Group's software:
     5  * Copyright (C) 1991-1997, Thomas G. Lane.
     6  * libjpeg-turbo Modifications:
     7  * Copyright (C) 2009-2011, D. R. Commander.
     8  * For conditions of distribution and use, see the accompanying README file.
     9  *
    10  * This file contains Huffman entropy encoding routines.
    11  *
    12  * Much of the complexity here has to do with supporting output suspension.
    13  * If the data destination module demands suspension, we want to be able to
    14  * back up to the start of the current MCU.  To do this, we copy state
    15  * variables into local working storage, and update them back to the
    16  * permanent JPEG objects only upon successful completion of an MCU.
    17  */
    19 #define JPEG_INTERNALS
    20 #include "jinclude.h"
    21 #include "jpeglib.h"
    22 #include "jchuff.h"		/* Declarations shared with jcphuff.c */
    23 #include <limits.h>
    25 static const unsigned char jpeg_nbits_table[65536] = {
    26 /* Number i needs jpeg_nbits_table[i] bits to be represented. */
    27 #include "jpeg_nbits_table.h"
    28 };
    30 #ifndef min
    31  #define min(a,b) ((a)<(b)?(a):(b))
    32 #endif
    35 /* Expanded entropy encoder object for Huffman encoding.
    36  *
    37  * The savable_state subrecord contains fields that change within an MCU,
    38  * but must not be updated permanently until we complete the MCU.
    39  */
    41 typedef struct {
    42   size_t put_buffer;		/* current bit-accumulation buffer */
    43   int put_bits;			/* # of bits now in it */
    44   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
    45 } savable_state;
    47 /* This macro is to work around compilers with missing or broken
    48  * structure assignment.  You'll need to fix this code if you have
    49  * such a compiler and you change MAX_COMPS_IN_SCAN.
    50  */
    52 #ifndef NO_STRUCT_ASSIGN
    53 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
    54 #else
    55 #if MAX_COMPS_IN_SCAN == 4
    56 #define ASSIGN_STATE(dest,src)  \
    57 	((dest).put_buffer = (src).put_buffer, \
    58 	 (dest).put_bits = (src).put_bits, \
    59 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
    60 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
    61 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
    62 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
    63 #endif
    64 #endif
    67 typedef struct {
    68   struct jpeg_entropy_encoder pub; /* public fields */
    70   savable_state saved;		/* Bit buffer & DC state at start of MCU */
    72   /* These fields are NOT loaded into local working state. */
    73   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
    74   int next_restart_num;		/* next restart number to write (0-7) */
    76   /* Pointers to derived tables (these workspaces have image lifespan) */
    77   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
    78   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
    80 #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
    81   long * dc_count_ptrs[NUM_HUFF_TBLS];
    82   long * ac_count_ptrs[NUM_HUFF_TBLS];
    83 #endif
    84 } huff_entropy_encoder;
    86 typedef huff_entropy_encoder * huff_entropy_ptr;
    88 /* Working state while writing an MCU.
    89  * This struct contains all the fields that are needed by subroutines.
    90  */
    92 typedef struct {
    93   JOCTET * next_output_byte;	/* => next byte to write in buffer */
    94   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
    95   savable_state cur;		/* Current bit buffer & DC state */
    96   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
    97 } working_state;
   100 /* Forward declarations */
   101 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
   102 					JBLOCKROW *MCU_data));
   103 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
   104 #ifdef ENTROPY_OPT_SUPPORTED
   105 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
   106 					  JBLOCKROW *MCU_data));
   107 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
   108 #endif
   111 /*
   112  * Initialize for a Huffman-compressed scan.
   113  * If gather_statistics is TRUE, we do not output anything during the scan,
   114  * just count the Huffman symbols used and generate Huffman code tables.
   115  */
   117 METHODDEF(void)
   118 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
   119 {
   120   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   121   int ci, dctbl, actbl;
   122   jpeg_component_info * compptr;
   124   if (gather_statistics) {
   125 #ifdef ENTROPY_OPT_SUPPORTED
   126     entropy->pub.encode_mcu = encode_mcu_gather;
   127     entropy->pub.finish_pass = finish_pass_gather;
   128 #else
   129     ERREXIT(cinfo, JERR_NOT_COMPILED);
   130 #endif
   131   } else {
   132     entropy->pub.encode_mcu = encode_mcu_huff;
   133     entropy->pub.finish_pass = finish_pass_huff;
   134   }
   136   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   137     compptr = cinfo->cur_comp_info[ci];
   138     dctbl = compptr->dc_tbl_no;
   139     actbl = compptr->ac_tbl_no;
   140     if (gather_statistics) {
   141 #ifdef ENTROPY_OPT_SUPPORTED
   142       /* Check for invalid table indexes */
   143       /* (make_c_derived_tbl does this in the other path) */
   144       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
   145 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
   146       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
   147 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
   148       /* Allocate and zero the statistics tables */
   149       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
   150       if (entropy->dc_count_ptrs[dctbl] == NULL)
   151 	entropy->dc_count_ptrs[dctbl] = (long *)
   152 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   153 				      257 * SIZEOF(long));
   154       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
   155       if (entropy->ac_count_ptrs[actbl] == NULL)
   156 	entropy->ac_count_ptrs[actbl] = (long *)
   157 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   158 				      257 * SIZEOF(long));
   159       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
   160 #endif
   161     } else {
   162       /* Compute derived values for Huffman tables */
   163       /* We may do this more than once for a table, but it's not expensive */
   164       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
   165 			      & entropy->dc_derived_tbls[dctbl]);
   166       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
   167 			      & entropy->ac_derived_tbls[actbl]);
   168     }
   169     /* Initialize DC predictions to 0 */
   170     entropy->saved.last_dc_val[ci] = 0;
   171   }
   173   /* Initialize bit buffer to empty */
   174   entropy->saved.put_buffer = 0;
   175   entropy->saved.put_bits = 0;
   177   /* Initialize restart stuff */
   178   entropy->restarts_to_go = cinfo->restart_interval;
   179   entropy->next_restart_num = 0;
   180 }
   183 /*
   184  * Compute the derived values for a Huffman table.
   185  * This routine also performs some validation checks on the table.
   186  *
   187  * Note this is also used by jcphuff.c.
   188  */
   190 GLOBAL(void)
   191 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
   192 			 c_derived_tbl ** pdtbl)
   193 {
   194   JHUFF_TBL *htbl;
   195   c_derived_tbl *dtbl;
   196   int p, i, l, lastp, si, maxsymbol;
   197   char huffsize[257];
   198   unsigned int huffcode[257];
   199   unsigned int code;
   201   /* Note that huffsize[] and huffcode[] are filled in code-length order,
   202    * paralleling the order of the symbols themselves in htbl->huffval[].
   203    */
   205   /* Find the input Huffman table */
   206   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
   207     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
   208   htbl =
   209     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
   210   if (htbl == NULL)
   211     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
   213   /* Allocate a workspace if we haven't already done so. */
   214   if (*pdtbl == NULL)
   215     *pdtbl = (c_derived_tbl *)
   216       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   217 				  SIZEOF(c_derived_tbl));
   218   dtbl = *pdtbl;
   220   /* Figure C.1: make table of Huffman code length for each symbol */
   222   p = 0;
   223   for (l = 1; l <= 16; l++) {
   224     i = (int) htbl->bits[l];
   225     if (i < 0 || p + i > 256)	/* protect against table overrun */
   226       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
   227     while (i--)
   228       huffsize[p++] = (char) l;
   229   }
   230   huffsize[p] = 0;
   231   lastp = p;
   233   /* Figure C.2: generate the codes themselves */
   234   /* We also validate that the counts represent a legal Huffman code tree. */
   236   code = 0;
   237   si = huffsize[0];
   238   p = 0;
   239   while (huffsize[p]) {
   240     while (((int) huffsize[p]) == si) {
   241       huffcode[p++] = code;
   242       code++;
   243     }
   244     /* code is now 1 more than the last code used for codelength si; but
   245      * it must still fit in si bits, since no code is allowed to be all ones.
   246      */
   247     if (((INT32) code) >= (((INT32) 1) << si))
   248       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
   249     code <<= 1;
   250     si++;
   251   }
   253   /* Figure C.3: generate encoding tables */
   254   /* These are code and size indexed by symbol value */
   256   /* Set all codeless symbols to have code length 0;
   257    * this lets us detect duplicate VAL entries here, and later
   258    * allows emit_bits to detect any attempt to emit such symbols.
   259    */
   260   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
   262   /* This is also a convenient place to check for out-of-range
   263    * and duplicated VAL entries.  We allow 0..255 for AC symbols
   264    * but only 0..15 for DC.  (We could constrain them further
   265    * based on data depth and mode, but this seems enough.)
   266    */
   267   maxsymbol = isDC ? 15 : 255;
   269   for (p = 0; p < lastp; p++) {
   270     i = htbl->huffval[p];
   271     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
   272       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
   273     dtbl->ehufco[i] = huffcode[p];
   274     dtbl->ehufsi[i] = huffsize[p];
   275   }
   276 }
   279 /* Outputting bytes to the file */
   281 /* Emit a byte, taking 'action' if must suspend. */
   282 #define emit_byte(state,val,action)  \
   283 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
   284 	  if (--(state)->free_in_buffer == 0)  \
   285 	    if (! dump_buffer(state))  \
   286 	      { action; } }
   289 LOCAL(boolean)
   290 dump_buffer (working_state * state)
   291 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
   292 {
   293   struct jpeg_destination_mgr * dest = state->cinfo->dest;
   295   if (! (*dest->empty_output_buffer) (state->cinfo))
   296     return FALSE;
   297   /* After a successful buffer dump, must reset buffer pointers */
   298   state->next_output_byte = dest->next_output_byte;
   299   state->free_in_buffer = dest->free_in_buffer;
   300   return TRUE;
   301 }
   304 /* Outputting bits to the file */
   306 /* These macros perform the same task as the emit_bits() function in the
   307  * original libjpeg code.  In addition to reducing overhead by explicitly
   308  * inlining the code, additional performance is achieved by taking into
   309  * account the size of the bit buffer and waiting until it is almost full
   310  * before emptying it.  This mostly benefits 64-bit platforms, since 6
   311  * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
   312  */
   314 #define EMIT_BYTE() { \
   315   JOCTET c; \
   316   put_bits -= 8; \
   317   c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
   318   *buffer++ = c; \
   319   if (c == 0xFF)  /* need to stuff a zero byte? */ \
   320     *buffer++ = 0; \
   321  }
   323 #define PUT_BITS(code, size) { \
   324   put_bits += size; \
   325   put_buffer = (put_buffer << size) | code; \
   326 }
   328 #define CHECKBUF15() { \
   329   if (put_bits > 15) { \
   330     EMIT_BYTE() \
   331     EMIT_BYTE() \
   332   } \
   333 }
   335 #define CHECKBUF31() { \
   336   if (put_bits > 31) { \
   337     EMIT_BYTE() \
   338     EMIT_BYTE() \
   339     EMIT_BYTE() \
   340     EMIT_BYTE() \
   341   } \
   342 }
   344 #define CHECKBUF47() { \
   345   if (put_bits > 47) { \
   346     EMIT_BYTE() \
   347     EMIT_BYTE() \
   348     EMIT_BYTE() \
   349     EMIT_BYTE() \
   350     EMIT_BYTE() \
   351     EMIT_BYTE() \
   352   } \
   353 }
   355 #if __WORDSIZE==64 || defined(_WIN64)
   357 #define EMIT_BITS(code, size) { \
   358   CHECKBUF47() \
   359   PUT_BITS(code, size) \
   360 }
   362 #define EMIT_CODE(code, size) { \
   363   temp2 &= (((INT32) 1)<<nbits) - 1; \
   364   CHECKBUF31() \
   365   PUT_BITS(code, size) \
   366   PUT_BITS(temp2, nbits) \
   367  }
   369 #else
   371 #define EMIT_BITS(code, size) { \
   372   PUT_BITS(code, size) \
   373   CHECKBUF15() \
   374 }
   376 #define EMIT_CODE(code, size) { \
   377   temp2 &= (((INT32) 1)<<nbits) - 1; \
   378   PUT_BITS(code, size) \
   379   CHECKBUF15() \
   380   PUT_BITS(temp2, nbits) \
   381   CHECKBUF15() \
   382  }
   384 #endif
   387 #define BUFSIZE (DCTSIZE2 * 2)
   389 #define LOAD_BUFFER() { \
   390   if (state->free_in_buffer < BUFSIZE) { \
   391     localbuf = 1; \
   392     buffer = _buffer; \
   393   } \
   394   else buffer = state->next_output_byte; \
   395  }
   397 #define STORE_BUFFER() { \
   398   if (localbuf) { \
   399     bytes = buffer - _buffer; \
   400     buffer = _buffer; \
   401     while (bytes > 0) { \
   402       bytestocopy = min(bytes, state->free_in_buffer); \
   403       MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
   404       state->next_output_byte += bytestocopy; \
   405       buffer += bytestocopy; \
   406       state->free_in_buffer -= bytestocopy; \
   407       if (state->free_in_buffer == 0) \
   408         if (! dump_buffer(state)) return FALSE; \
   409       bytes -= bytestocopy; \
   410     } \
   411   } \
   412   else { \
   413     state->free_in_buffer -= (buffer - state->next_output_byte); \
   414     state->next_output_byte = buffer; \
   415   } \
   416  }
   419 LOCAL(boolean)
   420 flush_bits (working_state * state)
   421 {
   422   JOCTET _buffer[BUFSIZE], *buffer;
   423   size_t put_buffer;  int put_bits;
   424   size_t bytes, bytestocopy;  int localbuf = 0;
   426   put_buffer = state->cur.put_buffer;
   427   put_bits = state->cur.put_bits;
   428   LOAD_BUFFER()
   430   /* fill any partial byte with ones */
   431   PUT_BITS(0x7F, 7)
   432   while (put_bits >= 8) EMIT_BYTE()
   434   state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
   435   state->cur.put_bits = 0;
   436   STORE_BUFFER()
   438   return TRUE;
   439 }
   442 /* Encode a single block's worth of coefficients */
   444 LOCAL(boolean)
   445 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
   446 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
   447 {
   448   int temp, temp2, temp3;
   449   int nbits;
   450   int r, code, size;
   451   JOCTET _buffer[BUFSIZE], *buffer;
   452   size_t put_buffer;  int put_bits;
   453   int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
   454   size_t bytes, bytestocopy;  int localbuf = 0;
   456   put_buffer = state->cur.put_buffer;
   457   put_bits = state->cur.put_bits;
   458   LOAD_BUFFER()
   460   /* Encode the DC coefficient difference per section F.1.2.1 */
   462   temp = temp2 = block[0] - last_dc_val;
   464  /* This is a well-known technique for obtaining the absolute value without a
   465   * branch.  It is derived from an assembly language technique presented in
   466   * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
   467   * Agner Fog.
   468   */
   469   temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
   470   temp ^= temp3;
   471   temp -= temp3;
   473   /* For a negative input, want temp2 = bitwise complement of abs(input) */
   474   /* This code assumes we are on a two's complement machine */
   475   temp2 += temp3;
   477   /* Find the number of bits needed for the magnitude of the coefficient */
   478   nbits = jpeg_nbits_table[temp];
   480   /* Emit the Huffman-coded symbol for the number of bits */
   481   code = dctbl->ehufco[nbits];
   482   size = dctbl->ehufsi[nbits];
   483   PUT_BITS(code, size)
   484   CHECKBUF15()
   486   /* Mask off any extra bits in code */
   487   temp2 &= (((INT32) 1)<<nbits) - 1;
   489   /* Emit that number of bits of the value, if positive, */
   490   /* or the complement of its magnitude, if negative. */
   491   PUT_BITS(temp2, nbits)
   492   CHECKBUF15()
   494   /* Encode the AC coefficients per section F.1.2.2 */
   496   r = 0;			/* r = run length of zeros */
   498 /* Manually unroll the k loop to eliminate the counter variable.  This
   499  * improves performance greatly on systems with a limited number of
   500  * registers (such as x86.)
   501  */
   502 #define kloop(jpeg_natural_order_of_k) {  \
   503   if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
   504     r++; \
   505   } else { \
   506     temp2 = temp; \
   507     /* Branch-less absolute value, bitwise complement, etc., same as above */ \
   508     temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
   509     temp ^= temp3; \
   510     temp -= temp3; \
   511     temp2 += temp3; \
   512     nbits = jpeg_nbits_table[temp]; \
   513     /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
   514     while (r > 15) { \
   515       EMIT_BITS(code_0xf0, size_0xf0) \
   516       r -= 16; \
   517     } \
   518     /* Emit Huffman symbol for run length / number of bits */ \
   519     temp3 = (r << 4) + nbits;  \
   520     code = actbl->ehufco[temp3]; \
   521     size = actbl->ehufsi[temp3]; \
   522     EMIT_CODE(code, size) \
   523     r = 0;  \
   524   } \
   525 }
   527   /* One iteration for each value in jpeg_natural_order[] */
   528   kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
   529   kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
   530   kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
   531   kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
   532   kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
   533   kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
   534   kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
   535   kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
   536   kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
   537   kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
   538   kloop(55);  kloop(62);  kloop(63);
   540   /* If the last coef(s) were zero, emit an end-of-block code */
   541   if (r > 0) {
   542     code = actbl->ehufco[0];
   543     size = actbl->ehufsi[0];
   544     EMIT_BITS(code, size)
   545   }
   547   state->cur.put_buffer = put_buffer;
   548   state->cur.put_bits = put_bits;
   549   STORE_BUFFER()
   551   return TRUE;
   552 }
   555 /*
   556  * Emit a restart marker & resynchronize predictions.
   557  */
   559 LOCAL(boolean)
   560 emit_restart (working_state * state, int restart_num)
   561 {
   562   int ci;
   564   if (! flush_bits(state))
   565     return FALSE;
   567   emit_byte(state, 0xFF, return FALSE);
   568   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
   570   /* Re-initialize DC predictions to 0 */
   571   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
   572     state->cur.last_dc_val[ci] = 0;
   574   /* The restart counter is not updated until we successfully write the MCU. */
   576   return TRUE;
   577 }
   580 /*
   581  * Encode and output one MCU's worth of Huffman-compressed coefficients.
   582  */
   584 METHODDEF(boolean)
   585 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
   586 {
   587   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   588   working_state state;
   589   int blkn, ci;
   590   jpeg_component_info * compptr;
   592   /* Load up working state */
   593   state.next_output_byte = cinfo->dest->next_output_byte;
   594   state.free_in_buffer = cinfo->dest->free_in_buffer;
   595   ASSIGN_STATE(state.cur, entropy->saved);
   596   state.cinfo = cinfo;
   598   /* Emit restart marker if needed */
   599   if (cinfo->restart_interval) {
   600     if (entropy->restarts_to_go == 0)
   601       if (! emit_restart(&state, entropy->next_restart_num))
   602 	return FALSE;
   603   }
   605   /* Encode the MCU data blocks */
   606   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   607     ci = cinfo->MCU_membership[blkn];
   608     compptr = cinfo->cur_comp_info[ci];
   609     if (! encode_one_block(&state,
   610 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
   611 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
   612 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
   613       return FALSE;
   614     /* Update last_dc_val */
   615     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
   616   }
   618   /* Completed MCU, so update state */
   619   cinfo->dest->next_output_byte = state.next_output_byte;
   620   cinfo->dest->free_in_buffer = state.free_in_buffer;
   621   ASSIGN_STATE(entropy->saved, state.cur);
   623   /* Update restart-interval state too */
   624   if (cinfo->restart_interval) {
   625     if (entropy->restarts_to_go == 0) {
   626       entropy->restarts_to_go = cinfo->restart_interval;
   627       entropy->next_restart_num++;
   628       entropy->next_restart_num &= 7;
   629     }
   630     entropy->restarts_to_go--;
   631   }
   633   return TRUE;
   634 }
   637 /*
   638  * Finish up at the end of a Huffman-compressed scan.
   639  */
   641 METHODDEF(void)
   642 finish_pass_huff (j_compress_ptr cinfo)
   643 {
   644   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   645   working_state state;
   647   /* Load up working state ... flush_bits needs it */
   648   state.next_output_byte = cinfo->dest->next_output_byte;
   649   state.free_in_buffer = cinfo->dest->free_in_buffer;
   650   ASSIGN_STATE(state.cur, entropy->saved);
   651   state.cinfo = cinfo;
   653   /* Flush out the last data */
   654   if (! flush_bits(&state))
   655     ERREXIT(cinfo, JERR_CANT_SUSPEND);
   657   /* Update state */
   658   cinfo->dest->next_output_byte = state.next_output_byte;
   659   cinfo->dest->free_in_buffer = state.free_in_buffer;
   660   ASSIGN_STATE(entropy->saved, state.cur);
   661 }
   664 /*
   665  * Huffman coding optimization.
   666  *
   667  * We first scan the supplied data and count the number of uses of each symbol
   668  * that is to be Huffman-coded. (This process MUST agree with the code above.)
   669  * Then we build a Huffman coding tree for the observed counts.
   670  * Symbols which are not needed at all for the particular image are not
   671  * assigned any code, which saves space in the DHT marker as well as in
   672  * the compressed data.
   673  */
   675 #ifdef ENTROPY_OPT_SUPPORTED
   678 /* Process a single block's worth of coefficients */
   680 LOCAL(void)
   681 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
   682 		 long dc_counts[], long ac_counts[])
   683 {
   684   register int temp;
   685   register int nbits;
   686   register int k, r;
   688   /* Encode the DC coefficient difference per section F.1.2.1 */
   690   temp = block[0] - last_dc_val;
   691   if (temp < 0)
   692     temp = -temp;
   694   /* Find the number of bits needed for the magnitude of the coefficient */
   695   nbits = 0;
   696   while (temp) {
   697     nbits++;
   698     temp >>= 1;
   699   }
   700   /* Check for out-of-range coefficient values.
   701    * Since we're encoding a difference, the range limit is twice as much.
   702    */
   703   if (nbits > MAX_COEF_BITS+1)
   704     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
   706   /* Count the Huffman symbol for the number of bits */
   707   dc_counts[nbits]++;
   709   /* Encode the AC coefficients per section F.1.2.2 */
   711   r = 0;			/* r = run length of zeros */
   713   for (k = 1; k < DCTSIZE2; k++) {
   714     if ((temp = block[jpeg_natural_order[k]]) == 0) {
   715       r++;
   716     } else {
   717       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
   718       while (r > 15) {
   719 	ac_counts[0xF0]++;
   720 	r -= 16;
   721       }
   723       /* Find the number of bits needed for the magnitude of the coefficient */
   724       if (temp < 0)
   725 	temp = -temp;
   727       /* Find the number of bits needed for the magnitude of the coefficient */
   728       nbits = 1;		/* there must be at least one 1 bit */
   729       while ((temp >>= 1))
   730 	nbits++;
   731       /* Check for out-of-range coefficient values */
   732       if (nbits > MAX_COEF_BITS)
   733 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
   735       /* Count Huffman symbol for run length / number of bits */
   736       ac_counts[(r << 4) + nbits]++;
   738       r = 0;
   739     }
   740   }
   742   /* If the last coef(s) were zero, emit an end-of-block code */
   743   if (r > 0)
   744     ac_counts[0]++;
   745 }
   748 /*
   749  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
   750  * No data is actually output, so no suspension return is possible.
   751  */
   753 METHODDEF(boolean)
   754 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
   755 {
   756   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   757   int blkn, ci;
   758   jpeg_component_info * compptr;
   760   /* Take care of restart intervals if needed */
   761   if (cinfo->restart_interval) {
   762     if (entropy->restarts_to_go == 0) {
   763       /* Re-initialize DC predictions to 0 */
   764       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
   765 	entropy->saved.last_dc_val[ci] = 0;
   766       /* Update restart state */
   767       entropy->restarts_to_go = cinfo->restart_interval;
   768     }
   769     entropy->restarts_to_go--;
   770   }
   772   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   773     ci = cinfo->MCU_membership[blkn];
   774     compptr = cinfo->cur_comp_info[ci];
   775     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
   776 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
   777 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
   778     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
   779   }
   781   return TRUE;
   782 }
   785 /*
   786  * Generate the best Huffman code table for the given counts, fill htbl.
   787  * Note this is also used by jcphuff.c.
   788  *
   789  * The JPEG standard requires that no symbol be assigned a codeword of all
   790  * one bits (so that padding bits added at the end of a compressed segment
   791  * can't look like a valid code).  Because of the canonical ordering of
   792  * codewords, this just means that there must be an unused slot in the
   793  * longest codeword length category.  Section K.2 of the JPEG spec suggests
   794  * reserving such a slot by pretending that symbol 256 is a valid symbol
   795  * with count 1.  In theory that's not optimal; giving it count zero but
   796  * including it in the symbol set anyway should give a better Huffman code.
   797  * But the theoretically better code actually seems to come out worse in
   798  * practice, because it produces more all-ones bytes (which incur stuffed
   799  * zero bytes in the final file).  In any case the difference is tiny.
   800  *
   801  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
   802  * If some symbols have a very small but nonzero probability, the Huffman tree
   803  * must be adjusted to meet the code length restriction.  We currently use
   804  * the adjustment method suggested in JPEG section K.2.  This method is *not*
   805  * optimal; it may not choose the best possible limited-length code.  But
   806  * typically only very-low-frequency symbols will be given less-than-optimal
   807  * lengths, so the code is almost optimal.  Experimental comparisons against
   808  * an optimal limited-length-code algorithm indicate that the difference is
   809  * microscopic --- usually less than a hundredth of a percent of total size.
   810  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
   811  */
   813 GLOBAL(void)
   814 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
   815 {
   816 #define MAX_CLEN 32		/* assumed maximum initial code length */
   817   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
   818   int codesize[257];		/* codesize[k] = code length of symbol k */
   819   int others[257];		/* next symbol in current branch of tree */
   820   int c1, c2;
   821   int p, i, j;
   822   long v;
   824   /* This algorithm is explained in section K.2 of the JPEG standard */
   826   MEMZERO(bits, SIZEOF(bits));
   827   MEMZERO(codesize, SIZEOF(codesize));
   828   for (i = 0; i < 257; i++)
   829     others[i] = -1;		/* init links to empty */
   831   freq[256] = 1;		/* make sure 256 has a nonzero count */
   832   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
   833    * that no real symbol is given code-value of all ones, because 256
   834    * will be placed last in the largest codeword category.
   835    */
   837   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
   839   for (;;) {
   840     /* Find the smallest nonzero frequency, set c1 = its symbol */
   841     /* In case of ties, take the larger symbol number */
   842     c1 = -1;
   843     v = 1000000000L;
   844     for (i = 0; i <= 256; i++) {
   845       if (freq[i] && freq[i] <= v) {
   846 	v = freq[i];
   847 	c1 = i;
   848       }
   849     }
   851     /* Find the next smallest nonzero frequency, set c2 = its symbol */
   852     /* In case of ties, take the larger symbol number */
   853     c2 = -1;
   854     v = 1000000000L;
   855     for (i = 0; i <= 256; i++) {
   856       if (freq[i] && freq[i] <= v && i != c1) {
   857 	v = freq[i];
   858 	c2 = i;
   859       }
   860     }
   862     /* Done if we've merged everything into one frequency */
   863     if (c2 < 0)
   864       break;
   866     /* Else merge the two counts/trees */
   867     freq[c1] += freq[c2];
   868     freq[c2] = 0;
   870     /* Increment the codesize of everything in c1's tree branch */
   871     codesize[c1]++;
   872     while (others[c1] >= 0) {
   873       c1 = others[c1];
   874       codesize[c1]++;
   875     }
   877     others[c1] = c2;		/* chain c2 onto c1's tree branch */
   879     /* Increment the codesize of everything in c2's tree branch */
   880     codesize[c2]++;
   881     while (others[c2] >= 0) {
   882       c2 = others[c2];
   883       codesize[c2]++;
   884     }
   885   }
   887   /* Now count the number of symbols of each code length */
   888   for (i = 0; i <= 256; i++) {
   889     if (codesize[i]) {
   890       /* The JPEG standard seems to think that this can't happen, */
   891       /* but I'm paranoid... */
   892       if (codesize[i] > MAX_CLEN)
   893 	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
   895       bits[codesize[i]]++;
   896     }
   897   }
   899   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
   900    * Huffman procedure assigned any such lengths, we must adjust the coding.
   901    * Here is what the JPEG spec says about how this next bit works:
   902    * Since symbols are paired for the longest Huffman code, the symbols are
   903    * removed from this length category two at a time.  The prefix for the pair
   904    * (which is one bit shorter) is allocated to one of the pair; then,
   905    * skipping the BITS entry for that prefix length, a code word from the next
   906    * shortest nonzero BITS entry is converted into a prefix for two code words
   907    * one bit longer.
   908    */
   910   for (i = MAX_CLEN; i > 16; i--) {
   911     while (bits[i] > 0) {
   912       j = i - 2;		/* find length of new prefix to be used */
   913       while (bits[j] == 0)
   914 	j--;
   916       bits[i] -= 2;		/* remove two symbols */
   917       bits[i-1]++;		/* one goes in this length */
   918       bits[j+1] += 2;		/* two new symbols in this length */
   919       bits[j]--;		/* symbol of this length is now a prefix */
   920     }
   921   }
   923   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
   924   while (bits[i] == 0)		/* find largest codelength still in use */
   925     i--;
   926   bits[i]--;
   928   /* Return final symbol counts (only for lengths 0..16) */
   929   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
   931   /* Return a list of the symbols sorted by code length */
   932   /* It's not real clear to me why we don't need to consider the codelength
   933    * changes made above, but the JPEG spec seems to think this works.
   934    */
   935   p = 0;
   936   for (i = 1; i <= MAX_CLEN; i++) {
   937     for (j = 0; j <= 255; j++) {
   938       if (codesize[j] == i) {
   939 	htbl->huffval[p] = (UINT8) j;
   940 	p++;
   941       }
   942     }
   943   }
   945   /* Set sent_table FALSE so updated table will be written to JPEG file. */
   946   htbl->sent_table = FALSE;
   947 }
   950 /*
   951  * Finish up a statistics-gathering pass and create the new Huffman tables.
   952  */
   954 METHODDEF(void)
   955 finish_pass_gather (j_compress_ptr cinfo)
   956 {
   957   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   958   int ci, dctbl, actbl;
   959   jpeg_component_info * compptr;
   960   JHUFF_TBL **htblptr;
   961   boolean did_dc[NUM_HUFF_TBLS];
   962   boolean did_ac[NUM_HUFF_TBLS];
   964   /* It's important not to apply jpeg_gen_optimal_table more than once
   965    * per table, because it clobbers the input frequency counts!
   966    */
   967   MEMZERO(did_dc, SIZEOF(did_dc));
   968   MEMZERO(did_ac, SIZEOF(did_ac));
   970   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   971     compptr = cinfo->cur_comp_info[ci];
   972     dctbl = compptr->dc_tbl_no;
   973     actbl = compptr->ac_tbl_no;
   974     if (! did_dc[dctbl]) {
   975       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
   976       if (*htblptr == NULL)
   977 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
   978       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
   979       did_dc[dctbl] = TRUE;
   980     }
   981     if (! did_ac[actbl]) {
   982       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
   983       if (*htblptr == NULL)
   984 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
   985       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
   986       did_ac[actbl] = TRUE;
   987     }
   988   }
   989 }
   992 #endif /* ENTROPY_OPT_SUPPORTED */
   995 /*
   996  * Module initialization routine for Huffman entropy encoding.
   997  */
   999 GLOBAL(void)
  1000 jinit_huff_encoder (j_compress_ptr cinfo)
  1002   huff_entropy_ptr entropy;
  1003   int i;
  1005   entropy = (huff_entropy_ptr)
  1006     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  1007 				SIZEOF(huff_entropy_encoder));
  1008   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
  1009   entropy->pub.start_pass = start_pass_huff;
  1011   /* Mark tables unallocated */
  1012   for (i = 0; i < NUM_HUFF_TBLS; i++) {
  1013     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
  1014 #ifdef ENTROPY_OPT_SUPPORTED
  1015     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
  1016 #endif

mercurial