|
1 /* |
|
2 ****************************************************************************** |
|
3 * Copyright (C) 1997-2011, International Business Machines |
|
4 * Corporation and others. All Rights Reserved. |
|
5 ****************************************************************************** |
|
6 * Date Name Description |
|
7 * 03/22/00 aliu Adapted from original C++ ICU Hashtable. |
|
8 * 07/06/01 aliu Modified to support int32_t keys on |
|
9 * platforms with sizeof(void*) < 32. |
|
10 ****************************************************************************** |
|
11 */ |
|
12 |
|
13 #include "uhash.h" |
|
14 #include "unicode/ustring.h" |
|
15 #include "cstring.h" |
|
16 #include "cmemory.h" |
|
17 #include "uassert.h" |
|
18 #include "ustr_imp.h" |
|
19 |
|
20 /* This hashtable is implemented as a double hash. All elements are |
|
21 * stored in a single array with no secondary storage for collision |
|
22 * resolution (no linked list, etc.). When there is a hash collision |
|
23 * (when two unequal keys have the same hashcode) we resolve this by |
|
24 * using a secondary hash. The secondary hash is an increment |
|
25 * computed as a hash function (a different one) of the primary |
|
26 * hashcode. This increment is added to the initial hash value to |
|
27 * obtain further slots assigned to the same hash code. For this to |
|
28 * work, the length of the array and the increment must be relatively |
|
29 * prime. The easiest way to achieve this is to have the length of |
|
30 * the array be prime, and the increment be any value from |
|
31 * 1..length-1. |
|
32 * |
|
33 * Hashcodes are 32-bit integers. We make sure all hashcodes are |
|
34 * non-negative by masking off the top bit. This has two effects: (1) |
|
35 * modulo arithmetic is simplified. If we allowed negative hashcodes, |
|
36 * then when we computed hashcode % length, we could get a negative |
|
37 * result, which we would then have to adjust back into range. It's |
|
38 * simpler to just make hashcodes non-negative. (2) It makes it easy |
|
39 * to check for empty vs. occupied slots in the table. We just mark |
|
40 * empty or deleted slots with a negative hashcode. |
|
41 * |
|
42 * The central function is _uhash_find(). This function looks for a |
|
43 * slot matching the given key and hashcode. If one is found, it |
|
44 * returns a pointer to that slot. If the table is full, and no match |
|
45 * is found, it returns NULL -- in theory. This would make the code |
|
46 * more complicated, since all callers of _uhash_find() would then |
|
47 * have to check for a NULL result. To keep this from happening, we |
|
48 * don't allow the table to fill. When there is only one |
|
49 * empty/deleted slot left, uhash_put() will refuse to increase the |
|
50 * count, and fail. This simplifies the code. In practice, one will |
|
51 * seldom encounter this using default UHashtables. However, if a |
|
52 * hashtable is set to a U_FIXED resize policy, or if memory is |
|
53 * exhausted, then the table may fill. |
|
54 * |
|
55 * High and low water ratios control rehashing. They establish levels |
|
56 * of fullness (from 0 to 1) outside of which the data array is |
|
57 * reallocated and repopulated. Setting the low water ratio to zero |
|
58 * means the table will never shrink. Setting the high water ratio to |
|
59 * one means the table will never grow. The ratios should be |
|
60 * coordinated with the ratio between successive elements of the |
|
61 * PRIMES table, so that when the primeIndex is incremented or |
|
62 * decremented during rehashing, it brings the ratio of count / length |
|
63 * back into the desired range (between low and high water ratios). |
|
64 */ |
|
65 |
|
66 /******************************************************************** |
|
67 * PRIVATE Constants, Macros |
|
68 ********************************************************************/ |
|
69 |
|
70 /* This is a list of non-consecutive primes chosen such that |
|
71 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 |
|
72 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this |
|
73 * ratio is changed, the low and high water ratios should also be |
|
74 * adjusted to suit. |
|
75 * |
|
76 * These prime numbers were also chosen so that they are the largest |
|
77 * prime number while being less than a power of two. |
|
78 */ |
|
79 static const int32_t PRIMES[] = { |
|
80 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, |
|
81 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, |
|
82 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, |
|
83 1073741789, 2147483647 /*, 4294967291 */ |
|
84 }; |
|
85 |
|
86 #define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0])) |
|
87 #define DEFAULT_PRIME_INDEX 3 |
|
88 |
|
89 /* These ratios are tuned to the PRIMES array such that a resize |
|
90 * places the table back into the zone of non-resizing. That is, |
|
91 * after a call to _uhash_rehash(), a subsequent call to |
|
92 * _uhash_rehash() should do nothing (should not churn). This is only |
|
93 * a potential problem with U_GROW_AND_SHRINK. |
|
94 */ |
|
95 static const float RESIZE_POLICY_RATIO_TABLE[6] = { |
|
96 /* low, high water ratio */ |
|
97 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ |
|
98 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ |
|
99 0.0F, 1.0F /* U_FIXED: Never change size */ |
|
100 }; |
|
101 |
|
102 /* |
|
103 Invariants for hashcode values: |
|
104 |
|
105 * DELETED < 0 |
|
106 * EMPTY < 0 |
|
107 * Real hashes >= 0 |
|
108 |
|
109 Hashcodes may not start out this way, but internally they are |
|
110 adjusted so that they are always positive. We assume 32-bit |
|
111 hashcodes; adjust these constants for other hashcode sizes. |
|
112 */ |
|
113 #define HASH_DELETED ((int32_t) 0x80000000) |
|
114 #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) |
|
115 |
|
116 #define IS_EMPTY_OR_DELETED(x) ((x) < 0) |
|
117 |
|
118 /* This macro expects a UHashTok.pointer as its keypointer and |
|
119 valuepointer parameters */ |
|
120 #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \ |
|
121 if (hash->keyDeleter != NULL && keypointer != NULL) { \ |
|
122 (*hash->keyDeleter)(keypointer); \ |
|
123 } \ |
|
124 if (hash->valueDeleter != NULL && valuepointer != NULL) { \ |
|
125 (*hash->valueDeleter)(valuepointer); \ |
|
126 } |
|
127 |
|
128 /* |
|
129 * Constants for hinting whether a key or value is an integer |
|
130 * or a pointer. If a hint bit is zero, then the associated |
|
131 * token is assumed to be an integer. |
|
132 */ |
|
133 #define HINT_KEY_POINTER (1) |
|
134 #define HINT_VALUE_POINTER (2) |
|
135 |
|
136 /******************************************************************** |
|
137 * PRIVATE Implementation |
|
138 ********************************************************************/ |
|
139 |
|
140 static UHashTok |
|
141 _uhash_setElement(UHashtable *hash, UHashElement* e, |
|
142 int32_t hashcode, |
|
143 UHashTok key, UHashTok value, int8_t hint) { |
|
144 |
|
145 UHashTok oldValue = e->value; |
|
146 if (hash->keyDeleter != NULL && e->key.pointer != NULL && |
|
147 e->key.pointer != key.pointer) { /* Avoid double deletion */ |
|
148 (*hash->keyDeleter)(e->key.pointer); |
|
149 } |
|
150 if (hash->valueDeleter != NULL) { |
|
151 if (oldValue.pointer != NULL && |
|
152 oldValue.pointer != value.pointer) { /* Avoid double deletion */ |
|
153 (*hash->valueDeleter)(oldValue.pointer); |
|
154 } |
|
155 oldValue.pointer = NULL; |
|
156 } |
|
157 /* Compilers should copy the UHashTok union correctly, but even if |
|
158 * they do, memory heap tools (e.g. BoundsChecker) can get |
|
159 * confused when a pointer is cloaked in a union and then copied. |
|
160 * TO ALLEVIATE THIS, we use hints (based on what API the user is |
|
161 * calling) to copy pointers when we know the user thinks |
|
162 * something is a pointer. */ |
|
163 if (hint & HINT_KEY_POINTER) { |
|
164 e->key.pointer = key.pointer; |
|
165 } else { |
|
166 e->key = key; |
|
167 } |
|
168 if (hint & HINT_VALUE_POINTER) { |
|
169 e->value.pointer = value.pointer; |
|
170 } else { |
|
171 e->value = value; |
|
172 } |
|
173 e->hashcode = hashcode; |
|
174 return oldValue; |
|
175 } |
|
176 |
|
177 /** |
|
178 * Assumes that the given element is not empty or deleted. |
|
179 */ |
|
180 static UHashTok |
|
181 _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { |
|
182 UHashTok empty; |
|
183 U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); |
|
184 --hash->count; |
|
185 empty.pointer = NULL; empty.integer = 0; |
|
186 return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); |
|
187 } |
|
188 |
|
189 static void |
|
190 _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
|
191 U_ASSERT(hash != NULL); |
|
192 U_ASSERT(((int32_t)policy) >= 0); |
|
193 U_ASSERT(((int32_t)policy) < 3); |
|
194 hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; |
|
195 hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; |
|
196 } |
|
197 |
|
198 /** |
|
199 * Allocate internal data array of a size determined by the given |
|
200 * prime index. If the index is out of range it is pinned into range. |
|
201 * If the allocation fails the status is set to |
|
202 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In |
|
203 * either case the previous array pointer is overwritten. |
|
204 * |
|
205 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. |
|
206 */ |
|
207 static void |
|
208 _uhash_allocate(UHashtable *hash, |
|
209 int32_t primeIndex, |
|
210 UErrorCode *status) { |
|
211 |
|
212 UHashElement *p, *limit; |
|
213 UHashTok emptytok; |
|
214 |
|
215 if (U_FAILURE(*status)) return; |
|
216 |
|
217 U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); |
|
218 |
|
219 hash->primeIndex = primeIndex; |
|
220 hash->length = PRIMES[primeIndex]; |
|
221 |
|
222 p = hash->elements = (UHashElement*) |
|
223 uprv_malloc(sizeof(UHashElement) * hash->length); |
|
224 |
|
225 if (hash->elements == NULL) { |
|
226 *status = U_MEMORY_ALLOCATION_ERROR; |
|
227 return; |
|
228 } |
|
229 |
|
230 emptytok.pointer = NULL; /* Only one of these two is needed */ |
|
231 emptytok.integer = 0; /* but we don't know which one. */ |
|
232 |
|
233 limit = p + hash->length; |
|
234 while (p < limit) { |
|
235 p->key = emptytok; |
|
236 p->value = emptytok; |
|
237 p->hashcode = HASH_EMPTY; |
|
238 ++p; |
|
239 } |
|
240 |
|
241 hash->count = 0; |
|
242 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
|
243 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
|
244 } |
|
245 |
|
246 static UHashtable* |
|
247 _uhash_init(UHashtable *result, |
|
248 UHashFunction *keyHash, |
|
249 UKeyComparator *keyComp, |
|
250 UValueComparator *valueComp, |
|
251 int32_t primeIndex, |
|
252 UErrorCode *status) |
|
253 { |
|
254 if (U_FAILURE(*status)) return NULL; |
|
255 U_ASSERT(keyHash != NULL); |
|
256 U_ASSERT(keyComp != NULL); |
|
257 |
|
258 result->keyHasher = keyHash; |
|
259 result->keyComparator = keyComp; |
|
260 result->valueComparator = valueComp; |
|
261 result->keyDeleter = NULL; |
|
262 result->valueDeleter = NULL; |
|
263 result->allocated = FALSE; |
|
264 _uhash_internalSetResizePolicy(result, U_GROW); |
|
265 |
|
266 _uhash_allocate(result, primeIndex, status); |
|
267 |
|
268 if (U_FAILURE(*status)) { |
|
269 return NULL; |
|
270 } |
|
271 |
|
272 return result; |
|
273 } |
|
274 |
|
275 static UHashtable* |
|
276 _uhash_create(UHashFunction *keyHash, |
|
277 UKeyComparator *keyComp, |
|
278 UValueComparator *valueComp, |
|
279 int32_t primeIndex, |
|
280 UErrorCode *status) { |
|
281 UHashtable *result; |
|
282 |
|
283 if (U_FAILURE(*status)) return NULL; |
|
284 |
|
285 result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); |
|
286 if (result == NULL) { |
|
287 *status = U_MEMORY_ALLOCATION_ERROR; |
|
288 return NULL; |
|
289 } |
|
290 |
|
291 _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); |
|
292 result->allocated = TRUE; |
|
293 |
|
294 if (U_FAILURE(*status)) { |
|
295 uprv_free(result); |
|
296 return NULL; |
|
297 } |
|
298 |
|
299 return result; |
|
300 } |
|
301 |
|
302 /** |
|
303 * Look for a key in the table, or if no such key exists, the first |
|
304 * empty slot matching the given hashcode. Keys are compared using |
|
305 * the keyComparator function. |
|
306 * |
|
307 * First find the start position, which is the hashcode modulo |
|
308 * the length. Test it to see if it is: |
|
309 * |
|
310 * a. identical: First check the hash values for a quick check, |
|
311 * then compare keys for equality using keyComparator. |
|
312 * b. deleted |
|
313 * c. empty |
|
314 * |
|
315 * Stop if it is identical or empty, otherwise continue by adding a |
|
316 * "jump" value (moduloing by the length again to keep it within |
|
317 * range) and retesting. For efficiency, there need enough empty |
|
318 * values so that the searchs stop within a reasonable amount of time. |
|
319 * This can be changed by changing the high/low water marks. |
|
320 * |
|
321 * In theory, this function can return NULL, if it is full (no empty |
|
322 * or deleted slots) and if no matching key is found. In practice, we |
|
323 * prevent this elsewhere (in uhash_put) by making sure the last slot |
|
324 * in the table is never filled. |
|
325 * |
|
326 * The size of the table should be prime for this algorithm to work; |
|
327 * otherwise we are not guaranteed that the jump value (the secondary |
|
328 * hash) is relatively prime to the table length. |
|
329 */ |
|
330 static UHashElement* |
|
331 _uhash_find(const UHashtable *hash, UHashTok key, |
|
332 int32_t hashcode) { |
|
333 |
|
334 int32_t firstDeleted = -1; /* assume invalid index */ |
|
335 int32_t theIndex, startIndex; |
|
336 int32_t jump = 0; /* lazy evaluate */ |
|
337 int32_t tableHash; |
|
338 UHashElement *elements = hash->elements; |
|
339 |
|
340 hashcode &= 0x7FFFFFFF; /* must be positive */ |
|
341 startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; |
|
342 |
|
343 do { |
|
344 tableHash = elements[theIndex].hashcode; |
|
345 if (tableHash == hashcode) { /* quick check */ |
|
346 if ((*hash->keyComparator)(key, elements[theIndex].key)) { |
|
347 return &(elements[theIndex]); |
|
348 } |
|
349 } else if (!IS_EMPTY_OR_DELETED(tableHash)) { |
|
350 /* We have hit a slot which contains a key-value pair, |
|
351 * but for which the hash code does not match. Keep |
|
352 * looking. |
|
353 */ |
|
354 } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ |
|
355 break; |
|
356 } else if (firstDeleted < 0) { /* remember first deleted */ |
|
357 firstDeleted = theIndex; |
|
358 } |
|
359 if (jump == 0) { /* lazy compute jump */ |
|
360 /* The jump value must be relatively prime to the table |
|
361 * length. As long as the length is prime, then any value |
|
362 * 1..length-1 will be relatively prime to it. |
|
363 */ |
|
364 jump = (hashcode % (hash->length - 1)) + 1; |
|
365 } |
|
366 theIndex = (theIndex + jump) % hash->length; |
|
367 } while (theIndex != startIndex); |
|
368 |
|
369 if (firstDeleted >= 0) { |
|
370 theIndex = firstDeleted; /* reset if had deleted slot */ |
|
371 } else if (tableHash != HASH_EMPTY) { |
|
372 /* We get to this point if the hashtable is full (no empty or |
|
373 * deleted slots), and we've failed to find a match. THIS |
|
374 * WILL NEVER HAPPEN as long as uhash_put() makes sure that |
|
375 * count is always < length. |
|
376 */ |
|
377 U_ASSERT(FALSE); |
|
378 return NULL; /* Never happens if uhash_put() behaves */ |
|
379 } |
|
380 return &(elements[theIndex]); |
|
381 } |
|
382 |
|
383 /** |
|
384 * Attempt to grow or shrink the data arrays in order to make the |
|
385 * count fit between the high and low water marks. hash_put() and |
|
386 * hash_remove() call this method when the count exceeds the high or |
|
387 * low water marks. This method may do nothing, if memory allocation |
|
388 * fails, or if the count is already in range, or if the length is |
|
389 * already at the low or high limit. In any case, upon return the |
|
390 * arrays will be valid. |
|
391 */ |
|
392 static void |
|
393 _uhash_rehash(UHashtable *hash, UErrorCode *status) { |
|
394 |
|
395 UHashElement *old = hash->elements; |
|
396 int32_t oldLength = hash->length; |
|
397 int32_t newPrimeIndex = hash->primeIndex; |
|
398 int32_t i; |
|
399 |
|
400 if (hash->count > hash->highWaterMark) { |
|
401 if (++newPrimeIndex >= PRIMES_LENGTH) { |
|
402 return; |
|
403 } |
|
404 } else if (hash->count < hash->lowWaterMark) { |
|
405 if (--newPrimeIndex < 0) { |
|
406 return; |
|
407 } |
|
408 } else { |
|
409 return; |
|
410 } |
|
411 |
|
412 _uhash_allocate(hash, newPrimeIndex, status); |
|
413 |
|
414 if (U_FAILURE(*status)) { |
|
415 hash->elements = old; |
|
416 hash->length = oldLength; |
|
417 return; |
|
418 } |
|
419 |
|
420 for (i = oldLength - 1; i >= 0; --i) { |
|
421 if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { |
|
422 UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); |
|
423 U_ASSERT(e != NULL); |
|
424 U_ASSERT(e->hashcode == HASH_EMPTY); |
|
425 e->key = old[i].key; |
|
426 e->value = old[i].value; |
|
427 e->hashcode = old[i].hashcode; |
|
428 ++hash->count; |
|
429 } |
|
430 } |
|
431 |
|
432 uprv_free(old); |
|
433 } |
|
434 |
|
435 static UHashTok |
|
436 _uhash_remove(UHashtable *hash, |
|
437 UHashTok key) { |
|
438 /* First find the position of the key in the table. If the object |
|
439 * has not been removed already, remove it. If the user wanted |
|
440 * keys deleted, then delete it also. We have to put a special |
|
441 * hashcode in that position that means that something has been |
|
442 * deleted, since when we do a find, we have to continue PAST any |
|
443 * deleted values. |
|
444 */ |
|
445 UHashTok result; |
|
446 UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); |
|
447 U_ASSERT(e != NULL); |
|
448 result.pointer = NULL; |
|
449 result.integer = 0; |
|
450 if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
|
451 result = _uhash_internalRemoveElement(hash, e); |
|
452 if (hash->count < hash->lowWaterMark) { |
|
453 UErrorCode status = U_ZERO_ERROR; |
|
454 _uhash_rehash(hash, &status); |
|
455 } |
|
456 } |
|
457 return result; |
|
458 } |
|
459 |
|
460 static UHashTok |
|
461 _uhash_put(UHashtable *hash, |
|
462 UHashTok key, |
|
463 UHashTok value, |
|
464 int8_t hint, |
|
465 UErrorCode *status) { |
|
466 |
|
467 /* Put finds the position in the table for the new value. If the |
|
468 * key is already in the table, it is deleted, if there is a |
|
469 * non-NULL keyDeleter. Then the key, the hash and the value are |
|
470 * all put at the position in their respective arrays. |
|
471 */ |
|
472 int32_t hashcode; |
|
473 UHashElement* e; |
|
474 UHashTok emptytok; |
|
475 |
|
476 if (U_FAILURE(*status)) { |
|
477 goto err; |
|
478 } |
|
479 U_ASSERT(hash != NULL); |
|
480 /* Cannot always check pointer here or iSeries sees NULL every time. */ |
|
481 if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { |
|
482 /* Disallow storage of NULL values, since NULL is returned by |
|
483 * get() to indicate an absent key. Storing NULL == removing. |
|
484 */ |
|
485 return _uhash_remove(hash, key); |
|
486 } |
|
487 if (hash->count > hash->highWaterMark) { |
|
488 _uhash_rehash(hash, status); |
|
489 if (U_FAILURE(*status)) { |
|
490 goto err; |
|
491 } |
|
492 } |
|
493 |
|
494 hashcode = (*hash->keyHasher)(key); |
|
495 e = _uhash_find(hash, key, hashcode); |
|
496 U_ASSERT(e != NULL); |
|
497 |
|
498 if (IS_EMPTY_OR_DELETED(e->hashcode)) { |
|
499 /* Important: We must never actually fill the table up. If we |
|
500 * do so, then _uhash_find() will return NULL, and we'll have |
|
501 * to check for NULL after every call to _uhash_find(). To |
|
502 * avoid this we make sure there is always at least one empty |
|
503 * or deleted slot in the table. This only is a problem if we |
|
504 * are out of memory and rehash isn't working. |
|
505 */ |
|
506 ++hash->count; |
|
507 if (hash->count == hash->length) { |
|
508 /* Don't allow count to reach length */ |
|
509 --hash->count; |
|
510 *status = U_MEMORY_ALLOCATION_ERROR; |
|
511 goto err; |
|
512 } |
|
513 } |
|
514 |
|
515 /* We must in all cases handle storage properly. If there was an |
|
516 * old key, then it must be deleted (if the deleter != NULL). |
|
517 * Make hashcodes stored in table positive. |
|
518 */ |
|
519 return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); |
|
520 |
|
521 err: |
|
522 /* If the deleters are non-NULL, this method adopts its key and/or |
|
523 * value arguments, and we must be sure to delete the key and/or |
|
524 * value in all cases, even upon failure. |
|
525 */ |
|
526 HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); |
|
527 emptytok.pointer = NULL; emptytok.integer = 0; |
|
528 return emptytok; |
|
529 } |
|
530 |
|
531 |
|
532 /******************************************************************** |
|
533 * PUBLIC API |
|
534 ********************************************************************/ |
|
535 |
|
536 U_CAPI UHashtable* U_EXPORT2 |
|
537 uhash_open(UHashFunction *keyHash, |
|
538 UKeyComparator *keyComp, |
|
539 UValueComparator *valueComp, |
|
540 UErrorCode *status) { |
|
541 |
|
542 return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
|
543 } |
|
544 |
|
545 U_CAPI UHashtable* U_EXPORT2 |
|
546 uhash_openSize(UHashFunction *keyHash, |
|
547 UKeyComparator *keyComp, |
|
548 UValueComparator *valueComp, |
|
549 int32_t size, |
|
550 UErrorCode *status) { |
|
551 |
|
552 /* Find the smallest index i for which PRIMES[i] >= size. */ |
|
553 int32_t i = 0; |
|
554 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { |
|
555 ++i; |
|
556 } |
|
557 |
|
558 return _uhash_create(keyHash, keyComp, valueComp, i, status); |
|
559 } |
|
560 |
|
561 U_CAPI UHashtable* U_EXPORT2 |
|
562 uhash_init(UHashtable *fillinResult, |
|
563 UHashFunction *keyHash, |
|
564 UKeyComparator *keyComp, |
|
565 UValueComparator *valueComp, |
|
566 UErrorCode *status) { |
|
567 |
|
568 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
|
569 } |
|
570 |
|
571 U_CAPI void U_EXPORT2 |
|
572 uhash_close(UHashtable *hash) { |
|
573 if (hash == NULL) { |
|
574 return; |
|
575 } |
|
576 if (hash->elements != NULL) { |
|
577 if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { |
|
578 int32_t pos=-1; |
|
579 UHashElement *e; |
|
580 while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) { |
|
581 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); |
|
582 } |
|
583 } |
|
584 uprv_free(hash->elements); |
|
585 hash->elements = NULL; |
|
586 } |
|
587 if (hash->allocated) { |
|
588 uprv_free(hash); |
|
589 } |
|
590 } |
|
591 |
|
592 U_CAPI UHashFunction *U_EXPORT2 |
|
593 uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { |
|
594 UHashFunction *result = hash->keyHasher; |
|
595 hash->keyHasher = fn; |
|
596 return result; |
|
597 } |
|
598 |
|
599 U_CAPI UKeyComparator *U_EXPORT2 |
|
600 uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { |
|
601 UKeyComparator *result = hash->keyComparator; |
|
602 hash->keyComparator = fn; |
|
603 return result; |
|
604 } |
|
605 U_CAPI UValueComparator *U_EXPORT2 |
|
606 uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ |
|
607 UValueComparator *result = hash->valueComparator; |
|
608 hash->valueComparator = fn; |
|
609 return result; |
|
610 } |
|
611 |
|
612 U_CAPI UObjectDeleter *U_EXPORT2 |
|
613 uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { |
|
614 UObjectDeleter *result = hash->keyDeleter; |
|
615 hash->keyDeleter = fn; |
|
616 return result; |
|
617 } |
|
618 |
|
619 U_CAPI UObjectDeleter *U_EXPORT2 |
|
620 uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { |
|
621 UObjectDeleter *result = hash->valueDeleter; |
|
622 hash->valueDeleter = fn; |
|
623 return result; |
|
624 } |
|
625 |
|
626 U_CAPI void U_EXPORT2 |
|
627 uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
|
628 UErrorCode status = U_ZERO_ERROR; |
|
629 _uhash_internalSetResizePolicy(hash, policy); |
|
630 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
|
631 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
|
632 _uhash_rehash(hash, &status); |
|
633 } |
|
634 |
|
635 U_CAPI int32_t U_EXPORT2 |
|
636 uhash_count(const UHashtable *hash) { |
|
637 return hash->count; |
|
638 } |
|
639 |
|
640 U_CAPI void* U_EXPORT2 |
|
641 uhash_get(const UHashtable *hash, |
|
642 const void* key) { |
|
643 UHashTok keyholder; |
|
644 keyholder.pointer = (void*) key; |
|
645 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; |
|
646 } |
|
647 |
|
648 U_CAPI void* U_EXPORT2 |
|
649 uhash_iget(const UHashtable *hash, |
|
650 int32_t key) { |
|
651 UHashTok keyholder; |
|
652 keyholder.integer = key; |
|
653 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; |
|
654 } |
|
655 |
|
656 U_CAPI int32_t U_EXPORT2 |
|
657 uhash_geti(const UHashtable *hash, |
|
658 const void* key) { |
|
659 UHashTok keyholder; |
|
660 keyholder.pointer = (void*) key; |
|
661 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; |
|
662 } |
|
663 |
|
664 U_CAPI int32_t U_EXPORT2 |
|
665 uhash_igeti(const UHashtable *hash, |
|
666 int32_t key) { |
|
667 UHashTok keyholder; |
|
668 keyholder.integer = key; |
|
669 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; |
|
670 } |
|
671 |
|
672 U_CAPI void* U_EXPORT2 |
|
673 uhash_put(UHashtable *hash, |
|
674 void* key, |
|
675 void* value, |
|
676 UErrorCode *status) { |
|
677 UHashTok keyholder, valueholder; |
|
678 keyholder.pointer = key; |
|
679 valueholder.pointer = value; |
|
680 return _uhash_put(hash, keyholder, valueholder, |
|
681 HINT_KEY_POINTER | HINT_VALUE_POINTER, |
|
682 status).pointer; |
|
683 } |
|
684 |
|
685 U_CAPI void* U_EXPORT2 |
|
686 uhash_iput(UHashtable *hash, |
|
687 int32_t key, |
|
688 void* value, |
|
689 UErrorCode *status) { |
|
690 UHashTok keyholder, valueholder; |
|
691 keyholder.integer = key; |
|
692 valueholder.pointer = value; |
|
693 return _uhash_put(hash, keyholder, valueholder, |
|
694 HINT_VALUE_POINTER, |
|
695 status).pointer; |
|
696 } |
|
697 |
|
698 U_CAPI int32_t U_EXPORT2 |
|
699 uhash_puti(UHashtable *hash, |
|
700 void* key, |
|
701 int32_t value, |
|
702 UErrorCode *status) { |
|
703 UHashTok keyholder, valueholder; |
|
704 keyholder.pointer = key; |
|
705 valueholder.integer = value; |
|
706 return _uhash_put(hash, keyholder, valueholder, |
|
707 HINT_KEY_POINTER, |
|
708 status).integer; |
|
709 } |
|
710 |
|
711 |
|
712 U_CAPI int32_t U_EXPORT2 |
|
713 uhash_iputi(UHashtable *hash, |
|
714 int32_t key, |
|
715 int32_t value, |
|
716 UErrorCode *status) { |
|
717 UHashTok keyholder, valueholder; |
|
718 keyholder.integer = key; |
|
719 valueholder.integer = value; |
|
720 return _uhash_put(hash, keyholder, valueholder, |
|
721 0, /* neither is a ptr */ |
|
722 status).integer; |
|
723 } |
|
724 |
|
725 U_CAPI void* U_EXPORT2 |
|
726 uhash_remove(UHashtable *hash, |
|
727 const void* key) { |
|
728 UHashTok keyholder; |
|
729 keyholder.pointer = (void*) key; |
|
730 return _uhash_remove(hash, keyholder).pointer; |
|
731 } |
|
732 |
|
733 U_CAPI void* U_EXPORT2 |
|
734 uhash_iremove(UHashtable *hash, |
|
735 int32_t key) { |
|
736 UHashTok keyholder; |
|
737 keyholder.integer = key; |
|
738 return _uhash_remove(hash, keyholder).pointer; |
|
739 } |
|
740 |
|
741 U_CAPI int32_t U_EXPORT2 |
|
742 uhash_removei(UHashtable *hash, |
|
743 const void* key) { |
|
744 UHashTok keyholder; |
|
745 keyholder.pointer = (void*) key; |
|
746 return _uhash_remove(hash, keyholder).integer; |
|
747 } |
|
748 |
|
749 U_CAPI int32_t U_EXPORT2 |
|
750 uhash_iremovei(UHashtable *hash, |
|
751 int32_t key) { |
|
752 UHashTok keyholder; |
|
753 keyholder.integer = key; |
|
754 return _uhash_remove(hash, keyholder).integer; |
|
755 } |
|
756 |
|
757 U_CAPI void U_EXPORT2 |
|
758 uhash_removeAll(UHashtable *hash) { |
|
759 int32_t pos = -1; |
|
760 const UHashElement *e; |
|
761 U_ASSERT(hash != NULL); |
|
762 if (hash->count != 0) { |
|
763 while ((e = uhash_nextElement(hash, &pos)) != NULL) { |
|
764 uhash_removeElement(hash, e); |
|
765 } |
|
766 } |
|
767 U_ASSERT(hash->count == 0); |
|
768 } |
|
769 |
|
770 U_CAPI const UHashElement* U_EXPORT2 |
|
771 uhash_find(const UHashtable *hash, const void* key) { |
|
772 UHashTok keyholder; |
|
773 const UHashElement *e; |
|
774 keyholder.pointer = (void*) key; |
|
775 e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); |
|
776 return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; |
|
777 } |
|
778 |
|
779 U_CAPI const UHashElement* U_EXPORT2 |
|
780 uhash_nextElement(const UHashtable *hash, int32_t *pos) { |
|
781 /* Walk through the array until we find an element that is not |
|
782 * EMPTY and not DELETED. |
|
783 */ |
|
784 int32_t i; |
|
785 U_ASSERT(hash != NULL); |
|
786 for (i = *pos + 1; i < hash->length; ++i) { |
|
787 if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { |
|
788 *pos = i; |
|
789 return &(hash->elements[i]); |
|
790 } |
|
791 } |
|
792 |
|
793 /* No more elements */ |
|
794 return NULL; |
|
795 } |
|
796 |
|
797 U_CAPI void* U_EXPORT2 |
|
798 uhash_removeElement(UHashtable *hash, const UHashElement* e) { |
|
799 U_ASSERT(hash != NULL); |
|
800 U_ASSERT(e != NULL); |
|
801 if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
|
802 UHashElement *nce = (UHashElement *)e; |
|
803 return _uhash_internalRemoveElement(hash, nce).pointer; |
|
804 } |
|
805 return NULL; |
|
806 } |
|
807 |
|
808 /******************************************************************** |
|
809 * UHashTok convenience |
|
810 ********************************************************************/ |
|
811 |
|
812 /** |
|
813 * Return a UHashTok for an integer. |
|
814 */ |
|
815 /*U_CAPI UHashTok U_EXPORT2 |
|
816 uhash_toki(int32_t i) { |
|
817 UHashTok tok; |
|
818 tok.integer = i; |
|
819 return tok; |
|
820 }*/ |
|
821 |
|
822 /** |
|
823 * Return a UHashTok for a pointer. |
|
824 */ |
|
825 /*U_CAPI UHashTok U_EXPORT2 |
|
826 uhash_tokp(void* p) { |
|
827 UHashTok tok; |
|
828 tok.pointer = p; |
|
829 return tok; |
|
830 }*/ |
|
831 |
|
832 /******************************************************************** |
|
833 * PUBLIC Key Hash Functions |
|
834 ********************************************************************/ |
|
835 |
|
836 U_CAPI int32_t U_EXPORT2 |
|
837 uhash_hashUChars(const UHashTok key) { |
|
838 const UChar *s = (const UChar *)key.pointer; |
|
839 return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s)); |
|
840 } |
|
841 |
|
842 U_CAPI int32_t U_EXPORT2 |
|
843 uhash_hashChars(const UHashTok key) { |
|
844 const char *s = (const char *)key.pointer; |
|
845 return s == NULL ? 0 : ustr_hashCharsN(s, uprv_strlen(s)); |
|
846 } |
|
847 |
|
848 U_CAPI int32_t U_EXPORT2 |
|
849 uhash_hashIChars(const UHashTok key) { |
|
850 const char *s = (const char *)key.pointer; |
|
851 return s == NULL ? 0 : ustr_hashICharsN(s, uprv_strlen(s)); |
|
852 } |
|
853 |
|
854 U_CAPI UBool U_EXPORT2 |
|
855 uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ |
|
856 int32_t count1, count2, pos, i; |
|
857 |
|
858 if(hash1==hash2){ |
|
859 return TRUE; |
|
860 } |
|
861 |
|
862 /* |
|
863 * Make sure that we are comparing 2 valid hashes of the same type |
|
864 * with valid comparison functions. |
|
865 * Without valid comparison functions, a binary comparison |
|
866 * of the hash values will yield random results on machines |
|
867 * with 64-bit pointers and 32-bit integer hashes. |
|
868 * A valueComparator is normally optional. |
|
869 */ |
|
870 if (hash1==NULL || hash2==NULL || |
|
871 hash1->keyComparator != hash2->keyComparator || |
|
872 hash1->valueComparator != hash2->valueComparator || |
|
873 hash1->valueComparator == NULL) |
|
874 { |
|
875 /* |
|
876 Normally we would return an error here about incompatible hash tables, |
|
877 but we return FALSE instead. |
|
878 */ |
|
879 return FALSE; |
|
880 } |
|
881 |
|
882 count1 = uhash_count(hash1); |
|
883 count2 = uhash_count(hash2); |
|
884 if(count1!=count2){ |
|
885 return FALSE; |
|
886 } |
|
887 |
|
888 pos=-1; |
|
889 for(i=0; i<count1; i++){ |
|
890 const UHashElement* elem1 = uhash_nextElement(hash1, &pos); |
|
891 const UHashTok key1 = elem1->key; |
|
892 const UHashTok val1 = elem1->value; |
|
893 /* here the keys are not compared, instead the key form hash1 is used to fetch |
|
894 * value from hash2. If the hashes are equal then then both hashes should |
|
895 * contain equal values for the same key! |
|
896 */ |
|
897 const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); |
|
898 const UHashTok val2 = elem2->value; |
|
899 if(hash1->valueComparator(val1, val2)==FALSE){ |
|
900 return FALSE; |
|
901 } |
|
902 } |
|
903 return TRUE; |
|
904 } |
|
905 |
|
906 /******************************************************************** |
|
907 * PUBLIC Comparator Functions |
|
908 ********************************************************************/ |
|
909 |
|
910 U_CAPI UBool U_EXPORT2 |
|
911 uhash_compareUChars(const UHashTok key1, const UHashTok key2) { |
|
912 const UChar *p1 = (const UChar*) key1.pointer; |
|
913 const UChar *p2 = (const UChar*) key2.pointer; |
|
914 if (p1 == p2) { |
|
915 return TRUE; |
|
916 } |
|
917 if (p1 == NULL || p2 == NULL) { |
|
918 return FALSE; |
|
919 } |
|
920 while (*p1 != 0 && *p1 == *p2) { |
|
921 ++p1; |
|
922 ++p2; |
|
923 } |
|
924 return (UBool)(*p1 == *p2); |
|
925 } |
|
926 |
|
927 U_CAPI UBool U_EXPORT2 |
|
928 uhash_compareChars(const UHashTok key1, const UHashTok key2) { |
|
929 const char *p1 = (const char*) key1.pointer; |
|
930 const char *p2 = (const char*) key2.pointer; |
|
931 if (p1 == p2) { |
|
932 return TRUE; |
|
933 } |
|
934 if (p1 == NULL || p2 == NULL) { |
|
935 return FALSE; |
|
936 } |
|
937 while (*p1 != 0 && *p1 == *p2) { |
|
938 ++p1; |
|
939 ++p2; |
|
940 } |
|
941 return (UBool)(*p1 == *p2); |
|
942 } |
|
943 |
|
944 U_CAPI UBool U_EXPORT2 |
|
945 uhash_compareIChars(const UHashTok key1, const UHashTok key2) { |
|
946 const char *p1 = (const char*) key1.pointer; |
|
947 const char *p2 = (const char*) key2.pointer; |
|
948 if (p1 == p2) { |
|
949 return TRUE; |
|
950 } |
|
951 if (p1 == NULL || p2 == NULL) { |
|
952 return FALSE; |
|
953 } |
|
954 while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { |
|
955 ++p1; |
|
956 ++p2; |
|
957 } |
|
958 return (UBool)(*p1 == *p2); |
|
959 } |
|
960 |
|
961 /******************************************************************** |
|
962 * PUBLIC int32_t Support Functions |
|
963 ********************************************************************/ |
|
964 |
|
965 U_CAPI int32_t U_EXPORT2 |
|
966 uhash_hashLong(const UHashTok key) { |
|
967 return key.integer; |
|
968 } |
|
969 |
|
970 U_CAPI UBool U_EXPORT2 |
|
971 uhash_compareLong(const UHashTok key1, const UHashTok key2) { |
|
972 return (UBool)(key1.integer == key2.integer); |
|
973 } |