security/nss/lib/freebl/sha_fast.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /* This Source Code Form is subject to the terms of the Mozilla Public
     2  * License, v. 2.0. If a copy of the MPL was not distributed with this
     3  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     5 #ifdef FREEBL_NO_DEPEND
     6 #include "stubs.h"
     7 #endif
     9 #include <memory.h>
    10 #include "blapi.h"
    11 #include "sha_fast.h"
    12 #include "prerror.h"
    14 #ifdef TRACING_SSL
    15 #include "ssl.h"
    16 #include "ssltrace.h"
    17 #endif
    19 static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain);
    21 #define W u.w
    22 #define B u.b
    25 #define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z))
    26 #define SHA_F2(X,Y,Z) ((X)^(Y)^(Z))
    27 #define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y))))
    28 #define SHA_F4(X,Y,Z) ((X)^(Y)^(Z))
    30 #define SHA_MIX(n,a,b,c)    XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1)
    32 /*
    33  *  SHA: initialize context
    34  */
    35 void 
    36 SHA1_Begin(SHA1Context *ctx)
    37 {
    38   ctx->size = 0;
    39   /*
    40    *  Initialize H with constants from FIPS180-1.
    41    */
    42   ctx->H[0] = 0x67452301L;
    43   ctx->H[1] = 0xefcdab89L;
    44   ctx->H[2] = 0x98badcfeL;
    45   ctx->H[3] = 0x10325476L;
    46   ctx->H[4] = 0xc3d2e1f0L;
    47 }
    49 /* Explanation of H array and index values:
    50  * The context's H array is actually the concatenation of two arrays 
    51  * defined by SHA1, the H array of state variables (5 elements),
    52  * and the W array of intermediate values, of which there are 16 elements.
    53  * The W array starts at H[5], that is W[0] is H[5].
    54  * Although these values are defined as 32-bit values, we use 64-bit
    55  * variables to hold them because the AMD64 stores 64 bit values in
    56  * memory MUCH faster than it stores any smaller values.
    57  *
    58  * Rather than passing the context structure to shaCompress, we pass
    59  * this combined array of H and W values.  We do not pass the address
    60  * of the first element of this array, but rather pass the address of an
    61  * element in the middle of the array, element X.  Presently X[0] is H[11].
    62  * So we pass the address of H[11] as the address of array X to shaCompress.
    63  * Then shaCompress accesses the members of the array using positive AND 
    64  * negative indexes.  
    65  *
    66  * Pictorially: (each element is 8 bytes)
    67  * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
    68  * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
    69  * 
    70  * The byte offset from X[0] to any member of H and W is always 
    71  * representable in a signed 8-bit value, which will be encoded 
    72  * as a single byte offset in the X86-64 instruction set.  
    73  * If we didn't pass the address of H[11], and instead passed the 
    74  * address of H[0], the offsets to elements H[16] and above would be
    75  * greater than 127, not representable in a signed 8-bit value, and the 
    76  * x86-64 instruction set would encode every such offset as a 32-bit 
    77  * signed number in each instruction that accessed element H[16] or 
    78  * higher.  This results in much bigger and slower code. 
    79  */
    80 #if !defined(SHA_PUT_W_IN_STACK)
    81 #define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
    82 #define W2X  6 /* X[0] is W[6],  and W[0] is X[-6]  */
    83 #else
    84 #define H2X 0
    85 #endif
    87 /*
    88  *  SHA: Add data to context.
    89  */
    90 void 
    91 SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) 
    92 {
    93   register unsigned int lenB;
    94   register unsigned int togo;
    96   if (!len)
    97     return;
    99   /* accumulate the byte count. */
   100   lenB = (unsigned int)(ctx->size) & 63U;
   102   ctx->size += len;
   104   /*
   105    *  Read the data into W and process blocks as they get full
   106    */
   107   if (lenB > 0) {
   108     togo = 64U - lenB;
   109     if (len < togo)
   110       togo = len;
   111     memcpy(ctx->B + lenB, dataIn, togo);
   112     len    -= togo;
   113     dataIn += togo;
   114     lenB    = (lenB + togo) & 63U;
   115     if (!lenB) {
   116       shaCompress(&ctx->H[H2X], ctx->W);
   117     }
   118   }
   119 #if !defined(SHA_ALLOW_UNALIGNED_ACCESS)
   120   if ((ptrdiff_t)dataIn % sizeof(PRUint32)) {
   121     while (len >= 64U) {
   122       memcpy(ctx->B, dataIn, 64);
   123       len    -= 64U;
   124       shaCompress(&ctx->H[H2X], ctx->W);
   125       dataIn += 64U;
   126     }
   127   } else 
   128 #endif
   129   {
   130     while (len >= 64U) {
   131       len    -= 64U;
   132       shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn);
   133       dataIn += 64U;
   134     }
   135   }
   136   if (len) {
   137     memcpy(ctx->B, dataIn, len);
   138   }
   139 }
   142 /*
   143  *  SHA: Generate hash value from context
   144  */
   145 void 
   146 SHA1_End(SHA1Context *ctx, unsigned char *hashout,
   147          unsigned int *pDigestLen, unsigned int maxDigestLen)
   148 {
   149   register PRUint64 size;
   150   register PRUint32 lenB;
   151   PRUint32 tmpbuf[5];
   153   static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0,
   154           0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
   155           0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0  };
   156 #define tmp lenB
   158   PORT_Assert (maxDigestLen >= SHA1_LENGTH);
   160   /*
   161    *  Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits
   162    */
   163   size = ctx->size;
   165   lenB = (PRUint32)size & 63;
   166   SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1);
   167   PORT_Assert(((PRUint32)ctx->size & 63) == 56);
   168   /* Convert size from bytes to bits. */
   169   size <<= 3;
   170   ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32));
   171   ctx->W[15] = SHA_HTONL((PRUint32)size);
   172   shaCompress(&ctx->H[H2X], ctx->W);
   174   /*
   175    *  Output hash
   176    */
   177   SHA_STORE_RESULT;
   178   if (pDigestLen) {
   179     *pDigestLen = SHA1_LENGTH;
   180   }
   181 #undef tmp
   182 }
   184 void
   185 SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout,
   186             unsigned int *pDigestLen, unsigned int maxDigestLen)
   187 {
   188 #if defined(SHA_NEED_TMP_VARIABLE)
   189   register PRUint32 tmp;
   190 #endif
   191   PRUint32 tmpbuf[5];
   192   PORT_Assert (maxDigestLen >= SHA1_LENGTH);
   194   SHA_STORE_RESULT;
   195   if (pDigestLen)
   196     *pDigestLen = SHA1_LENGTH;
   197 }
   199 #undef B
   200 /*
   201  *  SHA: Compression function, unrolled.
   202  *
   203  * Some operations in shaCompress are done as 5 groups of 16 operations.
   204  * Others are done as 4 groups of 20 operations.
   205  * The code below shows that structure.
   206  *
   207  * The functions that compute the new values of the 5 state variables
   208  * A-E are done in 4 groups of 20 operations (or you may also think
   209  * of them as being done in 16 groups of 5 operations).  They are
   210  * done by the SHA_RNDx macros below, in the right column.
   211  *
   212  * The functions that set the 16 values of the W array are done in 
   213  * 5 groups of 16 operations.  The first group is done by the 
   214  * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
   215  * in the left column.
   216  *
   217  * gcc's optimizer observes that each member of the W array is assigned
   218  * a value 5 times in this code.  It reduces the number of store 
   219  * operations done to the W array in the context (that is, in the X array)
   220  * by creating a W array on the stack, and storing the W values there for 
   221  * the first 4 groups of operations on W, and storing the values in the 
   222  * context's W array only in the fifth group.  This is undesirable.
   223  * It is MUCH bigger code than simply using the context's W array, because 
   224  * all the offsets to the W array in the stack are 32-bit signed offsets, 
   225  * and it is no faster than storing the values in the context's W array. 
   226  *
   227  * The original code for sha_fast.c prevented this creation of a separate 
   228  * W array in the stack by creating a W array of 80 members, each of
   229  * whose elements is assigned only once. It also separated the computations
   230  * of the W array values and the computations of the values for the 5
   231  * state variables into two separate passes, W's, then A-E's so that the 
   232  * second pass could be done all in registers (except for accessing the W
   233  * array) on machines with fewer registers.  The method is suboptimal
   234  * for machines with enough registers to do it all in one pass, and it
   235  * necessitates using many instructions with 32-bit offsets.
   236  *
   237  * This code eliminates the separate W array on the stack by a completely
   238  * different means: by declaring the X array volatile.  This prevents
   239  * the optimizer from trying to reduce the use of the X array by the
   240  * creation of a MORE expensive W array on the stack. The result is
   241  * that all instructions use signed 8-bit offsets and not 32-bit offsets.
   242  *
   243  * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
   244  * results in code that is 3 times faster than the previous NSS sha_fast
   245  * code on AMD64.
   246  */
   247 static void 
   248 shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf) 
   249 {
   250   register SHA_HW_t A, B, C, D, E;
   252 #if defined(SHA_NEED_TMP_VARIABLE)
   253   register PRUint32 tmp;
   254 #endif
   256 #if !defined(SHA_PUT_W_IN_STACK)
   257 #define XH(n) X[n-H2X]
   258 #define XW(n) X[n-W2X]
   259 #else
   260   SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7,
   261            w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
   262 #define XW(n) w_ ## n
   263 #define XH(n) X[n]
   264 #endif
   266 #define K0 0x5a827999L
   267 #define K1 0x6ed9eba1L
   268 #define K2 0x8f1bbcdcL
   269 #define K3 0xca62c1d6L
   271 #define SHA_RND1(a,b,c,d,e,n) \
   272   a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30) 
   273 #define SHA_RND2(a,b,c,d,e,n) \
   274   a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30) 
   275 #define SHA_RND3(a,b,c,d,e,n) \
   276   a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30) 
   277 #define SHA_RND4(a,b,c,d,e,n) \
   278   a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30) 
   280 #define LOAD(n) XW(n) = SHA_HTONL(inbuf[n])
   282   A = XH(0);
   283   B = XH(1);
   284   C = XH(2);
   285   D = XH(3);
   286   E = XH(4);
   288   LOAD(0);		   SHA_RND1(E,A,B,C,D, 0);
   289   LOAD(1);		   SHA_RND1(D,E,A,B,C, 1);
   290   LOAD(2);		   SHA_RND1(C,D,E,A,B, 2);
   291   LOAD(3);		   SHA_RND1(B,C,D,E,A, 3);
   292   LOAD(4);		   SHA_RND1(A,B,C,D,E, 4);
   293   LOAD(5);		   SHA_RND1(E,A,B,C,D, 5);
   294   LOAD(6);		   SHA_RND1(D,E,A,B,C, 6);
   295   LOAD(7);		   SHA_RND1(C,D,E,A,B, 7);
   296   LOAD(8);		   SHA_RND1(B,C,D,E,A, 8);
   297   LOAD(9);		   SHA_RND1(A,B,C,D,E, 9);
   298   LOAD(10);		   SHA_RND1(E,A,B,C,D,10);
   299   LOAD(11);		   SHA_RND1(D,E,A,B,C,11);
   300   LOAD(12);		   SHA_RND1(C,D,E,A,B,12);
   301   LOAD(13);		   SHA_RND1(B,C,D,E,A,13);
   302   LOAD(14);		   SHA_RND1(A,B,C,D,E,14);
   303   LOAD(15);		   SHA_RND1(E,A,B,C,D,15);
   305   SHA_MIX( 0, 13,  8,  2); SHA_RND1(D,E,A,B,C, 0);
   306   SHA_MIX( 1, 14,  9,  3); SHA_RND1(C,D,E,A,B, 1);
   307   SHA_MIX( 2, 15, 10,  4); SHA_RND1(B,C,D,E,A, 2);
   308   SHA_MIX( 3,  0, 11,  5); SHA_RND1(A,B,C,D,E, 3);
   310   SHA_MIX( 4,  1, 12,  6); SHA_RND2(E,A,B,C,D, 4);
   311   SHA_MIX( 5,  2, 13,  7); SHA_RND2(D,E,A,B,C, 5);
   312   SHA_MIX( 6,  3, 14,  8); SHA_RND2(C,D,E,A,B, 6);
   313   SHA_MIX( 7,  4, 15,  9); SHA_RND2(B,C,D,E,A, 7);
   314   SHA_MIX( 8,  5,  0, 10); SHA_RND2(A,B,C,D,E, 8);
   315   SHA_MIX( 9,  6,  1, 11); SHA_RND2(E,A,B,C,D, 9);
   316   SHA_MIX(10,  7,  2, 12); SHA_RND2(D,E,A,B,C,10);
   317   SHA_MIX(11,  8,  3, 13); SHA_RND2(C,D,E,A,B,11);
   318   SHA_MIX(12,  9,  4, 14); SHA_RND2(B,C,D,E,A,12);
   319   SHA_MIX(13, 10,  5, 15); SHA_RND2(A,B,C,D,E,13);
   320   SHA_MIX(14, 11,  6,  0); SHA_RND2(E,A,B,C,D,14);
   321   SHA_MIX(15, 12,  7,  1); SHA_RND2(D,E,A,B,C,15);
   323   SHA_MIX( 0, 13,  8,  2); SHA_RND2(C,D,E,A,B, 0);
   324   SHA_MIX( 1, 14,  9,  3); SHA_RND2(B,C,D,E,A, 1);
   325   SHA_MIX( 2, 15, 10,  4); SHA_RND2(A,B,C,D,E, 2);
   326   SHA_MIX( 3,  0, 11,  5); SHA_RND2(E,A,B,C,D, 3);
   327   SHA_MIX( 4,  1, 12,  6); SHA_RND2(D,E,A,B,C, 4);
   328   SHA_MIX( 5,  2, 13,  7); SHA_RND2(C,D,E,A,B, 5);
   329   SHA_MIX( 6,  3, 14,  8); SHA_RND2(B,C,D,E,A, 6);
   330   SHA_MIX( 7,  4, 15,  9); SHA_RND2(A,B,C,D,E, 7);
   332   SHA_MIX( 8,  5,  0, 10); SHA_RND3(E,A,B,C,D, 8);
   333   SHA_MIX( 9,  6,  1, 11); SHA_RND3(D,E,A,B,C, 9);
   334   SHA_MIX(10,  7,  2, 12); SHA_RND3(C,D,E,A,B,10);
   335   SHA_MIX(11,  8,  3, 13); SHA_RND3(B,C,D,E,A,11);
   336   SHA_MIX(12,  9,  4, 14); SHA_RND3(A,B,C,D,E,12);
   337   SHA_MIX(13, 10,  5, 15); SHA_RND3(E,A,B,C,D,13);
   338   SHA_MIX(14, 11,  6,  0); SHA_RND3(D,E,A,B,C,14);
   339   SHA_MIX(15, 12,  7,  1); SHA_RND3(C,D,E,A,B,15);
   341   SHA_MIX( 0, 13,  8,  2); SHA_RND3(B,C,D,E,A, 0);
   342   SHA_MIX( 1, 14,  9,  3); SHA_RND3(A,B,C,D,E, 1);
   343   SHA_MIX( 2, 15, 10,  4); SHA_RND3(E,A,B,C,D, 2);
   344   SHA_MIX( 3,  0, 11,  5); SHA_RND3(D,E,A,B,C, 3);
   345   SHA_MIX( 4,  1, 12,  6); SHA_RND3(C,D,E,A,B, 4);
   346   SHA_MIX( 5,  2, 13,  7); SHA_RND3(B,C,D,E,A, 5);
   347   SHA_MIX( 6,  3, 14,  8); SHA_RND3(A,B,C,D,E, 6);
   348   SHA_MIX( 7,  4, 15,  9); SHA_RND3(E,A,B,C,D, 7);
   349   SHA_MIX( 8,  5,  0, 10); SHA_RND3(D,E,A,B,C, 8);
   350   SHA_MIX( 9,  6,  1, 11); SHA_RND3(C,D,E,A,B, 9);
   351   SHA_MIX(10,  7,  2, 12); SHA_RND3(B,C,D,E,A,10);
   352   SHA_MIX(11,  8,  3, 13); SHA_RND3(A,B,C,D,E,11);
   354   SHA_MIX(12,  9,  4, 14); SHA_RND4(E,A,B,C,D,12);
   355   SHA_MIX(13, 10,  5, 15); SHA_RND4(D,E,A,B,C,13);
   356   SHA_MIX(14, 11,  6,  0); SHA_RND4(C,D,E,A,B,14);
   357   SHA_MIX(15, 12,  7,  1); SHA_RND4(B,C,D,E,A,15);
   359   SHA_MIX( 0, 13,  8,  2); SHA_RND4(A,B,C,D,E, 0);
   360   SHA_MIX( 1, 14,  9,  3); SHA_RND4(E,A,B,C,D, 1);
   361   SHA_MIX( 2, 15, 10,  4); SHA_RND4(D,E,A,B,C, 2);
   362   SHA_MIX( 3,  0, 11,  5); SHA_RND4(C,D,E,A,B, 3);
   363   SHA_MIX( 4,  1, 12,  6); SHA_RND4(B,C,D,E,A, 4);
   364   SHA_MIX( 5,  2, 13,  7); SHA_RND4(A,B,C,D,E, 5);
   365   SHA_MIX( 6,  3, 14,  8); SHA_RND4(E,A,B,C,D, 6);
   366   SHA_MIX( 7,  4, 15,  9); SHA_RND4(D,E,A,B,C, 7);
   367   SHA_MIX( 8,  5,  0, 10); SHA_RND4(C,D,E,A,B, 8);
   368   SHA_MIX( 9,  6,  1, 11); SHA_RND4(B,C,D,E,A, 9);
   369   SHA_MIX(10,  7,  2, 12); SHA_RND4(A,B,C,D,E,10);
   370   SHA_MIX(11,  8,  3, 13); SHA_RND4(E,A,B,C,D,11);
   371   SHA_MIX(12,  9,  4, 14); SHA_RND4(D,E,A,B,C,12);
   372   SHA_MIX(13, 10,  5, 15); SHA_RND4(C,D,E,A,B,13);
   373   SHA_MIX(14, 11,  6,  0); SHA_RND4(B,C,D,E,A,14);
   374   SHA_MIX(15, 12,  7,  1); SHA_RND4(A,B,C,D,E,15);
   376   XH(0) += A;
   377   XH(1) += B;
   378   XH(2) += C;
   379   XH(3) += D;
   380   XH(4) += E;
   381 }
   383 /*************************************************************************
   384 ** Code below this line added to make SHA code support BLAPI interface
   385 */
   387 SHA1Context *
   388 SHA1_NewContext(void)
   389 {
   390     SHA1Context *cx;
   392     /* no need to ZNew, SHA1_Begin will init the context */
   393     cx = PORT_New(SHA1Context);
   394     return cx;
   395 }
   397 /* Zero and free the context */
   398 void
   399 SHA1_DestroyContext(SHA1Context *cx, PRBool freeit)
   400 {
   401     memset(cx, 0, sizeof *cx);
   402     if (freeit) {
   403         PORT_Free(cx);
   404     }
   405 }
   407 SECStatus
   408 SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length)
   409 {
   410     SHA1Context ctx;
   411     unsigned int outLen;
   413     SHA1_Begin(&ctx);
   414     SHA1_Update(&ctx, src, src_length);
   415     SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH);
   416     memset(&ctx, 0, sizeof ctx);
   417     return SECSuccess;
   418 }
   420 /* Hash a null-terminated character string. */
   421 SECStatus
   422 SHA1_Hash(unsigned char *dest, const char *src)
   423 {
   424     return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src));
   425 }
   427 /*
   428  * need to support save/restore state in pkcs11. Stores all the info necessary
   429  * for a structure into just a stream of bytes.
   430  */
   431 unsigned int
   432 SHA1_FlattenSize(SHA1Context *cx)
   433 {
   434     return sizeof(SHA1Context);
   435 }
   437 SECStatus
   438 SHA1_Flatten(SHA1Context *cx,unsigned char *space)
   439 {
   440     PORT_Memcpy(space,cx, sizeof(SHA1Context));
   441     return SECSuccess;
   442 }
   444 SHA1Context *
   445 SHA1_Resurrect(unsigned char *space,void *arg)
   446 {
   447     SHA1Context *cx = SHA1_NewContext();
   448     if (cx == NULL) return NULL;
   450     PORT_Memcpy(cx,space, sizeof(SHA1Context));
   451     return cx;
   452 }
   454 void SHA1_Clone(SHA1Context *dest, SHA1Context *src) 
   455 {
   456     memcpy(dest, src, sizeof *dest);
   457 }
   459 void
   460 SHA1_TraceState(SHA1Context *ctx)
   461 {
   462     PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
   463 }

mercurial