security/nss/lib/freebl/sha_fast.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

michael@0 1 /* This Source Code Form is subject to the terms of the Mozilla Public
michael@0 2 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 4
michael@0 5 #ifdef FREEBL_NO_DEPEND
michael@0 6 #include "stubs.h"
michael@0 7 #endif
michael@0 8
michael@0 9 #include <memory.h>
michael@0 10 #include "blapi.h"
michael@0 11 #include "sha_fast.h"
michael@0 12 #include "prerror.h"
michael@0 13
michael@0 14 #ifdef TRACING_SSL
michael@0 15 #include "ssl.h"
michael@0 16 #include "ssltrace.h"
michael@0 17 #endif
michael@0 18
michael@0 19 static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain);
michael@0 20
michael@0 21 #define W u.w
michael@0 22 #define B u.b
michael@0 23
michael@0 24
michael@0 25 #define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z))
michael@0 26 #define SHA_F2(X,Y,Z) ((X)^(Y)^(Z))
michael@0 27 #define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y))))
michael@0 28 #define SHA_F4(X,Y,Z) ((X)^(Y)^(Z))
michael@0 29
michael@0 30 #define SHA_MIX(n,a,b,c) XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1)
michael@0 31
michael@0 32 /*
michael@0 33 * SHA: initialize context
michael@0 34 */
michael@0 35 void
michael@0 36 SHA1_Begin(SHA1Context *ctx)
michael@0 37 {
michael@0 38 ctx->size = 0;
michael@0 39 /*
michael@0 40 * Initialize H with constants from FIPS180-1.
michael@0 41 */
michael@0 42 ctx->H[0] = 0x67452301L;
michael@0 43 ctx->H[1] = 0xefcdab89L;
michael@0 44 ctx->H[2] = 0x98badcfeL;
michael@0 45 ctx->H[3] = 0x10325476L;
michael@0 46 ctx->H[4] = 0xc3d2e1f0L;
michael@0 47 }
michael@0 48
michael@0 49 /* Explanation of H array and index values:
michael@0 50 * The context's H array is actually the concatenation of two arrays
michael@0 51 * defined by SHA1, the H array of state variables (5 elements),
michael@0 52 * and the W array of intermediate values, of which there are 16 elements.
michael@0 53 * The W array starts at H[5], that is W[0] is H[5].
michael@0 54 * Although these values are defined as 32-bit values, we use 64-bit
michael@0 55 * variables to hold them because the AMD64 stores 64 bit values in
michael@0 56 * memory MUCH faster than it stores any smaller values.
michael@0 57 *
michael@0 58 * Rather than passing the context structure to shaCompress, we pass
michael@0 59 * this combined array of H and W values. We do not pass the address
michael@0 60 * of the first element of this array, but rather pass the address of an
michael@0 61 * element in the middle of the array, element X. Presently X[0] is H[11].
michael@0 62 * So we pass the address of H[11] as the address of array X to shaCompress.
michael@0 63 * Then shaCompress accesses the members of the array using positive AND
michael@0 64 * negative indexes.
michael@0 65 *
michael@0 66 * Pictorially: (each element is 8 bytes)
michael@0 67 * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
michael@0 68 * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
michael@0 69 *
michael@0 70 * The byte offset from X[0] to any member of H and W is always
michael@0 71 * representable in a signed 8-bit value, which will be encoded
michael@0 72 * as a single byte offset in the X86-64 instruction set.
michael@0 73 * If we didn't pass the address of H[11], and instead passed the
michael@0 74 * address of H[0], the offsets to elements H[16] and above would be
michael@0 75 * greater than 127, not representable in a signed 8-bit value, and the
michael@0 76 * x86-64 instruction set would encode every such offset as a 32-bit
michael@0 77 * signed number in each instruction that accessed element H[16] or
michael@0 78 * higher. This results in much bigger and slower code.
michael@0 79 */
michael@0 80 #if !defined(SHA_PUT_W_IN_STACK)
michael@0 81 #define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
michael@0 82 #define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */
michael@0 83 #else
michael@0 84 #define H2X 0
michael@0 85 #endif
michael@0 86
michael@0 87 /*
michael@0 88 * SHA: Add data to context.
michael@0 89 */
michael@0 90 void
michael@0 91 SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len)
michael@0 92 {
michael@0 93 register unsigned int lenB;
michael@0 94 register unsigned int togo;
michael@0 95
michael@0 96 if (!len)
michael@0 97 return;
michael@0 98
michael@0 99 /* accumulate the byte count. */
michael@0 100 lenB = (unsigned int)(ctx->size) & 63U;
michael@0 101
michael@0 102 ctx->size += len;
michael@0 103
michael@0 104 /*
michael@0 105 * Read the data into W and process blocks as they get full
michael@0 106 */
michael@0 107 if (lenB > 0) {
michael@0 108 togo = 64U - lenB;
michael@0 109 if (len < togo)
michael@0 110 togo = len;
michael@0 111 memcpy(ctx->B + lenB, dataIn, togo);
michael@0 112 len -= togo;
michael@0 113 dataIn += togo;
michael@0 114 lenB = (lenB + togo) & 63U;
michael@0 115 if (!lenB) {
michael@0 116 shaCompress(&ctx->H[H2X], ctx->W);
michael@0 117 }
michael@0 118 }
michael@0 119 #if !defined(SHA_ALLOW_UNALIGNED_ACCESS)
michael@0 120 if ((ptrdiff_t)dataIn % sizeof(PRUint32)) {
michael@0 121 while (len >= 64U) {
michael@0 122 memcpy(ctx->B, dataIn, 64);
michael@0 123 len -= 64U;
michael@0 124 shaCompress(&ctx->H[H2X], ctx->W);
michael@0 125 dataIn += 64U;
michael@0 126 }
michael@0 127 } else
michael@0 128 #endif
michael@0 129 {
michael@0 130 while (len >= 64U) {
michael@0 131 len -= 64U;
michael@0 132 shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn);
michael@0 133 dataIn += 64U;
michael@0 134 }
michael@0 135 }
michael@0 136 if (len) {
michael@0 137 memcpy(ctx->B, dataIn, len);
michael@0 138 }
michael@0 139 }
michael@0 140
michael@0 141
michael@0 142 /*
michael@0 143 * SHA: Generate hash value from context
michael@0 144 */
michael@0 145 void
michael@0 146 SHA1_End(SHA1Context *ctx, unsigned char *hashout,
michael@0 147 unsigned int *pDigestLen, unsigned int maxDigestLen)
michael@0 148 {
michael@0 149 register PRUint64 size;
michael@0 150 register PRUint32 lenB;
michael@0 151 PRUint32 tmpbuf[5];
michael@0 152
michael@0 153 static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0,
michael@0 154 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
michael@0 155 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
michael@0 156 #define tmp lenB
michael@0 157
michael@0 158 PORT_Assert (maxDigestLen >= SHA1_LENGTH);
michael@0 159
michael@0 160 /*
michael@0 161 * Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits
michael@0 162 */
michael@0 163 size = ctx->size;
michael@0 164
michael@0 165 lenB = (PRUint32)size & 63;
michael@0 166 SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1);
michael@0 167 PORT_Assert(((PRUint32)ctx->size & 63) == 56);
michael@0 168 /* Convert size from bytes to bits. */
michael@0 169 size <<= 3;
michael@0 170 ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32));
michael@0 171 ctx->W[15] = SHA_HTONL((PRUint32)size);
michael@0 172 shaCompress(&ctx->H[H2X], ctx->W);
michael@0 173
michael@0 174 /*
michael@0 175 * Output hash
michael@0 176 */
michael@0 177 SHA_STORE_RESULT;
michael@0 178 if (pDigestLen) {
michael@0 179 *pDigestLen = SHA1_LENGTH;
michael@0 180 }
michael@0 181 #undef tmp
michael@0 182 }
michael@0 183
michael@0 184 void
michael@0 185 SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout,
michael@0 186 unsigned int *pDigestLen, unsigned int maxDigestLen)
michael@0 187 {
michael@0 188 #if defined(SHA_NEED_TMP_VARIABLE)
michael@0 189 register PRUint32 tmp;
michael@0 190 #endif
michael@0 191 PRUint32 tmpbuf[5];
michael@0 192 PORT_Assert (maxDigestLen >= SHA1_LENGTH);
michael@0 193
michael@0 194 SHA_STORE_RESULT;
michael@0 195 if (pDigestLen)
michael@0 196 *pDigestLen = SHA1_LENGTH;
michael@0 197 }
michael@0 198
michael@0 199 #undef B
michael@0 200 /*
michael@0 201 * SHA: Compression function, unrolled.
michael@0 202 *
michael@0 203 * Some operations in shaCompress are done as 5 groups of 16 operations.
michael@0 204 * Others are done as 4 groups of 20 operations.
michael@0 205 * The code below shows that structure.
michael@0 206 *
michael@0 207 * The functions that compute the new values of the 5 state variables
michael@0 208 * A-E are done in 4 groups of 20 operations (or you may also think
michael@0 209 * of them as being done in 16 groups of 5 operations). They are
michael@0 210 * done by the SHA_RNDx macros below, in the right column.
michael@0 211 *
michael@0 212 * The functions that set the 16 values of the W array are done in
michael@0 213 * 5 groups of 16 operations. The first group is done by the
michael@0 214 * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
michael@0 215 * in the left column.
michael@0 216 *
michael@0 217 * gcc's optimizer observes that each member of the W array is assigned
michael@0 218 * a value 5 times in this code. It reduces the number of store
michael@0 219 * operations done to the W array in the context (that is, in the X array)
michael@0 220 * by creating a W array on the stack, and storing the W values there for
michael@0 221 * the first 4 groups of operations on W, and storing the values in the
michael@0 222 * context's W array only in the fifth group. This is undesirable.
michael@0 223 * It is MUCH bigger code than simply using the context's W array, because
michael@0 224 * all the offsets to the W array in the stack are 32-bit signed offsets,
michael@0 225 * and it is no faster than storing the values in the context's W array.
michael@0 226 *
michael@0 227 * The original code for sha_fast.c prevented this creation of a separate
michael@0 228 * W array in the stack by creating a W array of 80 members, each of
michael@0 229 * whose elements is assigned only once. It also separated the computations
michael@0 230 * of the W array values and the computations of the values for the 5
michael@0 231 * state variables into two separate passes, W's, then A-E's so that the
michael@0 232 * second pass could be done all in registers (except for accessing the W
michael@0 233 * array) on machines with fewer registers. The method is suboptimal
michael@0 234 * for machines with enough registers to do it all in one pass, and it
michael@0 235 * necessitates using many instructions with 32-bit offsets.
michael@0 236 *
michael@0 237 * This code eliminates the separate W array on the stack by a completely
michael@0 238 * different means: by declaring the X array volatile. This prevents
michael@0 239 * the optimizer from trying to reduce the use of the X array by the
michael@0 240 * creation of a MORE expensive W array on the stack. The result is
michael@0 241 * that all instructions use signed 8-bit offsets and not 32-bit offsets.
michael@0 242 *
michael@0 243 * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
michael@0 244 * results in code that is 3 times faster than the previous NSS sha_fast
michael@0 245 * code on AMD64.
michael@0 246 */
michael@0 247 static void
michael@0 248 shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf)
michael@0 249 {
michael@0 250 register SHA_HW_t A, B, C, D, E;
michael@0 251
michael@0 252 #if defined(SHA_NEED_TMP_VARIABLE)
michael@0 253 register PRUint32 tmp;
michael@0 254 #endif
michael@0 255
michael@0 256 #if !defined(SHA_PUT_W_IN_STACK)
michael@0 257 #define XH(n) X[n-H2X]
michael@0 258 #define XW(n) X[n-W2X]
michael@0 259 #else
michael@0 260 SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7,
michael@0 261 w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
michael@0 262 #define XW(n) w_ ## n
michael@0 263 #define XH(n) X[n]
michael@0 264 #endif
michael@0 265
michael@0 266 #define K0 0x5a827999L
michael@0 267 #define K1 0x6ed9eba1L
michael@0 268 #define K2 0x8f1bbcdcL
michael@0 269 #define K3 0xca62c1d6L
michael@0 270
michael@0 271 #define SHA_RND1(a,b,c,d,e,n) \
michael@0 272 a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30)
michael@0 273 #define SHA_RND2(a,b,c,d,e,n) \
michael@0 274 a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30)
michael@0 275 #define SHA_RND3(a,b,c,d,e,n) \
michael@0 276 a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30)
michael@0 277 #define SHA_RND4(a,b,c,d,e,n) \
michael@0 278 a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30)
michael@0 279
michael@0 280 #define LOAD(n) XW(n) = SHA_HTONL(inbuf[n])
michael@0 281
michael@0 282 A = XH(0);
michael@0 283 B = XH(1);
michael@0 284 C = XH(2);
michael@0 285 D = XH(3);
michael@0 286 E = XH(4);
michael@0 287
michael@0 288 LOAD(0); SHA_RND1(E,A,B,C,D, 0);
michael@0 289 LOAD(1); SHA_RND1(D,E,A,B,C, 1);
michael@0 290 LOAD(2); SHA_RND1(C,D,E,A,B, 2);
michael@0 291 LOAD(3); SHA_RND1(B,C,D,E,A, 3);
michael@0 292 LOAD(4); SHA_RND1(A,B,C,D,E, 4);
michael@0 293 LOAD(5); SHA_RND1(E,A,B,C,D, 5);
michael@0 294 LOAD(6); SHA_RND1(D,E,A,B,C, 6);
michael@0 295 LOAD(7); SHA_RND1(C,D,E,A,B, 7);
michael@0 296 LOAD(8); SHA_RND1(B,C,D,E,A, 8);
michael@0 297 LOAD(9); SHA_RND1(A,B,C,D,E, 9);
michael@0 298 LOAD(10); SHA_RND1(E,A,B,C,D,10);
michael@0 299 LOAD(11); SHA_RND1(D,E,A,B,C,11);
michael@0 300 LOAD(12); SHA_RND1(C,D,E,A,B,12);
michael@0 301 LOAD(13); SHA_RND1(B,C,D,E,A,13);
michael@0 302 LOAD(14); SHA_RND1(A,B,C,D,E,14);
michael@0 303 LOAD(15); SHA_RND1(E,A,B,C,D,15);
michael@0 304
michael@0 305 SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0);
michael@0 306 SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1);
michael@0 307 SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2);
michael@0 308 SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3);
michael@0 309
michael@0 310 SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4);
michael@0 311 SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5);
michael@0 312 SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6);
michael@0 313 SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7);
michael@0 314 SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8);
michael@0 315 SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9);
michael@0 316 SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10);
michael@0 317 SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11);
michael@0 318 SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12);
michael@0 319 SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13);
michael@0 320 SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14);
michael@0 321 SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15);
michael@0 322
michael@0 323 SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0);
michael@0 324 SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1);
michael@0 325 SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2);
michael@0 326 SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3);
michael@0 327 SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4);
michael@0 328 SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5);
michael@0 329 SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6);
michael@0 330 SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7);
michael@0 331
michael@0 332 SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8);
michael@0 333 SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9);
michael@0 334 SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10);
michael@0 335 SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11);
michael@0 336 SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12);
michael@0 337 SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13);
michael@0 338 SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14);
michael@0 339 SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15);
michael@0 340
michael@0 341 SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0);
michael@0 342 SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1);
michael@0 343 SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2);
michael@0 344 SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3);
michael@0 345 SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4);
michael@0 346 SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5);
michael@0 347 SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6);
michael@0 348 SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7);
michael@0 349 SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8);
michael@0 350 SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9);
michael@0 351 SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10);
michael@0 352 SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11);
michael@0 353
michael@0 354 SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12);
michael@0 355 SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13);
michael@0 356 SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14);
michael@0 357 SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15);
michael@0 358
michael@0 359 SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0);
michael@0 360 SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1);
michael@0 361 SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2);
michael@0 362 SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3);
michael@0 363 SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4);
michael@0 364 SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5);
michael@0 365 SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6);
michael@0 366 SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7);
michael@0 367 SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8);
michael@0 368 SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9);
michael@0 369 SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10);
michael@0 370 SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11);
michael@0 371 SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12);
michael@0 372 SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13);
michael@0 373 SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14);
michael@0 374 SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15);
michael@0 375
michael@0 376 XH(0) += A;
michael@0 377 XH(1) += B;
michael@0 378 XH(2) += C;
michael@0 379 XH(3) += D;
michael@0 380 XH(4) += E;
michael@0 381 }
michael@0 382
michael@0 383 /*************************************************************************
michael@0 384 ** Code below this line added to make SHA code support BLAPI interface
michael@0 385 */
michael@0 386
michael@0 387 SHA1Context *
michael@0 388 SHA1_NewContext(void)
michael@0 389 {
michael@0 390 SHA1Context *cx;
michael@0 391
michael@0 392 /* no need to ZNew, SHA1_Begin will init the context */
michael@0 393 cx = PORT_New(SHA1Context);
michael@0 394 return cx;
michael@0 395 }
michael@0 396
michael@0 397 /* Zero and free the context */
michael@0 398 void
michael@0 399 SHA1_DestroyContext(SHA1Context *cx, PRBool freeit)
michael@0 400 {
michael@0 401 memset(cx, 0, sizeof *cx);
michael@0 402 if (freeit) {
michael@0 403 PORT_Free(cx);
michael@0 404 }
michael@0 405 }
michael@0 406
michael@0 407 SECStatus
michael@0 408 SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length)
michael@0 409 {
michael@0 410 SHA1Context ctx;
michael@0 411 unsigned int outLen;
michael@0 412
michael@0 413 SHA1_Begin(&ctx);
michael@0 414 SHA1_Update(&ctx, src, src_length);
michael@0 415 SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH);
michael@0 416 memset(&ctx, 0, sizeof ctx);
michael@0 417 return SECSuccess;
michael@0 418 }
michael@0 419
michael@0 420 /* Hash a null-terminated character string. */
michael@0 421 SECStatus
michael@0 422 SHA1_Hash(unsigned char *dest, const char *src)
michael@0 423 {
michael@0 424 return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src));
michael@0 425 }
michael@0 426
michael@0 427 /*
michael@0 428 * need to support save/restore state in pkcs11. Stores all the info necessary
michael@0 429 * for a structure into just a stream of bytes.
michael@0 430 */
michael@0 431 unsigned int
michael@0 432 SHA1_FlattenSize(SHA1Context *cx)
michael@0 433 {
michael@0 434 return sizeof(SHA1Context);
michael@0 435 }
michael@0 436
michael@0 437 SECStatus
michael@0 438 SHA1_Flatten(SHA1Context *cx,unsigned char *space)
michael@0 439 {
michael@0 440 PORT_Memcpy(space,cx, sizeof(SHA1Context));
michael@0 441 return SECSuccess;
michael@0 442 }
michael@0 443
michael@0 444 SHA1Context *
michael@0 445 SHA1_Resurrect(unsigned char *space,void *arg)
michael@0 446 {
michael@0 447 SHA1Context *cx = SHA1_NewContext();
michael@0 448 if (cx == NULL) return NULL;
michael@0 449
michael@0 450 PORT_Memcpy(cx,space, sizeof(SHA1Context));
michael@0 451 return cx;
michael@0 452 }
michael@0 453
michael@0 454 void SHA1_Clone(SHA1Context *dest, SHA1Context *src)
michael@0 455 {
michael@0 456 memcpy(dest, src, sizeof *dest);
michael@0 457 }
michael@0 458
michael@0 459 void
michael@0 460 SHA1_TraceState(SHA1Context *ctx)
michael@0 461 {
michael@0 462 PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
michael@0 463 }

mercurial