media/libjpeg/jfdctflt.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

michael@0 1 /*
michael@0 2 * jfdctflt.c
michael@0 3 *
michael@0 4 * Copyright (C) 1994-1996, Thomas G. Lane.
michael@0 5 * This file is part of the Independent JPEG Group's software.
michael@0 6 * For conditions of distribution and use, see the accompanying README file.
michael@0 7 *
michael@0 8 * This file contains a floating-point implementation of the
michael@0 9 * forward DCT (Discrete Cosine Transform).
michael@0 10 *
michael@0 11 * This implementation should be more accurate than either of the integer
michael@0 12 * DCT implementations. However, it may not give the same results on all
michael@0 13 * machines because of differences in roundoff behavior. Speed will depend
michael@0 14 * on the hardware's floating point capacity.
michael@0 15 *
michael@0 16 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
michael@0 17 * on each column. Direct algorithms are also available, but they are
michael@0 18 * much more complex and seem not to be any faster when reduced to code.
michael@0 19 *
michael@0 20 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
michael@0 21 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
michael@0 22 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
michael@0 23 * JPEG textbook (see REFERENCES section in file README). The following code
michael@0 24 * is based directly on figure 4-8 in P&M.
michael@0 25 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
michael@0 26 * possible to arrange the computation so that many of the multiplies are
michael@0 27 * simple scalings of the final outputs. These multiplies can then be
michael@0 28 * folded into the multiplications or divisions by the JPEG quantization
michael@0 29 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
michael@0 30 * to be done in the DCT itself.
michael@0 31 * The primary disadvantage of this method is that with a fixed-point
michael@0 32 * implementation, accuracy is lost due to imprecise representation of the
michael@0 33 * scaled quantization values. However, that problem does not arise if
michael@0 34 * we use floating point arithmetic.
michael@0 35 */
michael@0 36
michael@0 37 #define JPEG_INTERNALS
michael@0 38 #include "jinclude.h"
michael@0 39 #include "jpeglib.h"
michael@0 40 #include "jdct.h" /* Private declarations for DCT subsystem */
michael@0 41
michael@0 42 #ifdef DCT_FLOAT_SUPPORTED
michael@0 43
michael@0 44
michael@0 45 /*
michael@0 46 * This module is specialized to the case DCTSIZE = 8.
michael@0 47 */
michael@0 48
michael@0 49 #if DCTSIZE != 8
michael@0 50 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
michael@0 51 #endif
michael@0 52
michael@0 53
michael@0 54 /*
michael@0 55 * Perform the forward DCT on one block of samples.
michael@0 56 */
michael@0 57
michael@0 58 GLOBAL(void)
michael@0 59 jpeg_fdct_float (FAST_FLOAT * data)
michael@0 60 {
michael@0 61 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
michael@0 62 FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
michael@0 63 FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
michael@0 64 FAST_FLOAT *dataptr;
michael@0 65 int ctr;
michael@0 66
michael@0 67 /* Pass 1: process rows. */
michael@0 68
michael@0 69 dataptr = data;
michael@0 70 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
michael@0 71 tmp0 = dataptr[0] + dataptr[7];
michael@0 72 tmp7 = dataptr[0] - dataptr[7];
michael@0 73 tmp1 = dataptr[1] + dataptr[6];
michael@0 74 tmp6 = dataptr[1] - dataptr[6];
michael@0 75 tmp2 = dataptr[2] + dataptr[5];
michael@0 76 tmp5 = dataptr[2] - dataptr[5];
michael@0 77 tmp3 = dataptr[3] + dataptr[4];
michael@0 78 tmp4 = dataptr[3] - dataptr[4];
michael@0 79
michael@0 80 /* Even part */
michael@0 81
michael@0 82 tmp10 = tmp0 + tmp3; /* phase 2 */
michael@0 83 tmp13 = tmp0 - tmp3;
michael@0 84 tmp11 = tmp1 + tmp2;
michael@0 85 tmp12 = tmp1 - tmp2;
michael@0 86
michael@0 87 dataptr[0] = tmp10 + tmp11; /* phase 3 */
michael@0 88 dataptr[4] = tmp10 - tmp11;
michael@0 89
michael@0 90 z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
michael@0 91 dataptr[2] = tmp13 + z1; /* phase 5 */
michael@0 92 dataptr[6] = tmp13 - z1;
michael@0 93
michael@0 94 /* Odd part */
michael@0 95
michael@0 96 tmp10 = tmp4 + tmp5; /* phase 2 */
michael@0 97 tmp11 = tmp5 + tmp6;
michael@0 98 tmp12 = tmp6 + tmp7;
michael@0 99
michael@0 100 /* The rotator is modified from fig 4-8 to avoid extra negations. */
michael@0 101 z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
michael@0 102 z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
michael@0 103 z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
michael@0 104 z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
michael@0 105
michael@0 106 z11 = tmp7 + z3; /* phase 5 */
michael@0 107 z13 = tmp7 - z3;
michael@0 108
michael@0 109 dataptr[5] = z13 + z2; /* phase 6 */
michael@0 110 dataptr[3] = z13 - z2;
michael@0 111 dataptr[1] = z11 + z4;
michael@0 112 dataptr[7] = z11 - z4;
michael@0 113
michael@0 114 dataptr += DCTSIZE; /* advance pointer to next row */
michael@0 115 }
michael@0 116
michael@0 117 /* Pass 2: process columns. */
michael@0 118
michael@0 119 dataptr = data;
michael@0 120 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
michael@0 121 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
michael@0 122 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
michael@0 123 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
michael@0 124 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
michael@0 125 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
michael@0 126 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
michael@0 127 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
michael@0 128 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
michael@0 129
michael@0 130 /* Even part */
michael@0 131
michael@0 132 tmp10 = tmp0 + tmp3; /* phase 2 */
michael@0 133 tmp13 = tmp0 - tmp3;
michael@0 134 tmp11 = tmp1 + tmp2;
michael@0 135 tmp12 = tmp1 - tmp2;
michael@0 136
michael@0 137 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
michael@0 138 dataptr[DCTSIZE*4] = tmp10 - tmp11;
michael@0 139
michael@0 140 z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
michael@0 141 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
michael@0 142 dataptr[DCTSIZE*6] = tmp13 - z1;
michael@0 143
michael@0 144 /* Odd part */
michael@0 145
michael@0 146 tmp10 = tmp4 + tmp5; /* phase 2 */
michael@0 147 tmp11 = tmp5 + tmp6;
michael@0 148 tmp12 = tmp6 + tmp7;
michael@0 149
michael@0 150 /* The rotator is modified from fig 4-8 to avoid extra negations. */
michael@0 151 z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
michael@0 152 z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
michael@0 153 z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
michael@0 154 z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
michael@0 155
michael@0 156 z11 = tmp7 + z3; /* phase 5 */
michael@0 157 z13 = tmp7 - z3;
michael@0 158
michael@0 159 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
michael@0 160 dataptr[DCTSIZE*3] = z13 - z2;
michael@0 161 dataptr[DCTSIZE*1] = z11 + z4;
michael@0 162 dataptr[DCTSIZE*7] = z11 - z4;
michael@0 163
michael@0 164 dataptr++; /* advance pointer to next column */
michael@0 165 }
michael@0 166 }
michael@0 167
michael@0 168 #endif /* DCT_FLOAT_SUPPORTED */

mercurial