media/libjpeg/jfdctflt.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * jfdctflt.c
     3  *
     4  * Copyright (C) 1994-1996, Thomas G. Lane.
     5  * This file is part of the Independent JPEG Group's software.
     6  * For conditions of distribution and use, see the accompanying README file.
     7  *
     8  * This file contains a floating-point implementation of the
     9  * forward DCT (Discrete Cosine Transform).
    10  *
    11  * This implementation should be more accurate than either of the integer
    12  * DCT implementations.  However, it may not give the same results on all
    13  * machines because of differences in roundoff behavior.  Speed will depend
    14  * on the hardware's floating point capacity.
    15  *
    16  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
    17  * on each column.  Direct algorithms are also available, but they are
    18  * much more complex and seem not to be any faster when reduced to code.
    19  *
    20  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
    21  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
    22  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
    23  * JPEG textbook (see REFERENCES section in file README).  The following code
    24  * is based directly on figure 4-8 in P&M.
    25  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
    26  * possible to arrange the computation so that many of the multiplies are
    27  * simple scalings of the final outputs.  These multiplies can then be
    28  * folded into the multiplications or divisions by the JPEG quantization
    29  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
    30  * to be done in the DCT itself.
    31  * The primary disadvantage of this method is that with a fixed-point
    32  * implementation, accuracy is lost due to imprecise representation of the
    33  * scaled quantization values.  However, that problem does not arise if
    34  * we use floating point arithmetic.
    35  */
    37 #define JPEG_INTERNALS
    38 #include "jinclude.h"
    39 #include "jpeglib.h"
    40 #include "jdct.h"		/* Private declarations for DCT subsystem */
    42 #ifdef DCT_FLOAT_SUPPORTED
    45 /*
    46  * This module is specialized to the case DCTSIZE = 8.
    47  */
    49 #if DCTSIZE != 8
    50   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
    51 #endif
    54 /*
    55  * Perform the forward DCT on one block of samples.
    56  */
    58 GLOBAL(void)
    59 jpeg_fdct_float (FAST_FLOAT * data)
    60 {
    61   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
    62   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
    63   FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
    64   FAST_FLOAT *dataptr;
    65   int ctr;
    67   /* Pass 1: process rows. */
    69   dataptr = data;
    70   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    71     tmp0 = dataptr[0] + dataptr[7];
    72     tmp7 = dataptr[0] - dataptr[7];
    73     tmp1 = dataptr[1] + dataptr[6];
    74     tmp6 = dataptr[1] - dataptr[6];
    75     tmp2 = dataptr[2] + dataptr[5];
    76     tmp5 = dataptr[2] - dataptr[5];
    77     tmp3 = dataptr[3] + dataptr[4];
    78     tmp4 = dataptr[3] - dataptr[4];
    80     /* Even part */
    82     tmp10 = tmp0 + tmp3;	/* phase 2 */
    83     tmp13 = tmp0 - tmp3;
    84     tmp11 = tmp1 + tmp2;
    85     tmp12 = tmp1 - tmp2;
    87     dataptr[0] = tmp10 + tmp11; /* phase 3 */
    88     dataptr[4] = tmp10 - tmp11;
    90     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
    91     dataptr[2] = tmp13 + z1;	/* phase 5 */
    92     dataptr[6] = tmp13 - z1;
    94     /* Odd part */
    96     tmp10 = tmp4 + tmp5;	/* phase 2 */
    97     tmp11 = tmp5 + tmp6;
    98     tmp12 = tmp6 + tmp7;
   100     /* The rotator is modified from fig 4-8 to avoid extra negations. */
   101     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
   102     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
   103     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
   104     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
   106     z11 = tmp7 + z3;		/* phase 5 */
   107     z13 = tmp7 - z3;
   109     dataptr[5] = z13 + z2;	/* phase 6 */
   110     dataptr[3] = z13 - z2;
   111     dataptr[1] = z11 + z4;
   112     dataptr[7] = z11 - z4;
   114     dataptr += DCTSIZE;		/* advance pointer to next row */
   115   }
   117   /* Pass 2: process columns. */
   119   dataptr = data;
   120   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   121     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
   122     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
   123     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
   124     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
   125     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
   126     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
   127     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
   128     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
   130     /* Even part */
   132     tmp10 = tmp0 + tmp3;	/* phase 2 */
   133     tmp13 = tmp0 - tmp3;
   134     tmp11 = tmp1 + tmp2;
   135     tmp12 = tmp1 - tmp2;
   137     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
   138     dataptr[DCTSIZE*4] = tmp10 - tmp11;
   140     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
   141     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
   142     dataptr[DCTSIZE*6] = tmp13 - z1;
   144     /* Odd part */
   146     tmp10 = tmp4 + tmp5;	/* phase 2 */
   147     tmp11 = tmp5 + tmp6;
   148     tmp12 = tmp6 + tmp7;
   150     /* The rotator is modified from fig 4-8 to avoid extra negations. */
   151     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
   152     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
   153     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
   154     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
   156     z11 = tmp7 + z3;		/* phase 5 */
   157     z13 = tmp7 - z3;
   159     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
   160     dataptr[DCTSIZE*3] = z13 - z2;
   161     dataptr[DCTSIZE*1] = z11 + z4;
   162     dataptr[DCTSIZE*7] = z11 - z4;
   164     dataptr++;			/* advance pointer to next column */
   165   }
   166 }
   168 #endif /* DCT_FLOAT_SUPPORTED */

mercurial