|
1 // |
|
2 // Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved. |
|
3 // Use of this source code is governed by a BSD-style license that can be |
|
4 // found in the LICENSE file. |
|
5 // |
|
6 |
|
7 #ifndef _POOLALLOC_INCLUDED_ |
|
8 #define _POOLALLOC_INCLUDED_ |
|
9 |
|
10 #ifdef _DEBUG |
|
11 #define GUARD_BLOCKS // define to enable guard block sanity checking |
|
12 #endif |
|
13 |
|
14 // |
|
15 // This header defines an allocator that can be used to efficiently |
|
16 // allocate a large number of small requests for heap memory, with the |
|
17 // intention that they are not individually deallocated, but rather |
|
18 // collectively deallocated at one time. |
|
19 // |
|
20 // This simultaneously |
|
21 // |
|
22 // * Makes each individual allocation much more efficient; the |
|
23 // typical allocation is trivial. |
|
24 // * Completely avoids the cost of doing individual deallocation. |
|
25 // * Saves the trouble of tracking down and plugging a large class of leaks. |
|
26 // |
|
27 // Individual classes can use this allocator by supplying their own |
|
28 // new and delete methods. |
|
29 // |
|
30 // STL containers can use this allocator by using the pool_allocator |
|
31 // class as the allocator (second) template argument. |
|
32 // |
|
33 |
|
34 #include <stddef.h> |
|
35 #include <string.h> |
|
36 #include <vector> |
|
37 |
|
38 // If we are using guard blocks, we must track each indivual |
|
39 // allocation. If we aren't using guard blocks, these |
|
40 // never get instantiated, so won't have any impact. |
|
41 // |
|
42 |
|
43 class TAllocation { |
|
44 public: |
|
45 TAllocation(size_t size, unsigned char* mem, TAllocation* prev = 0) : |
|
46 size(size), mem(mem), prevAlloc(prev) { |
|
47 // Allocations are bracketed: |
|
48 // [allocationHeader][initialGuardBlock][userData][finalGuardBlock] |
|
49 // This would be cleaner with if (guardBlockSize)..., but that |
|
50 // makes the compiler print warnings about 0 length memsets, |
|
51 // even with the if() protecting them. |
|
52 #ifdef GUARD_BLOCKS |
|
53 memset(preGuard(), guardBlockBeginVal, guardBlockSize); |
|
54 memset(data(), userDataFill, size); |
|
55 memset(postGuard(), guardBlockEndVal, guardBlockSize); |
|
56 #endif |
|
57 } |
|
58 |
|
59 void check() const { |
|
60 checkGuardBlock(preGuard(), guardBlockBeginVal, "before"); |
|
61 checkGuardBlock(postGuard(), guardBlockEndVal, "after"); |
|
62 } |
|
63 |
|
64 void checkAllocList() const; |
|
65 |
|
66 // Return total size needed to accomodate user buffer of 'size', |
|
67 // plus our tracking data. |
|
68 inline static size_t allocationSize(size_t size) { |
|
69 return size + 2 * guardBlockSize + headerSize(); |
|
70 } |
|
71 |
|
72 // Offset from surrounding buffer to get to user data buffer. |
|
73 inline static unsigned char* offsetAllocation(unsigned char* m) { |
|
74 return m + guardBlockSize + headerSize(); |
|
75 } |
|
76 |
|
77 private: |
|
78 void checkGuardBlock(unsigned char* blockMem, unsigned char val, const char* locText) const; |
|
79 |
|
80 // Find offsets to pre and post guard blocks, and user data buffer |
|
81 unsigned char* preGuard() const { return mem + headerSize(); } |
|
82 unsigned char* data() const { return preGuard() + guardBlockSize; } |
|
83 unsigned char* postGuard() const { return data() + size; } |
|
84 |
|
85 size_t size; // size of the user data area |
|
86 unsigned char* mem; // beginning of our allocation (pts to header) |
|
87 TAllocation* prevAlloc; // prior allocation in the chain |
|
88 |
|
89 // Support MSVC++ 6.0 |
|
90 const static unsigned char guardBlockBeginVal; |
|
91 const static unsigned char guardBlockEndVal; |
|
92 const static unsigned char userDataFill; |
|
93 |
|
94 const static size_t guardBlockSize; |
|
95 #ifdef GUARD_BLOCKS |
|
96 inline static size_t headerSize() { return sizeof(TAllocation); } |
|
97 #else |
|
98 inline static size_t headerSize() { return 0; } |
|
99 #endif |
|
100 }; |
|
101 |
|
102 // |
|
103 // There are several stacks. One is to track the pushing and popping |
|
104 // of the user, and not yet implemented. The others are simply a |
|
105 // repositories of free pages or used pages. |
|
106 // |
|
107 // Page stacks are linked together with a simple header at the beginning |
|
108 // of each allocation obtained from the underlying OS. Multi-page allocations |
|
109 // are returned to the OS. Individual page allocations are kept for future |
|
110 // re-use. |
|
111 // |
|
112 // The "page size" used is not, nor must it match, the underlying OS |
|
113 // page size. But, having it be about that size or equal to a set of |
|
114 // pages is likely most optimal. |
|
115 // |
|
116 class TPoolAllocator { |
|
117 public: |
|
118 TPoolAllocator(int growthIncrement = 8*1024, int allocationAlignment = 16); |
|
119 |
|
120 // |
|
121 // Don't call the destructor just to free up the memory, call pop() |
|
122 // |
|
123 ~TPoolAllocator(); |
|
124 |
|
125 // |
|
126 // Call push() to establish a new place to pop memory too. Does not |
|
127 // have to be called to get things started. |
|
128 // |
|
129 void push(); |
|
130 |
|
131 // |
|
132 // Call pop() to free all memory allocated since the last call to push(), |
|
133 // or if no last call to push, frees all memory since first allocation. |
|
134 // |
|
135 void pop(); |
|
136 |
|
137 // |
|
138 // Call popAll() to free all memory allocated. |
|
139 // |
|
140 void popAll(); |
|
141 |
|
142 // |
|
143 // Call allocate() to actually acquire memory. Returns 0 if no memory |
|
144 // available, otherwise a properly aligned pointer to 'numBytes' of memory. |
|
145 // |
|
146 void* allocate(size_t numBytes); |
|
147 |
|
148 // |
|
149 // There is no deallocate. The point of this class is that |
|
150 // deallocation can be skipped by the user of it, as the model |
|
151 // of use is to simultaneously deallocate everything at once |
|
152 // by calling pop(), and to not have to solve memory leak problems. |
|
153 // |
|
154 |
|
155 protected: |
|
156 friend struct tHeader; |
|
157 |
|
158 struct tHeader { |
|
159 tHeader(tHeader* nextPage, size_t pageCount) : |
|
160 nextPage(nextPage), |
|
161 pageCount(pageCount) |
|
162 #ifdef GUARD_BLOCKS |
|
163 , lastAllocation(0) |
|
164 #endif |
|
165 { } |
|
166 |
|
167 ~tHeader() { |
|
168 #ifdef GUARD_BLOCKS |
|
169 if (lastAllocation) |
|
170 lastAllocation->checkAllocList(); |
|
171 #endif |
|
172 } |
|
173 |
|
174 tHeader* nextPage; |
|
175 size_t pageCount; |
|
176 #ifdef GUARD_BLOCKS |
|
177 TAllocation* lastAllocation; |
|
178 #endif |
|
179 }; |
|
180 |
|
181 struct tAllocState { |
|
182 size_t offset; |
|
183 tHeader* page; |
|
184 }; |
|
185 typedef std::vector<tAllocState> tAllocStack; |
|
186 |
|
187 // Track allocations if and only if we're using guard blocks |
|
188 void* initializeAllocation(tHeader* block, unsigned char* memory, size_t numBytes) { |
|
189 #ifdef GUARD_BLOCKS |
|
190 new(memory) TAllocation(numBytes, memory, block->lastAllocation); |
|
191 block->lastAllocation = reinterpret_cast<TAllocation*>(memory); |
|
192 #endif |
|
193 // This is optimized entirely away if GUARD_BLOCKS is not defined. |
|
194 return TAllocation::offsetAllocation(memory); |
|
195 } |
|
196 |
|
197 size_t pageSize; // granularity of allocation from the OS |
|
198 size_t alignment; // all returned allocations will be aligned at |
|
199 // this granularity, which will be a power of 2 |
|
200 size_t alignmentMask; |
|
201 size_t headerSkip; // amount of memory to skip to make room for the |
|
202 // header (basically, size of header, rounded |
|
203 // up to make it aligned |
|
204 size_t currentPageOffset; // next offset in top of inUseList to allocate from |
|
205 tHeader* freeList; // list of popped memory |
|
206 tHeader* inUseList; // list of all memory currently being used |
|
207 tAllocStack stack; // stack of where to allocate from, to partition pool |
|
208 |
|
209 int numCalls; // just an interesting statistic |
|
210 size_t totalBytes; // just an interesting statistic |
|
211 private: |
|
212 TPoolAllocator& operator=(const TPoolAllocator&); // dont allow assignment operator |
|
213 TPoolAllocator(const TPoolAllocator&); // dont allow default copy constructor |
|
214 }; |
|
215 |
|
216 |
|
217 // |
|
218 // There could potentially be many pools with pops happening at |
|
219 // different times. But a simple use is to have a global pop |
|
220 // with everyone using the same global allocator. |
|
221 // |
|
222 extern TPoolAllocator* GetGlobalPoolAllocator(); |
|
223 extern void SetGlobalPoolAllocator(TPoolAllocator* poolAllocator); |
|
224 |
|
225 // |
|
226 // This STL compatible allocator is intended to be used as the allocator |
|
227 // parameter to templatized STL containers, like vector and map. |
|
228 // |
|
229 // It will use the pools for allocation, and not |
|
230 // do any deallocation, but will still do destruction. |
|
231 // |
|
232 template<class T> |
|
233 class pool_allocator { |
|
234 public: |
|
235 typedef size_t size_type; |
|
236 typedef ptrdiff_t difference_type; |
|
237 typedef T* pointer; |
|
238 typedef const T* const_pointer; |
|
239 typedef T& reference; |
|
240 typedef const T& const_reference; |
|
241 typedef T value_type; |
|
242 |
|
243 template<class Other> |
|
244 struct rebind { |
|
245 typedef pool_allocator<Other> other; |
|
246 }; |
|
247 pointer address(reference x) const { return &x; } |
|
248 const_pointer address(const_reference x) const { return &x; } |
|
249 |
|
250 pool_allocator() : allocator(GetGlobalPoolAllocator()) { } |
|
251 pool_allocator(TPoolAllocator& a) : allocator(&a) { } |
|
252 pool_allocator(const pool_allocator<T>& p) : allocator(p.allocator) { } |
|
253 |
|
254 template <class Other> |
|
255 pool_allocator<T>& operator=(const pool_allocator<Other>& p) { |
|
256 allocator = p.allocator; |
|
257 return *this; |
|
258 } |
|
259 |
|
260 template<class Other> |
|
261 pool_allocator(const pool_allocator<Other>& p) : allocator(&p.getAllocator()) { } |
|
262 |
|
263 #if defined(__SUNPRO_CC) && !defined(_RWSTD_ALLOCATOR) |
|
264 // libCStd on some platforms have a different allocate/deallocate interface. |
|
265 // Caller pre-bakes sizeof(T) into 'n' which is the number of bytes to be |
|
266 // allocated, not the number of elements. |
|
267 void* allocate(size_type n) { |
|
268 return getAllocator().allocate(n); |
|
269 } |
|
270 void* allocate(size_type n, const void*) { |
|
271 return getAllocator().allocate(n); |
|
272 } |
|
273 void deallocate(void*, size_type) {} |
|
274 #else |
|
275 pointer allocate(size_type n) { |
|
276 return reinterpret_cast<pointer>(getAllocator().allocate(n * sizeof(T))); |
|
277 } |
|
278 pointer allocate(size_type n, const void*) { |
|
279 return reinterpret_cast<pointer>(getAllocator().allocate(n * sizeof(T))); |
|
280 } |
|
281 void deallocate(pointer, size_type) {} |
|
282 #endif // _RWSTD_ALLOCATOR |
|
283 |
|
284 void construct(pointer p, const T& val) { new ((void *)p) T(val); } |
|
285 void destroy(pointer p) { p->T::~T(); } |
|
286 |
|
287 bool operator==(const pool_allocator& rhs) const { return &getAllocator() == &rhs.getAllocator(); } |
|
288 bool operator!=(const pool_allocator& rhs) const { return &getAllocator() != &rhs.getAllocator(); } |
|
289 |
|
290 size_type max_size() const { return static_cast<size_type>(-1) / sizeof(T); } |
|
291 size_type max_size(int size) const { return static_cast<size_type>(-1) / size; } |
|
292 |
|
293 void setAllocator(TPoolAllocator* a) { allocator = a; } |
|
294 TPoolAllocator& getAllocator() const { return *allocator; } |
|
295 |
|
296 protected: |
|
297 TPoolAllocator* allocator; |
|
298 }; |
|
299 |
|
300 #endif // _POOLALLOC_INCLUDED_ |