intl/icu/source/common/uhash.c

Wed, 31 Dec 2014 07:22:50 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 07:22:50 +0100
branch
TOR_BUG_3246
changeset 4
fc2d59ddac77
permissions
-rw-r--r--

Correct previous dual key logic pending first delivery installment.

michael@0 1 /*
michael@0 2 ******************************************************************************
michael@0 3 * Copyright (C) 1997-2011, International Business Machines
michael@0 4 * Corporation and others. All Rights Reserved.
michael@0 5 ******************************************************************************
michael@0 6 * Date Name Description
michael@0 7 * 03/22/00 aliu Adapted from original C++ ICU Hashtable.
michael@0 8 * 07/06/01 aliu Modified to support int32_t keys on
michael@0 9 * platforms with sizeof(void*) < 32.
michael@0 10 ******************************************************************************
michael@0 11 */
michael@0 12
michael@0 13 #include "uhash.h"
michael@0 14 #include "unicode/ustring.h"
michael@0 15 #include "cstring.h"
michael@0 16 #include "cmemory.h"
michael@0 17 #include "uassert.h"
michael@0 18 #include "ustr_imp.h"
michael@0 19
michael@0 20 /* This hashtable is implemented as a double hash. All elements are
michael@0 21 * stored in a single array with no secondary storage for collision
michael@0 22 * resolution (no linked list, etc.). When there is a hash collision
michael@0 23 * (when two unequal keys have the same hashcode) we resolve this by
michael@0 24 * using a secondary hash. The secondary hash is an increment
michael@0 25 * computed as a hash function (a different one) of the primary
michael@0 26 * hashcode. This increment is added to the initial hash value to
michael@0 27 * obtain further slots assigned to the same hash code. For this to
michael@0 28 * work, the length of the array and the increment must be relatively
michael@0 29 * prime. The easiest way to achieve this is to have the length of
michael@0 30 * the array be prime, and the increment be any value from
michael@0 31 * 1..length-1.
michael@0 32 *
michael@0 33 * Hashcodes are 32-bit integers. We make sure all hashcodes are
michael@0 34 * non-negative by masking off the top bit. This has two effects: (1)
michael@0 35 * modulo arithmetic is simplified. If we allowed negative hashcodes,
michael@0 36 * then when we computed hashcode % length, we could get a negative
michael@0 37 * result, which we would then have to adjust back into range. It's
michael@0 38 * simpler to just make hashcodes non-negative. (2) It makes it easy
michael@0 39 * to check for empty vs. occupied slots in the table. We just mark
michael@0 40 * empty or deleted slots with a negative hashcode.
michael@0 41 *
michael@0 42 * The central function is _uhash_find(). This function looks for a
michael@0 43 * slot matching the given key and hashcode. If one is found, it
michael@0 44 * returns a pointer to that slot. If the table is full, and no match
michael@0 45 * is found, it returns NULL -- in theory. This would make the code
michael@0 46 * more complicated, since all callers of _uhash_find() would then
michael@0 47 * have to check for a NULL result. To keep this from happening, we
michael@0 48 * don't allow the table to fill. When there is only one
michael@0 49 * empty/deleted slot left, uhash_put() will refuse to increase the
michael@0 50 * count, and fail. This simplifies the code. In practice, one will
michael@0 51 * seldom encounter this using default UHashtables. However, if a
michael@0 52 * hashtable is set to a U_FIXED resize policy, or if memory is
michael@0 53 * exhausted, then the table may fill.
michael@0 54 *
michael@0 55 * High and low water ratios control rehashing. They establish levels
michael@0 56 * of fullness (from 0 to 1) outside of which the data array is
michael@0 57 * reallocated and repopulated. Setting the low water ratio to zero
michael@0 58 * means the table will never shrink. Setting the high water ratio to
michael@0 59 * one means the table will never grow. The ratios should be
michael@0 60 * coordinated with the ratio between successive elements of the
michael@0 61 * PRIMES table, so that when the primeIndex is incremented or
michael@0 62 * decremented during rehashing, it brings the ratio of count / length
michael@0 63 * back into the desired range (between low and high water ratios).
michael@0 64 */
michael@0 65
michael@0 66 /********************************************************************
michael@0 67 * PRIVATE Constants, Macros
michael@0 68 ********************************************************************/
michael@0 69
michael@0 70 /* This is a list of non-consecutive primes chosen such that
michael@0 71 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81
michael@0 72 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this
michael@0 73 * ratio is changed, the low and high water ratios should also be
michael@0 74 * adjusted to suit.
michael@0 75 *
michael@0 76 * These prime numbers were also chosen so that they are the largest
michael@0 77 * prime number while being less than a power of two.
michael@0 78 */
michael@0 79 static const int32_t PRIMES[] = {
michael@0 80 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
michael@0 81 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
michael@0 82 16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
michael@0 83 1073741789, 2147483647 /*, 4294967291 */
michael@0 84 };
michael@0 85
michael@0 86 #define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0]))
michael@0 87 #define DEFAULT_PRIME_INDEX 3
michael@0 88
michael@0 89 /* These ratios are tuned to the PRIMES array such that a resize
michael@0 90 * places the table back into the zone of non-resizing. That is,
michael@0 91 * after a call to _uhash_rehash(), a subsequent call to
michael@0 92 * _uhash_rehash() should do nothing (should not churn). This is only
michael@0 93 * a potential problem with U_GROW_AND_SHRINK.
michael@0 94 */
michael@0 95 static const float RESIZE_POLICY_RATIO_TABLE[6] = {
michael@0 96 /* low, high water ratio */
michael@0 97 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
michael@0 98 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
michael@0 99 0.0F, 1.0F /* U_FIXED: Never change size */
michael@0 100 };
michael@0 101
michael@0 102 /*
michael@0 103 Invariants for hashcode values:
michael@0 104
michael@0 105 * DELETED < 0
michael@0 106 * EMPTY < 0
michael@0 107 * Real hashes >= 0
michael@0 108
michael@0 109 Hashcodes may not start out this way, but internally they are
michael@0 110 adjusted so that they are always positive. We assume 32-bit
michael@0 111 hashcodes; adjust these constants for other hashcode sizes.
michael@0 112 */
michael@0 113 #define HASH_DELETED ((int32_t) 0x80000000)
michael@0 114 #define HASH_EMPTY ((int32_t) HASH_DELETED + 1)
michael@0 115
michael@0 116 #define IS_EMPTY_OR_DELETED(x) ((x) < 0)
michael@0 117
michael@0 118 /* This macro expects a UHashTok.pointer as its keypointer and
michael@0 119 valuepointer parameters */
michael@0 120 #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
michael@0 121 if (hash->keyDeleter != NULL && keypointer != NULL) { \
michael@0 122 (*hash->keyDeleter)(keypointer); \
michael@0 123 } \
michael@0 124 if (hash->valueDeleter != NULL && valuepointer != NULL) { \
michael@0 125 (*hash->valueDeleter)(valuepointer); \
michael@0 126 }
michael@0 127
michael@0 128 /*
michael@0 129 * Constants for hinting whether a key or value is an integer
michael@0 130 * or a pointer. If a hint bit is zero, then the associated
michael@0 131 * token is assumed to be an integer.
michael@0 132 */
michael@0 133 #define HINT_KEY_POINTER (1)
michael@0 134 #define HINT_VALUE_POINTER (2)
michael@0 135
michael@0 136 /********************************************************************
michael@0 137 * PRIVATE Implementation
michael@0 138 ********************************************************************/
michael@0 139
michael@0 140 static UHashTok
michael@0 141 _uhash_setElement(UHashtable *hash, UHashElement* e,
michael@0 142 int32_t hashcode,
michael@0 143 UHashTok key, UHashTok value, int8_t hint) {
michael@0 144
michael@0 145 UHashTok oldValue = e->value;
michael@0 146 if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
michael@0 147 e->key.pointer != key.pointer) { /* Avoid double deletion */
michael@0 148 (*hash->keyDeleter)(e->key.pointer);
michael@0 149 }
michael@0 150 if (hash->valueDeleter != NULL) {
michael@0 151 if (oldValue.pointer != NULL &&
michael@0 152 oldValue.pointer != value.pointer) { /* Avoid double deletion */
michael@0 153 (*hash->valueDeleter)(oldValue.pointer);
michael@0 154 }
michael@0 155 oldValue.pointer = NULL;
michael@0 156 }
michael@0 157 /* Compilers should copy the UHashTok union correctly, but even if
michael@0 158 * they do, memory heap tools (e.g. BoundsChecker) can get
michael@0 159 * confused when a pointer is cloaked in a union and then copied.
michael@0 160 * TO ALLEVIATE THIS, we use hints (based on what API the user is
michael@0 161 * calling) to copy pointers when we know the user thinks
michael@0 162 * something is a pointer. */
michael@0 163 if (hint & HINT_KEY_POINTER) {
michael@0 164 e->key.pointer = key.pointer;
michael@0 165 } else {
michael@0 166 e->key = key;
michael@0 167 }
michael@0 168 if (hint & HINT_VALUE_POINTER) {
michael@0 169 e->value.pointer = value.pointer;
michael@0 170 } else {
michael@0 171 e->value = value;
michael@0 172 }
michael@0 173 e->hashcode = hashcode;
michael@0 174 return oldValue;
michael@0 175 }
michael@0 176
michael@0 177 /**
michael@0 178 * Assumes that the given element is not empty or deleted.
michael@0 179 */
michael@0 180 static UHashTok
michael@0 181 _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
michael@0 182 UHashTok empty;
michael@0 183 U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
michael@0 184 --hash->count;
michael@0 185 empty.pointer = NULL; empty.integer = 0;
michael@0 186 return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
michael@0 187 }
michael@0 188
michael@0 189 static void
michael@0 190 _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
michael@0 191 U_ASSERT(hash != NULL);
michael@0 192 U_ASSERT(((int32_t)policy) >= 0);
michael@0 193 U_ASSERT(((int32_t)policy) < 3);
michael@0 194 hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2];
michael@0 195 hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
michael@0 196 }
michael@0 197
michael@0 198 /**
michael@0 199 * Allocate internal data array of a size determined by the given
michael@0 200 * prime index. If the index is out of range it is pinned into range.
michael@0 201 * If the allocation fails the status is set to
michael@0 202 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In
michael@0 203 * either case the previous array pointer is overwritten.
michael@0 204 *
michael@0 205 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
michael@0 206 */
michael@0 207 static void
michael@0 208 _uhash_allocate(UHashtable *hash,
michael@0 209 int32_t primeIndex,
michael@0 210 UErrorCode *status) {
michael@0 211
michael@0 212 UHashElement *p, *limit;
michael@0 213 UHashTok emptytok;
michael@0 214
michael@0 215 if (U_FAILURE(*status)) return;
michael@0 216
michael@0 217 U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
michael@0 218
michael@0 219 hash->primeIndex = primeIndex;
michael@0 220 hash->length = PRIMES[primeIndex];
michael@0 221
michael@0 222 p = hash->elements = (UHashElement*)
michael@0 223 uprv_malloc(sizeof(UHashElement) * hash->length);
michael@0 224
michael@0 225 if (hash->elements == NULL) {
michael@0 226 *status = U_MEMORY_ALLOCATION_ERROR;
michael@0 227 return;
michael@0 228 }
michael@0 229
michael@0 230 emptytok.pointer = NULL; /* Only one of these two is needed */
michael@0 231 emptytok.integer = 0; /* but we don't know which one. */
michael@0 232
michael@0 233 limit = p + hash->length;
michael@0 234 while (p < limit) {
michael@0 235 p->key = emptytok;
michael@0 236 p->value = emptytok;
michael@0 237 p->hashcode = HASH_EMPTY;
michael@0 238 ++p;
michael@0 239 }
michael@0 240
michael@0 241 hash->count = 0;
michael@0 242 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
michael@0 243 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
michael@0 244 }
michael@0 245
michael@0 246 static UHashtable*
michael@0 247 _uhash_init(UHashtable *result,
michael@0 248 UHashFunction *keyHash,
michael@0 249 UKeyComparator *keyComp,
michael@0 250 UValueComparator *valueComp,
michael@0 251 int32_t primeIndex,
michael@0 252 UErrorCode *status)
michael@0 253 {
michael@0 254 if (U_FAILURE(*status)) return NULL;
michael@0 255 U_ASSERT(keyHash != NULL);
michael@0 256 U_ASSERT(keyComp != NULL);
michael@0 257
michael@0 258 result->keyHasher = keyHash;
michael@0 259 result->keyComparator = keyComp;
michael@0 260 result->valueComparator = valueComp;
michael@0 261 result->keyDeleter = NULL;
michael@0 262 result->valueDeleter = NULL;
michael@0 263 result->allocated = FALSE;
michael@0 264 _uhash_internalSetResizePolicy(result, U_GROW);
michael@0 265
michael@0 266 _uhash_allocate(result, primeIndex, status);
michael@0 267
michael@0 268 if (U_FAILURE(*status)) {
michael@0 269 return NULL;
michael@0 270 }
michael@0 271
michael@0 272 return result;
michael@0 273 }
michael@0 274
michael@0 275 static UHashtable*
michael@0 276 _uhash_create(UHashFunction *keyHash,
michael@0 277 UKeyComparator *keyComp,
michael@0 278 UValueComparator *valueComp,
michael@0 279 int32_t primeIndex,
michael@0 280 UErrorCode *status) {
michael@0 281 UHashtable *result;
michael@0 282
michael@0 283 if (U_FAILURE(*status)) return NULL;
michael@0 284
michael@0 285 result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
michael@0 286 if (result == NULL) {
michael@0 287 *status = U_MEMORY_ALLOCATION_ERROR;
michael@0 288 return NULL;
michael@0 289 }
michael@0 290
michael@0 291 _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
michael@0 292 result->allocated = TRUE;
michael@0 293
michael@0 294 if (U_FAILURE(*status)) {
michael@0 295 uprv_free(result);
michael@0 296 return NULL;
michael@0 297 }
michael@0 298
michael@0 299 return result;
michael@0 300 }
michael@0 301
michael@0 302 /**
michael@0 303 * Look for a key in the table, or if no such key exists, the first
michael@0 304 * empty slot matching the given hashcode. Keys are compared using
michael@0 305 * the keyComparator function.
michael@0 306 *
michael@0 307 * First find the start position, which is the hashcode modulo
michael@0 308 * the length. Test it to see if it is:
michael@0 309 *
michael@0 310 * a. identical: First check the hash values for a quick check,
michael@0 311 * then compare keys for equality using keyComparator.
michael@0 312 * b. deleted
michael@0 313 * c. empty
michael@0 314 *
michael@0 315 * Stop if it is identical or empty, otherwise continue by adding a
michael@0 316 * "jump" value (moduloing by the length again to keep it within
michael@0 317 * range) and retesting. For efficiency, there need enough empty
michael@0 318 * values so that the searchs stop within a reasonable amount of time.
michael@0 319 * This can be changed by changing the high/low water marks.
michael@0 320 *
michael@0 321 * In theory, this function can return NULL, if it is full (no empty
michael@0 322 * or deleted slots) and if no matching key is found. In practice, we
michael@0 323 * prevent this elsewhere (in uhash_put) by making sure the last slot
michael@0 324 * in the table is never filled.
michael@0 325 *
michael@0 326 * The size of the table should be prime for this algorithm to work;
michael@0 327 * otherwise we are not guaranteed that the jump value (the secondary
michael@0 328 * hash) is relatively prime to the table length.
michael@0 329 */
michael@0 330 static UHashElement*
michael@0 331 _uhash_find(const UHashtable *hash, UHashTok key,
michael@0 332 int32_t hashcode) {
michael@0 333
michael@0 334 int32_t firstDeleted = -1; /* assume invalid index */
michael@0 335 int32_t theIndex, startIndex;
michael@0 336 int32_t jump = 0; /* lazy evaluate */
michael@0 337 int32_t tableHash;
michael@0 338 UHashElement *elements = hash->elements;
michael@0 339
michael@0 340 hashcode &= 0x7FFFFFFF; /* must be positive */
michael@0 341 startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
michael@0 342
michael@0 343 do {
michael@0 344 tableHash = elements[theIndex].hashcode;
michael@0 345 if (tableHash == hashcode) { /* quick check */
michael@0 346 if ((*hash->keyComparator)(key, elements[theIndex].key)) {
michael@0 347 return &(elements[theIndex]);
michael@0 348 }
michael@0 349 } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
michael@0 350 /* We have hit a slot which contains a key-value pair,
michael@0 351 * but for which the hash code does not match. Keep
michael@0 352 * looking.
michael@0 353 */
michael@0 354 } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
michael@0 355 break;
michael@0 356 } else if (firstDeleted < 0) { /* remember first deleted */
michael@0 357 firstDeleted = theIndex;
michael@0 358 }
michael@0 359 if (jump == 0) { /* lazy compute jump */
michael@0 360 /* The jump value must be relatively prime to the table
michael@0 361 * length. As long as the length is prime, then any value
michael@0 362 * 1..length-1 will be relatively prime to it.
michael@0 363 */
michael@0 364 jump = (hashcode % (hash->length - 1)) + 1;
michael@0 365 }
michael@0 366 theIndex = (theIndex + jump) % hash->length;
michael@0 367 } while (theIndex != startIndex);
michael@0 368
michael@0 369 if (firstDeleted >= 0) {
michael@0 370 theIndex = firstDeleted; /* reset if had deleted slot */
michael@0 371 } else if (tableHash != HASH_EMPTY) {
michael@0 372 /* We get to this point if the hashtable is full (no empty or
michael@0 373 * deleted slots), and we've failed to find a match. THIS
michael@0 374 * WILL NEVER HAPPEN as long as uhash_put() makes sure that
michael@0 375 * count is always < length.
michael@0 376 */
michael@0 377 U_ASSERT(FALSE);
michael@0 378 return NULL; /* Never happens if uhash_put() behaves */
michael@0 379 }
michael@0 380 return &(elements[theIndex]);
michael@0 381 }
michael@0 382
michael@0 383 /**
michael@0 384 * Attempt to grow or shrink the data arrays in order to make the
michael@0 385 * count fit between the high and low water marks. hash_put() and
michael@0 386 * hash_remove() call this method when the count exceeds the high or
michael@0 387 * low water marks. This method may do nothing, if memory allocation
michael@0 388 * fails, or if the count is already in range, or if the length is
michael@0 389 * already at the low or high limit. In any case, upon return the
michael@0 390 * arrays will be valid.
michael@0 391 */
michael@0 392 static void
michael@0 393 _uhash_rehash(UHashtable *hash, UErrorCode *status) {
michael@0 394
michael@0 395 UHashElement *old = hash->elements;
michael@0 396 int32_t oldLength = hash->length;
michael@0 397 int32_t newPrimeIndex = hash->primeIndex;
michael@0 398 int32_t i;
michael@0 399
michael@0 400 if (hash->count > hash->highWaterMark) {
michael@0 401 if (++newPrimeIndex >= PRIMES_LENGTH) {
michael@0 402 return;
michael@0 403 }
michael@0 404 } else if (hash->count < hash->lowWaterMark) {
michael@0 405 if (--newPrimeIndex < 0) {
michael@0 406 return;
michael@0 407 }
michael@0 408 } else {
michael@0 409 return;
michael@0 410 }
michael@0 411
michael@0 412 _uhash_allocate(hash, newPrimeIndex, status);
michael@0 413
michael@0 414 if (U_FAILURE(*status)) {
michael@0 415 hash->elements = old;
michael@0 416 hash->length = oldLength;
michael@0 417 return;
michael@0 418 }
michael@0 419
michael@0 420 for (i = oldLength - 1; i >= 0; --i) {
michael@0 421 if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
michael@0 422 UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
michael@0 423 U_ASSERT(e != NULL);
michael@0 424 U_ASSERT(e->hashcode == HASH_EMPTY);
michael@0 425 e->key = old[i].key;
michael@0 426 e->value = old[i].value;
michael@0 427 e->hashcode = old[i].hashcode;
michael@0 428 ++hash->count;
michael@0 429 }
michael@0 430 }
michael@0 431
michael@0 432 uprv_free(old);
michael@0 433 }
michael@0 434
michael@0 435 static UHashTok
michael@0 436 _uhash_remove(UHashtable *hash,
michael@0 437 UHashTok key) {
michael@0 438 /* First find the position of the key in the table. If the object
michael@0 439 * has not been removed already, remove it. If the user wanted
michael@0 440 * keys deleted, then delete it also. We have to put a special
michael@0 441 * hashcode in that position that means that something has been
michael@0 442 * deleted, since when we do a find, we have to continue PAST any
michael@0 443 * deleted values.
michael@0 444 */
michael@0 445 UHashTok result;
michael@0 446 UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
michael@0 447 U_ASSERT(e != NULL);
michael@0 448 result.pointer = NULL;
michael@0 449 result.integer = 0;
michael@0 450 if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
michael@0 451 result = _uhash_internalRemoveElement(hash, e);
michael@0 452 if (hash->count < hash->lowWaterMark) {
michael@0 453 UErrorCode status = U_ZERO_ERROR;
michael@0 454 _uhash_rehash(hash, &status);
michael@0 455 }
michael@0 456 }
michael@0 457 return result;
michael@0 458 }
michael@0 459
michael@0 460 static UHashTok
michael@0 461 _uhash_put(UHashtable *hash,
michael@0 462 UHashTok key,
michael@0 463 UHashTok value,
michael@0 464 int8_t hint,
michael@0 465 UErrorCode *status) {
michael@0 466
michael@0 467 /* Put finds the position in the table for the new value. If the
michael@0 468 * key is already in the table, it is deleted, if there is a
michael@0 469 * non-NULL keyDeleter. Then the key, the hash and the value are
michael@0 470 * all put at the position in their respective arrays.
michael@0 471 */
michael@0 472 int32_t hashcode;
michael@0 473 UHashElement* e;
michael@0 474 UHashTok emptytok;
michael@0 475
michael@0 476 if (U_FAILURE(*status)) {
michael@0 477 goto err;
michael@0 478 }
michael@0 479 U_ASSERT(hash != NULL);
michael@0 480 /* Cannot always check pointer here or iSeries sees NULL every time. */
michael@0 481 if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
michael@0 482 /* Disallow storage of NULL values, since NULL is returned by
michael@0 483 * get() to indicate an absent key. Storing NULL == removing.
michael@0 484 */
michael@0 485 return _uhash_remove(hash, key);
michael@0 486 }
michael@0 487 if (hash->count > hash->highWaterMark) {
michael@0 488 _uhash_rehash(hash, status);
michael@0 489 if (U_FAILURE(*status)) {
michael@0 490 goto err;
michael@0 491 }
michael@0 492 }
michael@0 493
michael@0 494 hashcode = (*hash->keyHasher)(key);
michael@0 495 e = _uhash_find(hash, key, hashcode);
michael@0 496 U_ASSERT(e != NULL);
michael@0 497
michael@0 498 if (IS_EMPTY_OR_DELETED(e->hashcode)) {
michael@0 499 /* Important: We must never actually fill the table up. If we
michael@0 500 * do so, then _uhash_find() will return NULL, and we'll have
michael@0 501 * to check for NULL after every call to _uhash_find(). To
michael@0 502 * avoid this we make sure there is always at least one empty
michael@0 503 * or deleted slot in the table. This only is a problem if we
michael@0 504 * are out of memory and rehash isn't working.
michael@0 505 */
michael@0 506 ++hash->count;
michael@0 507 if (hash->count == hash->length) {
michael@0 508 /* Don't allow count to reach length */
michael@0 509 --hash->count;
michael@0 510 *status = U_MEMORY_ALLOCATION_ERROR;
michael@0 511 goto err;
michael@0 512 }
michael@0 513 }
michael@0 514
michael@0 515 /* We must in all cases handle storage properly. If there was an
michael@0 516 * old key, then it must be deleted (if the deleter != NULL).
michael@0 517 * Make hashcodes stored in table positive.
michael@0 518 */
michael@0 519 return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
michael@0 520
michael@0 521 err:
michael@0 522 /* If the deleters are non-NULL, this method adopts its key and/or
michael@0 523 * value arguments, and we must be sure to delete the key and/or
michael@0 524 * value in all cases, even upon failure.
michael@0 525 */
michael@0 526 HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
michael@0 527 emptytok.pointer = NULL; emptytok.integer = 0;
michael@0 528 return emptytok;
michael@0 529 }
michael@0 530
michael@0 531
michael@0 532 /********************************************************************
michael@0 533 * PUBLIC API
michael@0 534 ********************************************************************/
michael@0 535
michael@0 536 U_CAPI UHashtable* U_EXPORT2
michael@0 537 uhash_open(UHashFunction *keyHash,
michael@0 538 UKeyComparator *keyComp,
michael@0 539 UValueComparator *valueComp,
michael@0 540 UErrorCode *status) {
michael@0 541
michael@0 542 return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
michael@0 543 }
michael@0 544
michael@0 545 U_CAPI UHashtable* U_EXPORT2
michael@0 546 uhash_openSize(UHashFunction *keyHash,
michael@0 547 UKeyComparator *keyComp,
michael@0 548 UValueComparator *valueComp,
michael@0 549 int32_t size,
michael@0 550 UErrorCode *status) {
michael@0 551
michael@0 552 /* Find the smallest index i for which PRIMES[i] >= size. */
michael@0 553 int32_t i = 0;
michael@0 554 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
michael@0 555 ++i;
michael@0 556 }
michael@0 557
michael@0 558 return _uhash_create(keyHash, keyComp, valueComp, i, status);
michael@0 559 }
michael@0 560
michael@0 561 U_CAPI UHashtable* U_EXPORT2
michael@0 562 uhash_init(UHashtable *fillinResult,
michael@0 563 UHashFunction *keyHash,
michael@0 564 UKeyComparator *keyComp,
michael@0 565 UValueComparator *valueComp,
michael@0 566 UErrorCode *status) {
michael@0 567
michael@0 568 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
michael@0 569 }
michael@0 570
michael@0 571 U_CAPI void U_EXPORT2
michael@0 572 uhash_close(UHashtable *hash) {
michael@0 573 if (hash == NULL) {
michael@0 574 return;
michael@0 575 }
michael@0 576 if (hash->elements != NULL) {
michael@0 577 if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
michael@0 578 int32_t pos=-1;
michael@0 579 UHashElement *e;
michael@0 580 while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
michael@0 581 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
michael@0 582 }
michael@0 583 }
michael@0 584 uprv_free(hash->elements);
michael@0 585 hash->elements = NULL;
michael@0 586 }
michael@0 587 if (hash->allocated) {
michael@0 588 uprv_free(hash);
michael@0 589 }
michael@0 590 }
michael@0 591
michael@0 592 U_CAPI UHashFunction *U_EXPORT2
michael@0 593 uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
michael@0 594 UHashFunction *result = hash->keyHasher;
michael@0 595 hash->keyHasher = fn;
michael@0 596 return result;
michael@0 597 }
michael@0 598
michael@0 599 U_CAPI UKeyComparator *U_EXPORT2
michael@0 600 uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
michael@0 601 UKeyComparator *result = hash->keyComparator;
michael@0 602 hash->keyComparator = fn;
michael@0 603 return result;
michael@0 604 }
michael@0 605 U_CAPI UValueComparator *U_EXPORT2
michael@0 606 uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
michael@0 607 UValueComparator *result = hash->valueComparator;
michael@0 608 hash->valueComparator = fn;
michael@0 609 return result;
michael@0 610 }
michael@0 611
michael@0 612 U_CAPI UObjectDeleter *U_EXPORT2
michael@0 613 uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
michael@0 614 UObjectDeleter *result = hash->keyDeleter;
michael@0 615 hash->keyDeleter = fn;
michael@0 616 return result;
michael@0 617 }
michael@0 618
michael@0 619 U_CAPI UObjectDeleter *U_EXPORT2
michael@0 620 uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
michael@0 621 UObjectDeleter *result = hash->valueDeleter;
michael@0 622 hash->valueDeleter = fn;
michael@0 623 return result;
michael@0 624 }
michael@0 625
michael@0 626 U_CAPI void U_EXPORT2
michael@0 627 uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
michael@0 628 UErrorCode status = U_ZERO_ERROR;
michael@0 629 _uhash_internalSetResizePolicy(hash, policy);
michael@0 630 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
michael@0 631 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
michael@0 632 _uhash_rehash(hash, &status);
michael@0 633 }
michael@0 634
michael@0 635 U_CAPI int32_t U_EXPORT2
michael@0 636 uhash_count(const UHashtable *hash) {
michael@0 637 return hash->count;
michael@0 638 }
michael@0 639
michael@0 640 U_CAPI void* U_EXPORT2
michael@0 641 uhash_get(const UHashtable *hash,
michael@0 642 const void* key) {
michael@0 643 UHashTok keyholder;
michael@0 644 keyholder.pointer = (void*) key;
michael@0 645 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
michael@0 646 }
michael@0 647
michael@0 648 U_CAPI void* U_EXPORT2
michael@0 649 uhash_iget(const UHashtable *hash,
michael@0 650 int32_t key) {
michael@0 651 UHashTok keyholder;
michael@0 652 keyholder.integer = key;
michael@0 653 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
michael@0 654 }
michael@0 655
michael@0 656 U_CAPI int32_t U_EXPORT2
michael@0 657 uhash_geti(const UHashtable *hash,
michael@0 658 const void* key) {
michael@0 659 UHashTok keyholder;
michael@0 660 keyholder.pointer = (void*) key;
michael@0 661 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
michael@0 662 }
michael@0 663
michael@0 664 U_CAPI int32_t U_EXPORT2
michael@0 665 uhash_igeti(const UHashtable *hash,
michael@0 666 int32_t key) {
michael@0 667 UHashTok keyholder;
michael@0 668 keyholder.integer = key;
michael@0 669 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
michael@0 670 }
michael@0 671
michael@0 672 U_CAPI void* U_EXPORT2
michael@0 673 uhash_put(UHashtable *hash,
michael@0 674 void* key,
michael@0 675 void* value,
michael@0 676 UErrorCode *status) {
michael@0 677 UHashTok keyholder, valueholder;
michael@0 678 keyholder.pointer = key;
michael@0 679 valueholder.pointer = value;
michael@0 680 return _uhash_put(hash, keyholder, valueholder,
michael@0 681 HINT_KEY_POINTER | HINT_VALUE_POINTER,
michael@0 682 status).pointer;
michael@0 683 }
michael@0 684
michael@0 685 U_CAPI void* U_EXPORT2
michael@0 686 uhash_iput(UHashtable *hash,
michael@0 687 int32_t key,
michael@0 688 void* value,
michael@0 689 UErrorCode *status) {
michael@0 690 UHashTok keyholder, valueholder;
michael@0 691 keyholder.integer = key;
michael@0 692 valueholder.pointer = value;
michael@0 693 return _uhash_put(hash, keyholder, valueholder,
michael@0 694 HINT_VALUE_POINTER,
michael@0 695 status).pointer;
michael@0 696 }
michael@0 697
michael@0 698 U_CAPI int32_t U_EXPORT2
michael@0 699 uhash_puti(UHashtable *hash,
michael@0 700 void* key,
michael@0 701 int32_t value,
michael@0 702 UErrorCode *status) {
michael@0 703 UHashTok keyholder, valueholder;
michael@0 704 keyholder.pointer = key;
michael@0 705 valueholder.integer = value;
michael@0 706 return _uhash_put(hash, keyholder, valueholder,
michael@0 707 HINT_KEY_POINTER,
michael@0 708 status).integer;
michael@0 709 }
michael@0 710
michael@0 711
michael@0 712 U_CAPI int32_t U_EXPORT2
michael@0 713 uhash_iputi(UHashtable *hash,
michael@0 714 int32_t key,
michael@0 715 int32_t value,
michael@0 716 UErrorCode *status) {
michael@0 717 UHashTok keyholder, valueholder;
michael@0 718 keyholder.integer = key;
michael@0 719 valueholder.integer = value;
michael@0 720 return _uhash_put(hash, keyholder, valueholder,
michael@0 721 0, /* neither is a ptr */
michael@0 722 status).integer;
michael@0 723 }
michael@0 724
michael@0 725 U_CAPI void* U_EXPORT2
michael@0 726 uhash_remove(UHashtable *hash,
michael@0 727 const void* key) {
michael@0 728 UHashTok keyholder;
michael@0 729 keyholder.pointer = (void*) key;
michael@0 730 return _uhash_remove(hash, keyholder).pointer;
michael@0 731 }
michael@0 732
michael@0 733 U_CAPI void* U_EXPORT2
michael@0 734 uhash_iremove(UHashtable *hash,
michael@0 735 int32_t key) {
michael@0 736 UHashTok keyholder;
michael@0 737 keyholder.integer = key;
michael@0 738 return _uhash_remove(hash, keyholder).pointer;
michael@0 739 }
michael@0 740
michael@0 741 U_CAPI int32_t U_EXPORT2
michael@0 742 uhash_removei(UHashtable *hash,
michael@0 743 const void* key) {
michael@0 744 UHashTok keyholder;
michael@0 745 keyholder.pointer = (void*) key;
michael@0 746 return _uhash_remove(hash, keyholder).integer;
michael@0 747 }
michael@0 748
michael@0 749 U_CAPI int32_t U_EXPORT2
michael@0 750 uhash_iremovei(UHashtable *hash,
michael@0 751 int32_t key) {
michael@0 752 UHashTok keyholder;
michael@0 753 keyholder.integer = key;
michael@0 754 return _uhash_remove(hash, keyholder).integer;
michael@0 755 }
michael@0 756
michael@0 757 U_CAPI void U_EXPORT2
michael@0 758 uhash_removeAll(UHashtable *hash) {
michael@0 759 int32_t pos = -1;
michael@0 760 const UHashElement *e;
michael@0 761 U_ASSERT(hash != NULL);
michael@0 762 if (hash->count != 0) {
michael@0 763 while ((e = uhash_nextElement(hash, &pos)) != NULL) {
michael@0 764 uhash_removeElement(hash, e);
michael@0 765 }
michael@0 766 }
michael@0 767 U_ASSERT(hash->count == 0);
michael@0 768 }
michael@0 769
michael@0 770 U_CAPI const UHashElement* U_EXPORT2
michael@0 771 uhash_find(const UHashtable *hash, const void* key) {
michael@0 772 UHashTok keyholder;
michael@0 773 const UHashElement *e;
michael@0 774 keyholder.pointer = (void*) key;
michael@0 775 e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
michael@0 776 return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
michael@0 777 }
michael@0 778
michael@0 779 U_CAPI const UHashElement* U_EXPORT2
michael@0 780 uhash_nextElement(const UHashtable *hash, int32_t *pos) {
michael@0 781 /* Walk through the array until we find an element that is not
michael@0 782 * EMPTY and not DELETED.
michael@0 783 */
michael@0 784 int32_t i;
michael@0 785 U_ASSERT(hash != NULL);
michael@0 786 for (i = *pos + 1; i < hash->length; ++i) {
michael@0 787 if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
michael@0 788 *pos = i;
michael@0 789 return &(hash->elements[i]);
michael@0 790 }
michael@0 791 }
michael@0 792
michael@0 793 /* No more elements */
michael@0 794 return NULL;
michael@0 795 }
michael@0 796
michael@0 797 U_CAPI void* U_EXPORT2
michael@0 798 uhash_removeElement(UHashtable *hash, const UHashElement* e) {
michael@0 799 U_ASSERT(hash != NULL);
michael@0 800 U_ASSERT(e != NULL);
michael@0 801 if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
michael@0 802 UHashElement *nce = (UHashElement *)e;
michael@0 803 return _uhash_internalRemoveElement(hash, nce).pointer;
michael@0 804 }
michael@0 805 return NULL;
michael@0 806 }
michael@0 807
michael@0 808 /********************************************************************
michael@0 809 * UHashTok convenience
michael@0 810 ********************************************************************/
michael@0 811
michael@0 812 /**
michael@0 813 * Return a UHashTok for an integer.
michael@0 814 */
michael@0 815 /*U_CAPI UHashTok U_EXPORT2
michael@0 816 uhash_toki(int32_t i) {
michael@0 817 UHashTok tok;
michael@0 818 tok.integer = i;
michael@0 819 return tok;
michael@0 820 }*/
michael@0 821
michael@0 822 /**
michael@0 823 * Return a UHashTok for a pointer.
michael@0 824 */
michael@0 825 /*U_CAPI UHashTok U_EXPORT2
michael@0 826 uhash_tokp(void* p) {
michael@0 827 UHashTok tok;
michael@0 828 tok.pointer = p;
michael@0 829 return tok;
michael@0 830 }*/
michael@0 831
michael@0 832 /********************************************************************
michael@0 833 * PUBLIC Key Hash Functions
michael@0 834 ********************************************************************/
michael@0 835
michael@0 836 U_CAPI int32_t U_EXPORT2
michael@0 837 uhash_hashUChars(const UHashTok key) {
michael@0 838 const UChar *s = (const UChar *)key.pointer;
michael@0 839 return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s));
michael@0 840 }
michael@0 841
michael@0 842 U_CAPI int32_t U_EXPORT2
michael@0 843 uhash_hashChars(const UHashTok key) {
michael@0 844 const char *s = (const char *)key.pointer;
michael@0 845 return s == NULL ? 0 : ustr_hashCharsN(s, uprv_strlen(s));
michael@0 846 }
michael@0 847
michael@0 848 U_CAPI int32_t U_EXPORT2
michael@0 849 uhash_hashIChars(const UHashTok key) {
michael@0 850 const char *s = (const char *)key.pointer;
michael@0 851 return s == NULL ? 0 : ustr_hashICharsN(s, uprv_strlen(s));
michael@0 852 }
michael@0 853
michael@0 854 U_CAPI UBool U_EXPORT2
michael@0 855 uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
michael@0 856 int32_t count1, count2, pos, i;
michael@0 857
michael@0 858 if(hash1==hash2){
michael@0 859 return TRUE;
michael@0 860 }
michael@0 861
michael@0 862 /*
michael@0 863 * Make sure that we are comparing 2 valid hashes of the same type
michael@0 864 * with valid comparison functions.
michael@0 865 * Without valid comparison functions, a binary comparison
michael@0 866 * of the hash values will yield random results on machines
michael@0 867 * with 64-bit pointers and 32-bit integer hashes.
michael@0 868 * A valueComparator is normally optional.
michael@0 869 */
michael@0 870 if (hash1==NULL || hash2==NULL ||
michael@0 871 hash1->keyComparator != hash2->keyComparator ||
michael@0 872 hash1->valueComparator != hash2->valueComparator ||
michael@0 873 hash1->valueComparator == NULL)
michael@0 874 {
michael@0 875 /*
michael@0 876 Normally we would return an error here about incompatible hash tables,
michael@0 877 but we return FALSE instead.
michael@0 878 */
michael@0 879 return FALSE;
michael@0 880 }
michael@0 881
michael@0 882 count1 = uhash_count(hash1);
michael@0 883 count2 = uhash_count(hash2);
michael@0 884 if(count1!=count2){
michael@0 885 return FALSE;
michael@0 886 }
michael@0 887
michael@0 888 pos=-1;
michael@0 889 for(i=0; i<count1; i++){
michael@0 890 const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
michael@0 891 const UHashTok key1 = elem1->key;
michael@0 892 const UHashTok val1 = elem1->value;
michael@0 893 /* here the keys are not compared, instead the key form hash1 is used to fetch
michael@0 894 * value from hash2. If the hashes are equal then then both hashes should
michael@0 895 * contain equal values for the same key!
michael@0 896 */
michael@0 897 const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
michael@0 898 const UHashTok val2 = elem2->value;
michael@0 899 if(hash1->valueComparator(val1, val2)==FALSE){
michael@0 900 return FALSE;
michael@0 901 }
michael@0 902 }
michael@0 903 return TRUE;
michael@0 904 }
michael@0 905
michael@0 906 /********************************************************************
michael@0 907 * PUBLIC Comparator Functions
michael@0 908 ********************************************************************/
michael@0 909
michael@0 910 U_CAPI UBool U_EXPORT2
michael@0 911 uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
michael@0 912 const UChar *p1 = (const UChar*) key1.pointer;
michael@0 913 const UChar *p2 = (const UChar*) key2.pointer;
michael@0 914 if (p1 == p2) {
michael@0 915 return TRUE;
michael@0 916 }
michael@0 917 if (p1 == NULL || p2 == NULL) {
michael@0 918 return FALSE;
michael@0 919 }
michael@0 920 while (*p1 != 0 && *p1 == *p2) {
michael@0 921 ++p1;
michael@0 922 ++p2;
michael@0 923 }
michael@0 924 return (UBool)(*p1 == *p2);
michael@0 925 }
michael@0 926
michael@0 927 U_CAPI UBool U_EXPORT2
michael@0 928 uhash_compareChars(const UHashTok key1, const UHashTok key2) {
michael@0 929 const char *p1 = (const char*) key1.pointer;
michael@0 930 const char *p2 = (const char*) key2.pointer;
michael@0 931 if (p1 == p2) {
michael@0 932 return TRUE;
michael@0 933 }
michael@0 934 if (p1 == NULL || p2 == NULL) {
michael@0 935 return FALSE;
michael@0 936 }
michael@0 937 while (*p1 != 0 && *p1 == *p2) {
michael@0 938 ++p1;
michael@0 939 ++p2;
michael@0 940 }
michael@0 941 return (UBool)(*p1 == *p2);
michael@0 942 }
michael@0 943
michael@0 944 U_CAPI UBool U_EXPORT2
michael@0 945 uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
michael@0 946 const char *p1 = (const char*) key1.pointer;
michael@0 947 const char *p2 = (const char*) key2.pointer;
michael@0 948 if (p1 == p2) {
michael@0 949 return TRUE;
michael@0 950 }
michael@0 951 if (p1 == NULL || p2 == NULL) {
michael@0 952 return FALSE;
michael@0 953 }
michael@0 954 while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
michael@0 955 ++p1;
michael@0 956 ++p2;
michael@0 957 }
michael@0 958 return (UBool)(*p1 == *p2);
michael@0 959 }
michael@0 960
michael@0 961 /********************************************************************
michael@0 962 * PUBLIC int32_t Support Functions
michael@0 963 ********************************************************************/
michael@0 964
michael@0 965 U_CAPI int32_t U_EXPORT2
michael@0 966 uhash_hashLong(const UHashTok key) {
michael@0 967 return key.integer;
michael@0 968 }
michael@0 969
michael@0 970 U_CAPI UBool U_EXPORT2
michael@0 971 uhash_compareLong(const UHashTok key1, const UHashTok key2) {
michael@0 972 return (UBool)(key1.integer == key2.integer);
michael@0 973 }

mercurial