gfx/angle/src/libGLESv2/ProgramBinary.cpp

branch
TOR_BUG_3246
changeset 7
129ffea94266
equal deleted inserted replaced
-1:000000000000 0:458e4e82af8e
1 #include "precompiled.h"
2 //
3 // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style license that can be
5 // found in the LICENSE file.
6 //
7
8 // Program.cpp: Implements the gl::Program class. Implements GL program objects
9 // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
10
11 #include "libGLESv2/BinaryStream.h"
12 #include "libGLESv2/ProgramBinary.h"
13 #include "libGLESv2/renderer/ShaderExecutable.h"
14
15 #include "common/debug.h"
16 #include "common/version.h"
17 #include "utilities.h"
18
19 #include "libGLESv2/main.h"
20 #include "libGLESv2/Shader.h"
21 #include "libGLESv2/Program.h"
22 #include "libGLESv2/renderer/Renderer.h"
23 #include "libGLESv2/renderer/VertexDataManager.h"
24
25 #include <algorithm>
26
27 #undef near
28 #undef far
29
30 namespace gl
31 {
32 std::string str(int i)
33 {
34 char buffer[20];
35 snprintf(buffer, sizeof(buffer), "%d", i);
36 return buffer;
37 }
38
39 UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index)
40 : name(name), element(element), index(index)
41 {
42 }
43
44 unsigned int ProgramBinary::mCurrentSerial = 1;
45
46 ProgramBinary::ProgramBinary(rx::Renderer *renderer) : mRenderer(renderer), RefCountObject(0), mSerial(issueSerial())
47 {
48 mPixelExecutable = NULL;
49 mVertexExecutable = NULL;
50 mGeometryExecutable = NULL;
51
52 mValidated = false;
53
54 for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
55 {
56 mSemanticIndex[index] = -1;
57 }
58
59 for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
60 {
61 mSamplersPS[index].active = false;
62 }
63
64 for (int index = 0; index < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++)
65 {
66 mSamplersVS[index].active = false;
67 }
68
69 mUsedVertexSamplerRange = 0;
70 mUsedPixelSamplerRange = 0;
71 mUsesPointSize = false;
72 }
73
74 ProgramBinary::~ProgramBinary()
75 {
76 delete mPixelExecutable;
77 mPixelExecutable = NULL;
78
79 delete mVertexExecutable;
80 mVertexExecutable = NULL;
81
82 delete mGeometryExecutable;
83 mGeometryExecutable = NULL;
84
85 while (!mUniforms.empty())
86 {
87 delete mUniforms.back();
88 mUniforms.pop_back();
89 }
90 }
91
92 unsigned int ProgramBinary::getSerial() const
93 {
94 return mSerial;
95 }
96
97 unsigned int ProgramBinary::issueSerial()
98 {
99 return mCurrentSerial++;
100 }
101
102 rx::ShaderExecutable *ProgramBinary::getPixelExecutable()
103 {
104 return mPixelExecutable;
105 }
106
107 rx::ShaderExecutable *ProgramBinary::getVertexExecutable()
108 {
109 return mVertexExecutable;
110 }
111
112 rx::ShaderExecutable *ProgramBinary::getGeometryExecutable()
113 {
114 return mGeometryExecutable;
115 }
116
117 GLuint ProgramBinary::getAttributeLocation(const char *name)
118 {
119 if (name)
120 {
121 for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
122 {
123 if (mLinkedAttribute[index].name == std::string(name))
124 {
125 return index;
126 }
127 }
128 }
129
130 return -1;
131 }
132
133 int ProgramBinary::getSemanticIndex(int attributeIndex)
134 {
135 ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
136
137 return mSemanticIndex[attributeIndex];
138 }
139
140 // Returns one more than the highest sampler index used.
141 GLint ProgramBinary::getUsedSamplerRange(SamplerType type)
142 {
143 switch (type)
144 {
145 case SAMPLER_PIXEL:
146 return mUsedPixelSamplerRange;
147 case SAMPLER_VERTEX:
148 return mUsedVertexSamplerRange;
149 default:
150 UNREACHABLE();
151 return 0;
152 }
153 }
154
155 bool ProgramBinary::usesPointSize() const
156 {
157 return mUsesPointSize;
158 }
159
160 bool ProgramBinary::usesPointSpriteEmulation() const
161 {
162 return mUsesPointSize && mRenderer->getMajorShaderModel() >= 4;
163 }
164
165 bool ProgramBinary::usesGeometryShader() const
166 {
167 return usesPointSpriteEmulation();
168 }
169
170 // Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler
171 // index (0-15 for the pixel shader and 0-3 for the vertex shader).
172 GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex)
173 {
174 GLint logicalTextureUnit = -1;
175
176 switch (type)
177 {
178 case SAMPLER_PIXEL:
179 ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
180
181 if (mSamplersPS[samplerIndex].active)
182 {
183 logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit;
184 }
185 break;
186 case SAMPLER_VERTEX:
187 ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
188
189 if (mSamplersVS[samplerIndex].active)
190 {
191 logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit;
192 }
193 break;
194 default: UNREACHABLE();
195 }
196
197 if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)mRenderer->getMaxCombinedTextureImageUnits())
198 {
199 return logicalTextureUnit;
200 }
201
202 return -1;
203 }
204
205 // Returns the texture type for a given Direct3D 9 sampler type and
206 // index (0-15 for the pixel shader and 0-3 for the vertex shader).
207 TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex)
208 {
209 switch (type)
210 {
211 case SAMPLER_PIXEL:
212 ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
213 ASSERT(mSamplersPS[samplerIndex].active);
214 return mSamplersPS[samplerIndex].textureType;
215 case SAMPLER_VERTEX:
216 ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
217 ASSERT(mSamplersVS[samplerIndex].active);
218 return mSamplersVS[samplerIndex].textureType;
219 default: UNREACHABLE();
220 }
221
222 return TEXTURE_2D;
223 }
224
225 GLint ProgramBinary::getUniformLocation(std::string name)
226 {
227 unsigned int subscript = 0;
228
229 // Strip any trailing array operator and retrieve the subscript
230 size_t open = name.find_last_of('[');
231 size_t close = name.find_last_of(']');
232 if (open != std::string::npos && close == name.length() - 1)
233 {
234 subscript = atoi(name.substr(open + 1).c_str());
235 name.erase(open);
236 }
237
238 unsigned int numUniforms = mUniformIndex.size();
239 for (unsigned int location = 0; location < numUniforms; location++)
240 {
241 if (mUniformIndex[location].name == name &&
242 mUniformIndex[location].element == subscript)
243 {
244 return location;
245 }
246 }
247
248 return -1;
249 }
250
251 bool ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
252 {
253 if (location < 0 || location >= (int)mUniformIndex.size())
254 {
255 return false;
256 }
257
258 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
259 targetUniform->dirty = true;
260
261 int elementCount = targetUniform->elementCount();
262
263 if (elementCount == 1 && count > 1)
264 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
265
266 count = std::min(elementCount - (int)mUniformIndex[location].element, count);
267
268 if (targetUniform->type == GL_FLOAT)
269 {
270 GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
271
272 for (int i = 0; i < count; i++)
273 {
274 target[0] = v[0];
275 target[1] = 0;
276 target[2] = 0;
277 target[3] = 0;
278 target += 4;
279 v += 1;
280 }
281 }
282 else if (targetUniform->type == GL_BOOL)
283 {
284 GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
285
286 for (int i = 0; i < count; i++)
287 {
288 boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
289 boolParams[1] = GL_FALSE;
290 boolParams[2] = GL_FALSE;
291 boolParams[3] = GL_FALSE;
292 boolParams += 4;
293 v += 1;
294 }
295 }
296 else
297 {
298 return false;
299 }
300
301 return true;
302 }
303
304 bool ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
305 {
306 if (location < 0 || location >= (int)mUniformIndex.size())
307 {
308 return false;
309 }
310
311 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
312 targetUniform->dirty = true;
313
314 int elementCount = targetUniform->elementCount();
315
316 if (elementCount == 1 && count > 1)
317 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
318
319 count = std::min(elementCount - (int)mUniformIndex[location].element, count);
320
321 if (targetUniform->type == GL_FLOAT_VEC2)
322 {
323 GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
324
325 for (int i = 0; i < count; i++)
326 {
327 target[0] = v[0];
328 target[1] = v[1];
329 target[2] = 0;
330 target[3] = 0;
331 target += 4;
332 v += 2;
333 }
334 }
335 else if (targetUniform->type == GL_BOOL_VEC2)
336 {
337 GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
338
339 for (int i = 0; i < count; i++)
340 {
341 boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
342 boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE;
343 boolParams[2] = GL_FALSE;
344 boolParams[3] = GL_FALSE;
345 boolParams += 4;
346 v += 2;
347 }
348 }
349 else
350 {
351 return false;
352 }
353
354 return true;
355 }
356
357 bool ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
358 {
359 if (location < 0 || location >= (int)mUniformIndex.size())
360 {
361 return false;
362 }
363
364 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
365 targetUniform->dirty = true;
366
367 int elementCount = targetUniform->elementCount();
368
369 if (elementCount == 1 && count > 1)
370 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
371
372 count = std::min(elementCount - (int)mUniformIndex[location].element, count);
373
374 if (targetUniform->type == GL_FLOAT_VEC3)
375 {
376 GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
377
378 for (int i = 0; i < count; i++)
379 {
380 target[0] = v[0];
381 target[1] = v[1];
382 target[2] = v[2];
383 target[3] = 0;
384 target += 4;
385 v += 3;
386 }
387 }
388 else if (targetUniform->type == GL_BOOL_VEC3)
389 {
390 GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
391
392 for (int i = 0; i < count; i++)
393 {
394 boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
395 boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE;
396 boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE;
397 boolParams[3] = GL_FALSE;
398 boolParams += 4;
399 v += 3;
400 }
401 }
402 else
403 {
404 return false;
405 }
406
407 return true;
408 }
409
410 bool ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
411 {
412 if (location < 0 || location >= (int)mUniformIndex.size())
413 {
414 return false;
415 }
416
417 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
418 targetUniform->dirty = true;
419
420 int elementCount = targetUniform->elementCount();
421
422 if (elementCount == 1 && count > 1)
423 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
424
425 count = std::min(elementCount - (int)mUniformIndex[location].element, count);
426
427 if (targetUniform->type == GL_FLOAT_VEC4)
428 {
429 GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
430
431 for (int i = 0; i < count; i++)
432 {
433 target[0] = v[0];
434 target[1] = v[1];
435 target[2] = v[2];
436 target[3] = v[3];
437 target += 4;
438 v += 4;
439 }
440 }
441 else if (targetUniform->type == GL_BOOL_VEC4)
442 {
443 GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
444
445 for (int i = 0; i < count; i++)
446 {
447 boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
448 boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE;
449 boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE;
450 boolParams[3] = (v[3] == 0.0f) ? GL_FALSE : GL_TRUE;
451 boolParams += 4;
452 v += 4;
453 }
454 }
455 else
456 {
457 return false;
458 }
459
460 return true;
461 }
462
463 template<typename T, int targetWidth, int targetHeight, int srcWidth, int srcHeight>
464 void transposeMatrix(T *target, const GLfloat *value)
465 {
466 int copyWidth = std::min(targetWidth, srcWidth);
467 int copyHeight = std::min(targetHeight, srcHeight);
468
469 for (int x = 0; x < copyWidth; x++)
470 {
471 for (int y = 0; y < copyHeight; y++)
472 {
473 target[x * targetWidth + y] = (T)value[y * srcWidth + x];
474 }
475 }
476 // clear unfilled right side
477 for (int y = 0; y < copyHeight; y++)
478 {
479 for (int x = srcWidth; x < targetWidth; x++)
480 {
481 target[y * targetWidth + x] = (T)0;
482 }
483 }
484 // clear unfilled bottom.
485 for (int y = srcHeight; y < targetHeight; y++)
486 {
487 for (int x = 0; x < targetWidth; x++)
488 {
489 target[y * targetWidth + x] = (T)0;
490 }
491 }
492 }
493
494 bool ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
495 {
496 if (location < 0 || location >= (int)mUniformIndex.size())
497 {
498 return false;
499 }
500
501 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
502 targetUniform->dirty = true;
503
504 if (targetUniform->type != GL_FLOAT_MAT2)
505 {
506 return false;
507 }
508
509 int elementCount = targetUniform->elementCount();
510
511 if (elementCount == 1 && count > 1)
512 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
513
514 count = std::min(elementCount - (int)mUniformIndex[location].element, count);
515 GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8;
516
517 for (int i = 0; i < count; i++)
518 {
519 transposeMatrix<GLfloat,4,2,2,2>(target, value);
520 target += 8;
521 value += 4;
522 }
523
524 return true;
525 }
526
527 bool ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
528 {
529 if (location < 0 || location >= (int)mUniformIndex.size())
530 {
531 return false;
532 }
533
534 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
535 targetUniform->dirty = true;
536
537 if (targetUniform->type != GL_FLOAT_MAT3)
538 {
539 return false;
540 }
541
542 int elementCount = targetUniform->elementCount();
543
544 if (elementCount == 1 && count > 1)
545 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
546
547 count = std::min(elementCount - (int)mUniformIndex[location].element, count);
548 GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12;
549
550 for (int i = 0; i < count; i++)
551 {
552 transposeMatrix<GLfloat,4,3,3,3>(target, value);
553 target += 12;
554 value += 9;
555 }
556
557 return true;
558 }
559
560
561 bool ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
562 {
563 if (location < 0 || location >= (int)mUniformIndex.size())
564 {
565 return false;
566 }
567
568 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
569 targetUniform->dirty = true;
570
571 if (targetUniform->type != GL_FLOAT_MAT4)
572 {
573 return false;
574 }
575
576 int elementCount = targetUniform->elementCount();
577
578 if (elementCount == 1 && count > 1)
579 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
580
581 count = std::min(elementCount - (int)mUniformIndex[location].element, count);
582 GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16);
583
584 for (int i = 0; i < count; i++)
585 {
586 transposeMatrix<GLfloat,4,4,4,4>(target, value);
587 target += 16;
588 value += 16;
589 }
590
591 return true;
592 }
593
594 bool ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v)
595 {
596 if (location < 0 || location >= (int)mUniformIndex.size())
597 {
598 return false;
599 }
600
601 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
602 targetUniform->dirty = true;
603
604 int elementCount = targetUniform->elementCount();
605
606 if (elementCount == 1 && count > 1)
607 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
608
609 count = std::min(elementCount - (int)mUniformIndex[location].element, count);
610
611 if (targetUniform->type == GL_INT ||
612 targetUniform->type == GL_SAMPLER_2D ||
613 targetUniform->type == GL_SAMPLER_CUBE)
614 {
615 GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
616
617 for (int i = 0; i < count; i++)
618 {
619 target[0] = v[0];
620 target[1] = 0;
621 target[2] = 0;
622 target[3] = 0;
623 target += 4;
624 v += 1;
625 }
626 }
627 else if (targetUniform->type == GL_BOOL)
628 {
629 GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
630
631 for (int i = 0; i < count; i++)
632 {
633 boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
634 boolParams[1] = GL_FALSE;
635 boolParams[2] = GL_FALSE;
636 boolParams[3] = GL_FALSE;
637 boolParams += 4;
638 v += 1;
639 }
640 }
641 else
642 {
643 return false;
644 }
645
646 return true;
647 }
648
649 bool ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v)
650 {
651 if (location < 0 || location >= (int)mUniformIndex.size())
652 {
653 return false;
654 }
655
656 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
657 targetUniform->dirty = true;
658
659 int elementCount = targetUniform->elementCount();
660
661 if (elementCount == 1 && count > 1)
662 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
663
664 count = std::min(elementCount - (int)mUniformIndex[location].element, count);
665
666 if (targetUniform->type == GL_INT_VEC2)
667 {
668 GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
669
670 for (int i = 0; i < count; i++)
671 {
672 target[0] = v[0];
673 target[1] = v[1];
674 target[2] = 0;
675 target[3] = 0;
676 target += 4;
677 v += 2;
678 }
679 }
680 else if (targetUniform->type == GL_BOOL_VEC2)
681 {
682 GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
683
684 for (int i = 0; i < count; i++)
685 {
686 boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
687 boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE;
688 boolParams[2] = GL_FALSE;
689 boolParams[3] = GL_FALSE;
690 boolParams += 4;
691 v += 2;
692 }
693 }
694 else
695 {
696 return false;
697 }
698
699 return true;
700 }
701
702 bool ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v)
703 {
704 if (location < 0 || location >= (int)mUniformIndex.size())
705 {
706 return false;
707 }
708
709 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
710 targetUniform->dirty = true;
711
712 int elementCount = targetUniform->elementCount();
713
714 if (elementCount == 1 && count > 1)
715 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
716
717 count = std::min(elementCount - (int)mUniformIndex[location].element, count);
718
719 if (targetUniform->type == GL_INT_VEC3)
720 {
721 GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
722
723 for (int i = 0; i < count; i++)
724 {
725 target[0] = v[0];
726 target[1] = v[1];
727 target[2] = v[2];
728 target[3] = 0;
729 target += 4;
730 v += 3;
731 }
732 }
733 else if (targetUniform->type == GL_BOOL_VEC3)
734 {
735 GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
736
737 for (int i = 0; i < count; i++)
738 {
739 boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
740 boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE;
741 boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE;
742 boolParams[3] = GL_FALSE;
743 boolParams += 4;
744 v += 3;
745 }
746 }
747 else
748 {
749 return false;
750 }
751
752 return true;
753 }
754
755 bool ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v)
756 {
757 if (location < 0 || location >= (int)mUniformIndex.size())
758 {
759 return false;
760 }
761
762 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
763 targetUniform->dirty = true;
764
765 int elementCount = targetUniform->elementCount();
766
767 if (elementCount == 1 && count > 1)
768 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
769
770 count = std::min(elementCount - (int)mUniformIndex[location].element, count);
771
772 if (targetUniform->type == GL_INT_VEC4)
773 {
774 GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
775
776 for (int i = 0; i < count; i++)
777 {
778 target[0] = v[0];
779 target[1] = v[1];
780 target[2] = v[2];
781 target[3] = v[3];
782 target += 4;
783 v += 4;
784 }
785 }
786 else if (targetUniform->type == GL_BOOL_VEC4)
787 {
788 GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
789
790 for (int i = 0; i < count; i++)
791 {
792 boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
793 boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE;
794 boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE;
795 boolParams[3] = (v[3] == 0) ? GL_FALSE : GL_TRUE;
796 boolParams += 4;
797 v += 4;
798 }
799 }
800 else
801 {
802 return false;
803 }
804
805 return true;
806 }
807
808 bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params)
809 {
810 if (location < 0 || location >= (int)mUniformIndex.size())
811 {
812 return false;
813 }
814
815 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
816
817 // sized queries -- ensure the provided buffer is large enough
818 if (bufSize)
819 {
820 int requiredBytes = UniformExternalSize(targetUniform->type);
821 if (*bufSize < requiredBytes)
822 {
823 return false;
824 }
825 }
826
827 switch (targetUniform->type)
828 {
829 case GL_FLOAT_MAT2:
830 transposeMatrix<GLfloat,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
831 break;
832 case GL_FLOAT_MAT3:
833 transposeMatrix<GLfloat,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
834 break;
835 case GL_FLOAT_MAT4:
836 transposeMatrix<GLfloat,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
837 break;
838 default:
839 {
840 unsigned int size = UniformComponentCount(targetUniform->type);
841
842 switch (UniformComponentType(targetUniform->type))
843 {
844 case GL_BOOL:
845 {
846 GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
847
848 for (unsigned int i = 0; i < size; i++)
849 {
850 params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f;
851 }
852 }
853 break;
854 case GL_FLOAT:
855 memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLfloat),
856 size * sizeof(GLfloat));
857 break;
858 case GL_INT:
859 {
860 GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
861
862 for (unsigned int i = 0; i < size; i++)
863 {
864 params[i] = (float)intParams[i];
865 }
866 }
867 break;
868 default: UNREACHABLE();
869 }
870 }
871 }
872
873 return true;
874 }
875
876 bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params)
877 {
878 if (location < 0 || location >= (int)mUniformIndex.size())
879 {
880 return false;
881 }
882
883 Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
884
885 // sized queries -- ensure the provided buffer is large enough
886 if (bufSize)
887 {
888 int requiredBytes = UniformExternalSize(targetUniform->type);
889 if (*bufSize < requiredBytes)
890 {
891 return false;
892 }
893 }
894
895 switch (targetUniform->type)
896 {
897 case GL_FLOAT_MAT2:
898 transposeMatrix<GLint,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
899 break;
900 case GL_FLOAT_MAT3:
901 transposeMatrix<GLint,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
902 break;
903 case GL_FLOAT_MAT4:
904 transposeMatrix<GLint,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
905 break;
906 default:
907 {
908 unsigned int size = VariableColumnCount(targetUniform->type);
909
910 switch (UniformComponentType(targetUniform->type))
911 {
912 case GL_BOOL:
913 {
914 GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
915
916 for (unsigned int i = 0; i < size; i++)
917 {
918 params[i] = boolParams[i];
919 }
920 }
921 break;
922 case GL_FLOAT:
923 {
924 GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
925
926 for (unsigned int i = 0; i < size; i++)
927 {
928 params[i] = (GLint)floatParams[i];
929 }
930 }
931 break;
932 case GL_INT:
933 memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLint),
934 size * sizeof(GLint));
935 break;
936 default: UNREACHABLE();
937 }
938 }
939 }
940
941 return true;
942 }
943
944 void ProgramBinary::dirtyAllUniforms()
945 {
946 unsigned int numUniforms = mUniforms.size();
947 for (unsigned int index = 0; index < numUniforms; index++)
948 {
949 mUniforms[index]->dirty = true;
950 }
951 }
952
953 // Applies all the uniforms set for this program object to the renderer
954 void ProgramBinary::applyUniforms()
955 {
956 // Retrieve sampler uniform values
957 for (std::vector<Uniform*>::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub)
958 {
959 Uniform *targetUniform = *ub;
960
961 if (targetUniform->dirty)
962 {
963 if (targetUniform->type == GL_SAMPLER_2D ||
964 targetUniform->type == GL_SAMPLER_CUBE)
965 {
966 int count = targetUniform->elementCount();
967 GLint (*v)[4] = (GLint(*)[4])targetUniform->data;
968
969 if (targetUniform->psRegisterIndex >= 0)
970 {
971 unsigned int firstIndex = targetUniform->psRegisterIndex;
972
973 for (int i = 0; i < count; i++)
974 {
975 unsigned int samplerIndex = firstIndex + i;
976
977 if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
978 {
979 ASSERT(mSamplersPS[samplerIndex].active);
980 mSamplersPS[samplerIndex].logicalTextureUnit = v[i][0];
981 }
982 }
983 }
984
985 if (targetUniform->vsRegisterIndex >= 0)
986 {
987 unsigned int firstIndex = targetUniform->vsRegisterIndex;
988
989 for (int i = 0; i < count; i++)
990 {
991 unsigned int samplerIndex = firstIndex + i;
992
993 if (samplerIndex < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS)
994 {
995 ASSERT(mSamplersVS[samplerIndex].active);
996 mSamplersVS[samplerIndex].logicalTextureUnit = v[i][0];
997 }
998 }
999 }
1000 }
1001 }
1002 }
1003
1004 mRenderer->applyUniforms(this, &mUniforms);
1005 }
1006
1007 // Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111
1008 // Returns the number of used varying registers, or -1 if unsuccesful
1009 int ProgramBinary::packVaryings(InfoLog &infoLog, const Varying *packing[][4], FragmentShader *fragmentShader)
1010 {
1011 const int maxVaryingVectors = mRenderer->getMaxVaryingVectors();
1012
1013 fragmentShader->resetVaryingsRegisterAssignment();
1014
1015 for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
1016 {
1017 int n = VariableRowCount(varying->type) * varying->size;
1018 int m = VariableColumnCount(varying->type);
1019 bool success = false;
1020
1021 if (m == 2 || m == 3 || m == 4)
1022 {
1023 for (int r = 0; r <= maxVaryingVectors - n && !success; r++)
1024 {
1025 bool available = true;
1026
1027 for (int y = 0; y < n && available; y++)
1028 {
1029 for (int x = 0; x < m && available; x++)
1030 {
1031 if (packing[r + y][x])
1032 {
1033 available = false;
1034 }
1035 }
1036 }
1037
1038 if (available)
1039 {
1040 varying->reg = r;
1041 varying->col = 0;
1042
1043 for (int y = 0; y < n; y++)
1044 {
1045 for (int x = 0; x < m; x++)
1046 {
1047 packing[r + y][x] = &*varying;
1048 }
1049 }
1050
1051 success = true;
1052 }
1053 }
1054
1055 if (!success && m == 2)
1056 {
1057 for (int r = maxVaryingVectors - n; r >= 0 && !success; r--)
1058 {
1059 bool available = true;
1060
1061 for (int y = 0; y < n && available; y++)
1062 {
1063 for (int x = 2; x < 4 && available; x++)
1064 {
1065 if (packing[r + y][x])
1066 {
1067 available = false;
1068 }
1069 }
1070 }
1071
1072 if (available)
1073 {
1074 varying->reg = r;
1075 varying->col = 2;
1076
1077 for (int y = 0; y < n; y++)
1078 {
1079 for (int x = 2; x < 4; x++)
1080 {
1081 packing[r + y][x] = &*varying;
1082 }
1083 }
1084
1085 success = true;
1086 }
1087 }
1088 }
1089 }
1090 else if (m == 1)
1091 {
1092 int space[4] = {0};
1093
1094 for (int y = 0; y < maxVaryingVectors; y++)
1095 {
1096 for (int x = 0; x < 4; x++)
1097 {
1098 space[x] += packing[y][x] ? 0 : 1;
1099 }
1100 }
1101
1102 int column = 0;
1103
1104 for (int x = 0; x < 4; x++)
1105 {
1106 if (space[x] >= n && space[x] < space[column])
1107 {
1108 column = x;
1109 }
1110 }
1111
1112 if (space[column] >= n)
1113 {
1114 for (int r = 0; r < maxVaryingVectors; r++)
1115 {
1116 if (!packing[r][column])
1117 {
1118 varying->reg = r;
1119
1120 for (int y = r; y < r + n; y++)
1121 {
1122 packing[y][column] = &*varying;
1123 }
1124
1125 break;
1126 }
1127 }
1128
1129 varying->col = column;
1130
1131 success = true;
1132 }
1133 }
1134 else UNREACHABLE();
1135
1136 if (!success)
1137 {
1138 infoLog.append("Could not pack varying %s", varying->name.c_str());
1139
1140 return -1;
1141 }
1142 }
1143
1144 // Return the number of used registers
1145 int registers = 0;
1146
1147 for (int r = 0; r < maxVaryingVectors; r++)
1148 {
1149 if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3])
1150 {
1151 registers++;
1152 }
1153 }
1154
1155 return registers;
1156 }
1157
1158 bool ProgramBinary::linkVaryings(InfoLog &infoLog, int registers, const Varying *packing[][4],
1159 std::string& pixelHLSL, std::string& vertexHLSL,
1160 FragmentShader *fragmentShader, VertexShader *vertexShader)
1161 {
1162 if (pixelHLSL.empty() || vertexHLSL.empty())
1163 {
1164 return false;
1165 }
1166
1167 bool usesMRT = fragmentShader->mUsesMultipleRenderTargets;
1168 bool usesFragColor = fragmentShader->mUsesFragColor;
1169 bool usesFragData = fragmentShader->mUsesFragData;
1170 if (usesFragColor && usesFragData)
1171 {
1172 infoLog.append("Cannot use both gl_FragColor and gl_FragData in the same fragment shader.");
1173 return false;
1174 }
1175
1176 // Write the HLSL input/output declarations
1177 const int shaderModel = mRenderer->getMajorShaderModel();
1178 const int maxVaryingVectors = mRenderer->getMaxVaryingVectors();
1179
1180 const int registersNeeded = registers + (fragmentShader->mUsesFragCoord ? 1 : 0) + (fragmentShader->mUsesPointCoord ? 1 : 0);
1181
1182 // The output color is broadcast to all enabled draw buffers when writing to gl_FragColor
1183 const bool broadcast = fragmentShader->mUsesFragColor;
1184 const unsigned int numRenderTargets = (broadcast || usesMRT ? mRenderer->getMaxRenderTargets() : 1);
1185
1186 if (registersNeeded > maxVaryingVectors)
1187 {
1188 infoLog.append("No varying registers left to support gl_FragCoord/gl_PointCoord");
1189
1190 return false;
1191 }
1192
1193 vertexShader->resetVaryingsRegisterAssignment();
1194
1195 for (VaryingList::iterator input = fragmentShader->mVaryings.begin(); input != fragmentShader->mVaryings.end(); input++)
1196 {
1197 bool matched = false;
1198
1199 for (VaryingList::iterator output = vertexShader->mVaryings.begin(); output != vertexShader->mVaryings.end(); output++)
1200 {
1201 if (output->name == input->name)
1202 {
1203 if (output->type != input->type || output->size != input->size)
1204 {
1205 infoLog.append("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str());
1206
1207 return false;
1208 }
1209
1210 output->reg = input->reg;
1211 output->col = input->col;
1212
1213 matched = true;
1214 break;
1215 }
1216 }
1217
1218 if (!matched)
1219 {
1220 infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str());
1221
1222 return false;
1223 }
1224 }
1225
1226 mUsesPointSize = vertexShader->mUsesPointSize;
1227 std::string varyingSemantic = (mUsesPointSize && shaderModel == 3) ? "COLOR" : "TEXCOORD";
1228 std::string targetSemantic = (shaderModel >= 4) ? "SV_Target" : "COLOR";
1229 std::string positionSemantic = (shaderModel >= 4) ? "SV_Position" : "POSITION";
1230 std::string depthSemantic = (shaderModel >= 4) ? "SV_Depth" : "DEPTH";
1231
1232 // special varyings that use reserved registers
1233 int reservedRegisterIndex = registers;
1234 std::string fragCoordSemantic;
1235 std::string pointCoordSemantic;
1236
1237 if (fragmentShader->mUsesFragCoord)
1238 {
1239 fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++);
1240 }
1241
1242 if (fragmentShader->mUsesPointCoord)
1243 {
1244 // Shader model 3 uses a special TEXCOORD semantic for point sprite texcoords.
1245 // In DX11 we compute this in the GS.
1246 if (shaderModel == 3)
1247 {
1248 pointCoordSemantic = "TEXCOORD0";
1249 }
1250 else if (shaderModel >= 4)
1251 {
1252 pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++);
1253 }
1254 }
1255
1256 vertexHLSL += "struct VS_INPUT\n"
1257 "{\n";
1258
1259 int semanticIndex = 0;
1260 for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
1261 {
1262 switch (attribute->type)
1263 {
1264 case GL_FLOAT: vertexHLSL += " float "; break;
1265 case GL_FLOAT_VEC2: vertexHLSL += " float2 "; break;
1266 case GL_FLOAT_VEC3: vertexHLSL += " float3 "; break;
1267 case GL_FLOAT_VEC4: vertexHLSL += " float4 "; break;
1268 case GL_FLOAT_MAT2: vertexHLSL += " float2x2 "; break;
1269 case GL_FLOAT_MAT3: vertexHLSL += " float3x3 "; break;
1270 case GL_FLOAT_MAT4: vertexHLSL += " float4x4 "; break;
1271 default: UNREACHABLE();
1272 }
1273
1274 vertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n";
1275
1276 semanticIndex += VariableRowCount(attribute->type);
1277 }
1278
1279 vertexHLSL += "};\n"
1280 "\n"
1281 "struct VS_OUTPUT\n"
1282 "{\n";
1283
1284 if (shaderModel < 4)
1285 {
1286 vertexHLSL += " float4 gl_Position : " + positionSemantic + ";\n";
1287 }
1288
1289 for (int r = 0; r < registers; r++)
1290 {
1291 int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
1292
1293 vertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
1294 }
1295
1296 if (fragmentShader->mUsesFragCoord)
1297 {
1298 vertexHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
1299 }
1300
1301 if (vertexShader->mUsesPointSize && shaderModel >= 3)
1302 {
1303 vertexHLSL += " float gl_PointSize : PSIZE;\n";
1304 }
1305
1306 if (shaderModel >= 4)
1307 {
1308 vertexHLSL += " float4 gl_Position : " + positionSemantic + ";\n";
1309 }
1310
1311 vertexHLSL += "};\n"
1312 "\n"
1313 "VS_OUTPUT main(VS_INPUT input)\n"
1314 "{\n";
1315
1316 for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
1317 {
1318 vertexHLSL += " " + decorateAttribute(attribute->name) + " = ";
1319
1320 if (VariableRowCount(attribute->type) > 1) // Matrix
1321 {
1322 vertexHLSL += "transpose";
1323 }
1324
1325 vertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n";
1326 }
1327
1328 if (shaderModel >= 4)
1329 {
1330 vertexHLSL += "\n"
1331 " gl_main();\n"
1332 "\n"
1333 " VS_OUTPUT output;\n"
1334 " output.gl_Position.x = gl_Position.x;\n"
1335 " output.gl_Position.y = -gl_Position.y;\n"
1336 " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
1337 " output.gl_Position.w = gl_Position.w;\n";
1338 }
1339 else
1340 {
1341 vertexHLSL += "\n"
1342 " gl_main();\n"
1343 "\n"
1344 " VS_OUTPUT output;\n"
1345 " output.gl_Position.x = gl_Position.x * dx_ViewAdjust.z + dx_ViewAdjust.x * gl_Position.w;\n"
1346 " output.gl_Position.y = -(gl_Position.y * dx_ViewAdjust.w + dx_ViewAdjust.y * gl_Position.w);\n"
1347 " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
1348 " output.gl_Position.w = gl_Position.w;\n";
1349 }
1350
1351 if (vertexShader->mUsesPointSize && shaderModel >= 3)
1352 {
1353 vertexHLSL += " output.gl_PointSize = gl_PointSize;\n";
1354 }
1355
1356 if (fragmentShader->mUsesFragCoord)
1357 {
1358 vertexHLSL += " output.gl_FragCoord = gl_Position;\n";
1359 }
1360
1361 for (VaryingList::iterator varying = vertexShader->mVaryings.begin(); varying != vertexShader->mVaryings.end(); varying++)
1362 {
1363 if (varying->reg >= 0)
1364 {
1365 for (int i = 0; i < varying->size; i++)
1366 {
1367 int rows = VariableRowCount(varying->type);
1368
1369 for (int j = 0; j < rows; j++)
1370 {
1371 int r = varying->reg + i * rows + j;
1372 vertexHLSL += " output.v" + str(r);
1373
1374 bool sharedRegister = false; // Register used by multiple varyings
1375
1376 for (int x = 0; x < 4; x++)
1377 {
1378 if (packing[r][x] && packing[r][x] != packing[r][0])
1379 {
1380 sharedRegister = true;
1381 break;
1382 }
1383 }
1384
1385 if(sharedRegister)
1386 {
1387 vertexHLSL += ".";
1388
1389 for (int x = 0; x < 4; x++)
1390 {
1391 if (packing[r][x] == &*varying)
1392 {
1393 switch(x)
1394 {
1395 case 0: vertexHLSL += "x"; break;
1396 case 1: vertexHLSL += "y"; break;
1397 case 2: vertexHLSL += "z"; break;
1398 case 3: vertexHLSL += "w"; break;
1399 }
1400 }
1401 }
1402 }
1403
1404 vertexHLSL += " = " + varying->name;
1405
1406 if (varying->array)
1407 {
1408 vertexHLSL += "[" + str(i) + "]";
1409 }
1410
1411 if (rows > 1)
1412 {
1413 vertexHLSL += "[" + str(j) + "]";
1414 }
1415
1416 vertexHLSL += ";\n";
1417 }
1418 }
1419 }
1420 }
1421
1422 vertexHLSL += "\n"
1423 " return output;\n"
1424 "}\n";
1425
1426 pixelHLSL += "struct PS_INPUT\n"
1427 "{\n";
1428
1429 for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
1430 {
1431 if (varying->reg >= 0)
1432 {
1433 for (int i = 0; i < varying->size; i++)
1434 {
1435 int rows = VariableRowCount(varying->type);
1436 for (int j = 0; j < rows; j++)
1437 {
1438 std::string n = str(varying->reg + i * rows + j);
1439 pixelHLSL += " float" + str(VariableColumnCount(varying->type)) + " v" + n + " : " + varyingSemantic + n + ";\n";
1440 }
1441 }
1442 }
1443 else UNREACHABLE();
1444 }
1445
1446 if (fragmentShader->mUsesFragCoord)
1447 {
1448 pixelHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
1449 }
1450
1451 if (fragmentShader->mUsesPointCoord && shaderModel >= 3)
1452 {
1453 pixelHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n";
1454 }
1455
1456 // Must consume the PSIZE element if the geometry shader is not active
1457 // We won't know if we use a GS until we draw
1458 if (vertexShader->mUsesPointSize && shaderModel >= 4)
1459 {
1460 pixelHLSL += " float gl_PointSize : PSIZE;\n";
1461 }
1462
1463 if (fragmentShader->mUsesFragCoord)
1464 {
1465 if (shaderModel >= 4)
1466 {
1467 pixelHLSL += " float4 dx_VPos : SV_Position;\n";
1468 }
1469 else if (shaderModel >= 3)
1470 {
1471 pixelHLSL += " float2 dx_VPos : VPOS;\n";
1472 }
1473 }
1474
1475 pixelHLSL += "};\n"
1476 "\n"
1477 "struct PS_OUTPUT\n"
1478 "{\n";
1479
1480 for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++)
1481 {
1482 pixelHLSL += " float4 gl_Color" + str(renderTargetIndex) + " : " + targetSemantic + str(renderTargetIndex) + ";\n";
1483 }
1484
1485 if (fragmentShader->mUsesFragDepth)
1486 {
1487 pixelHLSL += " float gl_Depth : " + depthSemantic + ";\n";
1488 }
1489
1490 pixelHLSL += "};\n"
1491 "\n";
1492
1493 if (fragmentShader->mUsesFrontFacing)
1494 {
1495 if (shaderModel >= 4)
1496 {
1497 pixelHLSL += "PS_OUTPUT main(PS_INPUT input, bool isFrontFace : SV_IsFrontFace)\n"
1498 "{\n";
1499 }
1500 else
1501 {
1502 pixelHLSL += "PS_OUTPUT main(PS_INPUT input, float vFace : VFACE)\n"
1503 "{\n";
1504 }
1505 }
1506 else
1507 {
1508 pixelHLSL += "PS_OUTPUT main(PS_INPUT input)\n"
1509 "{\n";
1510 }
1511
1512 if (fragmentShader->mUsesFragCoord)
1513 {
1514 pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n";
1515
1516 if (shaderModel >= 4)
1517 {
1518 pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x;\n"
1519 " gl_FragCoord.y = input.dx_VPos.y;\n";
1520 }
1521 else if (shaderModel >= 3)
1522 {
1523 pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n"
1524 " gl_FragCoord.y = input.dx_VPos.y + 0.5;\n";
1525 }
1526 else
1527 {
1528 // dx_ViewCoords contains the viewport width/2, height/2, center.x and center.y. See Renderer::setViewport()
1529 pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_ViewCoords.x + dx_ViewCoords.z;\n"
1530 " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_ViewCoords.y + dx_ViewCoords.w;\n";
1531 }
1532
1533 pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_DepthFront.x + dx_DepthFront.y;\n"
1534 " gl_FragCoord.w = rhw;\n";
1535 }
1536
1537 if (fragmentShader->mUsesPointCoord && shaderModel >= 3)
1538 {
1539 pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n";
1540 pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n";
1541 }
1542
1543 if (fragmentShader->mUsesFrontFacing)
1544 {
1545 if (shaderModel <= 3)
1546 {
1547 pixelHLSL += " gl_FrontFacing = (vFace * dx_DepthFront.z >= 0.0);\n";
1548 }
1549 else
1550 {
1551 pixelHLSL += " gl_FrontFacing = isFrontFace;\n";
1552 }
1553 }
1554
1555 for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
1556 {
1557 if (varying->reg >= 0)
1558 {
1559 for (int i = 0; i < varying->size; i++)
1560 {
1561 int rows = VariableRowCount(varying->type);
1562 for (int j = 0; j < rows; j++)
1563 {
1564 std::string n = str(varying->reg + i * rows + j);
1565 pixelHLSL += " " + varying->name;
1566
1567 if (varying->array)
1568 {
1569 pixelHLSL += "[" + str(i) + "]";
1570 }
1571
1572 if (rows > 1)
1573 {
1574 pixelHLSL += "[" + str(j) + "]";
1575 }
1576
1577 switch (VariableColumnCount(varying->type))
1578 {
1579 case 1: pixelHLSL += " = input.v" + n + ".x;\n"; break;
1580 case 2: pixelHLSL += " = input.v" + n + ".xy;\n"; break;
1581 case 3: pixelHLSL += " = input.v" + n + ".xyz;\n"; break;
1582 case 4: pixelHLSL += " = input.v" + n + ";\n"; break;
1583 default: UNREACHABLE();
1584 }
1585 }
1586 }
1587 }
1588 else UNREACHABLE();
1589 }
1590
1591 pixelHLSL += "\n"
1592 " gl_main();\n"
1593 "\n"
1594 " PS_OUTPUT output;\n";
1595
1596 for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++)
1597 {
1598 unsigned int sourceColorIndex = broadcast ? 0 : renderTargetIndex;
1599
1600 pixelHLSL += " output.gl_Color" + str(renderTargetIndex) + " = gl_Color[" + str(sourceColorIndex) + "];\n";
1601 }
1602
1603 if (fragmentShader->mUsesFragDepth)
1604 {
1605 pixelHLSL += " output.gl_Depth = gl_Depth;\n";
1606 }
1607
1608 pixelHLSL += "\n"
1609 " return output;\n"
1610 "}\n";
1611
1612 return true;
1613 }
1614
1615 bool ProgramBinary::load(InfoLog &infoLog, const void *binary, GLsizei length)
1616 {
1617 BinaryInputStream stream(binary, length);
1618
1619 int format = 0;
1620 stream.read(&format);
1621 if (format != GL_PROGRAM_BINARY_ANGLE)
1622 {
1623 infoLog.append("Invalid program binary format.");
1624 return false;
1625 }
1626
1627 int version = 0;
1628 stream.read(&version);
1629 if (version != VERSION_DWORD)
1630 {
1631 infoLog.append("Invalid program binary version.");
1632 return false;
1633 }
1634
1635 int compileFlags = 0;
1636 stream.read(&compileFlags);
1637 if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL)
1638 {
1639 infoLog.append("Mismatched compilation flags.");
1640 return false;
1641 }
1642
1643 for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
1644 {
1645 stream.read(&mLinkedAttribute[i].type);
1646 std::string name;
1647 stream.read(&name);
1648 mLinkedAttribute[i].name = name;
1649 stream.read(&mSemanticIndex[i]);
1650 }
1651
1652 for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
1653 {
1654 stream.read(&mSamplersPS[i].active);
1655 stream.read(&mSamplersPS[i].logicalTextureUnit);
1656
1657 int textureType;
1658 stream.read(&textureType);
1659 mSamplersPS[i].textureType = (TextureType) textureType;
1660 }
1661
1662 for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i)
1663 {
1664 stream.read(&mSamplersVS[i].active);
1665 stream.read(&mSamplersVS[i].logicalTextureUnit);
1666
1667 int textureType;
1668 stream.read(&textureType);
1669 mSamplersVS[i].textureType = (TextureType) textureType;
1670 }
1671
1672 stream.read(&mUsedVertexSamplerRange);
1673 stream.read(&mUsedPixelSamplerRange);
1674 stream.read(&mUsesPointSize);
1675
1676 size_t size;
1677 stream.read(&size);
1678 if (stream.error())
1679 {
1680 infoLog.append("Invalid program binary.");
1681 return false;
1682 }
1683
1684 mUniforms.resize(size);
1685 for (unsigned int i = 0; i < size; ++i)
1686 {
1687 GLenum type;
1688 GLenum precision;
1689 std::string name;
1690 unsigned int arraySize;
1691
1692 stream.read(&type);
1693 stream.read(&precision);
1694 stream.read(&name);
1695 stream.read(&arraySize);
1696
1697 mUniforms[i] = new Uniform(type, precision, name, arraySize);
1698
1699 stream.read(&mUniforms[i]->psRegisterIndex);
1700 stream.read(&mUniforms[i]->vsRegisterIndex);
1701 stream.read(&mUniforms[i]->registerCount);
1702 }
1703
1704 stream.read(&size);
1705 if (stream.error())
1706 {
1707 infoLog.append("Invalid program binary.");
1708 return false;
1709 }
1710
1711 mUniformIndex.resize(size);
1712 for (unsigned int i = 0; i < size; ++i)
1713 {
1714 stream.read(&mUniformIndex[i].name);
1715 stream.read(&mUniformIndex[i].element);
1716 stream.read(&mUniformIndex[i].index);
1717 }
1718
1719 unsigned int pixelShaderSize;
1720 stream.read(&pixelShaderSize);
1721
1722 unsigned int vertexShaderSize;
1723 stream.read(&vertexShaderSize);
1724
1725 unsigned int geometryShaderSize;
1726 stream.read(&geometryShaderSize);
1727
1728 const char *ptr = (const char*) binary + stream.offset();
1729
1730 const GUID *binaryIdentifier = (const GUID *) ptr;
1731 ptr += sizeof(GUID);
1732
1733 GUID identifier = mRenderer->getAdapterIdentifier();
1734 if (memcmp(&identifier, binaryIdentifier, sizeof(GUID)) != 0)
1735 {
1736 infoLog.append("Invalid program binary.");
1737 return false;
1738 }
1739
1740 const char *pixelShaderFunction = ptr;
1741 ptr += pixelShaderSize;
1742
1743 const char *vertexShaderFunction = ptr;
1744 ptr += vertexShaderSize;
1745
1746 const char *geometryShaderFunction = geometryShaderSize > 0 ? ptr : NULL;
1747 ptr += geometryShaderSize;
1748
1749 mPixelExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(pixelShaderFunction),
1750 pixelShaderSize, rx::SHADER_PIXEL);
1751 if (!mPixelExecutable)
1752 {
1753 infoLog.append("Could not create pixel shader.");
1754 return false;
1755 }
1756
1757 mVertexExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(vertexShaderFunction),
1758 vertexShaderSize, rx::SHADER_VERTEX);
1759 if (!mVertexExecutable)
1760 {
1761 infoLog.append("Could not create vertex shader.");
1762 delete mPixelExecutable;
1763 mPixelExecutable = NULL;
1764 return false;
1765 }
1766
1767 if (geometryShaderFunction != NULL && geometryShaderSize > 0)
1768 {
1769 mGeometryExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(geometryShaderFunction),
1770 geometryShaderSize, rx::SHADER_GEOMETRY);
1771 if (!mGeometryExecutable)
1772 {
1773 infoLog.append("Could not create geometry shader.");
1774 delete mPixelExecutable;
1775 mPixelExecutable = NULL;
1776 delete mVertexExecutable;
1777 mVertexExecutable = NULL;
1778 return false;
1779 }
1780 }
1781 else
1782 {
1783 mGeometryExecutable = NULL;
1784 }
1785
1786 return true;
1787 }
1788
1789 bool ProgramBinary::save(void* binary, GLsizei bufSize, GLsizei *length)
1790 {
1791 BinaryOutputStream stream;
1792
1793 stream.write(GL_PROGRAM_BINARY_ANGLE);
1794 stream.write(VERSION_DWORD);
1795 stream.write(ANGLE_COMPILE_OPTIMIZATION_LEVEL);
1796
1797 for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
1798 {
1799 stream.write(mLinkedAttribute[i].type);
1800 stream.write(mLinkedAttribute[i].name);
1801 stream.write(mSemanticIndex[i]);
1802 }
1803
1804 for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
1805 {
1806 stream.write(mSamplersPS[i].active);
1807 stream.write(mSamplersPS[i].logicalTextureUnit);
1808 stream.write((int) mSamplersPS[i].textureType);
1809 }
1810
1811 for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i)
1812 {
1813 stream.write(mSamplersVS[i].active);
1814 stream.write(mSamplersVS[i].logicalTextureUnit);
1815 stream.write((int) mSamplersVS[i].textureType);
1816 }
1817
1818 stream.write(mUsedVertexSamplerRange);
1819 stream.write(mUsedPixelSamplerRange);
1820 stream.write(mUsesPointSize);
1821
1822 stream.write(mUniforms.size());
1823 for (unsigned int i = 0; i < mUniforms.size(); ++i)
1824 {
1825 stream.write(mUniforms[i]->type);
1826 stream.write(mUniforms[i]->precision);
1827 stream.write(mUniforms[i]->name);
1828 stream.write(mUniforms[i]->arraySize);
1829
1830 stream.write(mUniforms[i]->psRegisterIndex);
1831 stream.write(mUniforms[i]->vsRegisterIndex);
1832 stream.write(mUniforms[i]->registerCount);
1833 }
1834
1835 stream.write(mUniformIndex.size());
1836 for (unsigned int i = 0; i < mUniformIndex.size(); ++i)
1837 {
1838 stream.write(mUniformIndex[i].name);
1839 stream.write(mUniformIndex[i].element);
1840 stream.write(mUniformIndex[i].index);
1841 }
1842
1843 UINT pixelShaderSize = mPixelExecutable->getLength();
1844 stream.write(pixelShaderSize);
1845
1846 UINT vertexShaderSize = mVertexExecutable->getLength();
1847 stream.write(vertexShaderSize);
1848
1849 UINT geometryShaderSize = (mGeometryExecutable != NULL) ? mGeometryExecutable->getLength() : 0;
1850 stream.write(geometryShaderSize);
1851
1852 GUID identifier = mRenderer->getAdapterIdentifier();
1853
1854 GLsizei streamLength = stream.length();
1855 const void *streamData = stream.data();
1856
1857 GLsizei totalLength = streamLength + sizeof(GUID) + pixelShaderSize + vertexShaderSize + geometryShaderSize;
1858 if (totalLength > bufSize)
1859 {
1860 if (length)
1861 {
1862 *length = 0;
1863 }
1864
1865 return false;
1866 }
1867
1868 if (binary)
1869 {
1870 char *ptr = (char*) binary;
1871
1872 memcpy(ptr, streamData, streamLength);
1873 ptr += streamLength;
1874
1875 memcpy(ptr, &identifier, sizeof(GUID));
1876 ptr += sizeof(GUID);
1877
1878 memcpy(ptr, mPixelExecutable->getFunction(), pixelShaderSize);
1879 ptr += pixelShaderSize;
1880
1881 memcpy(ptr, mVertexExecutable->getFunction(), vertexShaderSize);
1882 ptr += vertexShaderSize;
1883
1884 if (mGeometryExecutable != NULL && geometryShaderSize > 0)
1885 {
1886 memcpy(ptr, mGeometryExecutable->getFunction(), geometryShaderSize);
1887 ptr += geometryShaderSize;
1888 }
1889
1890 ASSERT(ptr - totalLength == binary);
1891 }
1892
1893 if (length)
1894 {
1895 *length = totalLength;
1896 }
1897
1898 return true;
1899 }
1900
1901 GLint ProgramBinary::getLength()
1902 {
1903 GLint length;
1904 if (save(NULL, INT_MAX, &length))
1905 {
1906 return length;
1907 }
1908 else
1909 {
1910 return 0;
1911 }
1912 }
1913
1914 bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
1915 {
1916 if (!fragmentShader || !fragmentShader->isCompiled())
1917 {
1918 return false;
1919 }
1920
1921 if (!vertexShader || !vertexShader->isCompiled())
1922 {
1923 return false;
1924 }
1925
1926 std::string pixelHLSL = fragmentShader->getHLSL();
1927 std::string vertexHLSL = vertexShader->getHLSL();
1928
1929 // Map the varyings to the register file
1930 const Varying *packing[IMPLEMENTATION_MAX_VARYING_VECTORS][4] = {NULL};
1931 int registers = packVaryings(infoLog, packing, fragmentShader);
1932
1933 if (registers < 0)
1934 {
1935 return false;
1936 }
1937
1938 if (!linkVaryings(infoLog, registers, packing, pixelHLSL, vertexHLSL, fragmentShader, vertexShader))
1939 {
1940 return false;
1941 }
1942
1943 bool success = true;
1944
1945 if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader))
1946 {
1947 success = false;
1948 }
1949
1950 if (!linkUniforms(infoLog, vertexShader->getUniforms(), fragmentShader->getUniforms()))
1951 {
1952 success = false;
1953 }
1954
1955 // special case for gl_DepthRange, the only built-in uniform (also a struct)
1956 if (vertexShader->mUsesDepthRange || fragmentShader->mUsesDepthRange)
1957 {
1958 mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.near", 0));
1959 mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.far", 0));
1960 mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.diff", 0));
1961 }
1962
1963 if (success)
1964 {
1965 mVertexExecutable = mRenderer->compileToExecutable(infoLog, vertexHLSL.c_str(), rx::SHADER_VERTEX);
1966 mPixelExecutable = mRenderer->compileToExecutable(infoLog, pixelHLSL.c_str(), rx::SHADER_PIXEL);
1967
1968 if (usesGeometryShader())
1969 {
1970 std::string geometryHLSL = generateGeometryShaderHLSL(registers, packing, fragmentShader, vertexShader);
1971 mGeometryExecutable = mRenderer->compileToExecutable(infoLog, geometryHLSL.c_str(), rx::SHADER_GEOMETRY);
1972 }
1973
1974 if (!mVertexExecutable || !mPixelExecutable || (usesGeometryShader() && !mGeometryExecutable))
1975 {
1976 infoLog.append("Failed to create D3D shaders.");
1977 success = false;
1978
1979 delete mVertexExecutable;
1980 mVertexExecutable = NULL;
1981 delete mPixelExecutable;
1982 mPixelExecutable = NULL;
1983 delete mGeometryExecutable;
1984 mGeometryExecutable = NULL;
1985 }
1986 }
1987
1988 return success;
1989 }
1990
1991 // Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
1992 bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
1993 {
1994 unsigned int usedLocations = 0;
1995
1996 // Link attributes that have a binding location
1997 for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
1998 {
1999 int location = attributeBindings.getAttributeBinding(attribute->name);
2000
2001 if (location != -1) // Set by glBindAttribLocation
2002 {
2003 if (!mLinkedAttribute[location].name.empty())
2004 {
2005 // Multiple active attributes bound to the same location; not an error
2006 }
2007
2008 mLinkedAttribute[location] = *attribute;
2009
2010 int rows = VariableRowCount(attribute->type);
2011
2012 if (rows + location > MAX_VERTEX_ATTRIBS)
2013 {
2014 infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location);
2015
2016 return false;
2017 }
2018
2019 for (int i = 0; i < rows; i++)
2020 {
2021 usedLocations |= 1 << (location + i);
2022 }
2023 }
2024 }
2025
2026 // Link attributes that don't have a binding location
2027 for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
2028 {
2029 int location = attributeBindings.getAttributeBinding(attribute->name);
2030
2031 if (location == -1) // Not set by glBindAttribLocation
2032 {
2033 int rows = VariableRowCount(attribute->type);
2034 int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
2035
2036 if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
2037 {
2038 infoLog.append("Too many active attributes (%s)", attribute->name.c_str());
2039
2040 return false; // Fail to link
2041 }
2042
2043 mLinkedAttribute[availableIndex] = *attribute;
2044 }
2045 }
2046
2047 for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
2048 {
2049 int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
2050 int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1);
2051
2052 for (int r = 0; r < rows; r++)
2053 {
2054 mSemanticIndex[attributeIndex++] = index++;
2055 }
2056 }
2057
2058 return true;
2059 }
2060
2061 bool ProgramBinary::linkUniforms(InfoLog &infoLog, const sh::ActiveUniforms &vertexUniforms, const sh::ActiveUniforms &fragmentUniforms)
2062 {
2063 for (sh::ActiveUniforms::const_iterator uniform = vertexUniforms.begin(); uniform != vertexUniforms.end(); uniform++)
2064 {
2065 if (!defineUniform(GL_VERTEX_SHADER, *uniform, infoLog))
2066 {
2067 return false;
2068 }
2069 }
2070
2071 for (sh::ActiveUniforms::const_iterator uniform = fragmentUniforms.begin(); uniform != fragmentUniforms.end(); uniform++)
2072 {
2073 if (!defineUniform(GL_FRAGMENT_SHADER, *uniform, infoLog))
2074 {
2075 return false;
2076 }
2077 }
2078
2079 return true;
2080 }
2081
2082 bool ProgramBinary::defineUniform(GLenum shader, const sh::Uniform &constant, InfoLog &infoLog)
2083 {
2084 if (constant.type == GL_SAMPLER_2D ||
2085 constant.type == GL_SAMPLER_CUBE)
2086 {
2087 unsigned int samplerIndex = constant.registerIndex;
2088
2089 do
2090 {
2091 if (shader == GL_VERTEX_SHADER)
2092 {
2093 if (samplerIndex < mRenderer->getMaxVertexTextureImageUnits())
2094 {
2095 mSamplersVS[samplerIndex].active = true;
2096 mSamplersVS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D;
2097 mSamplersVS[samplerIndex].logicalTextureUnit = 0;
2098 mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange);
2099 }
2100 else
2101 {
2102 infoLog.append("Vertex shader sampler count exceeds the maximum vertex texture units (%d).", mRenderer->getMaxVertexTextureImageUnits());
2103 return false;
2104 }
2105 }
2106 else if (shader == GL_FRAGMENT_SHADER)
2107 {
2108 if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
2109 {
2110 mSamplersPS[samplerIndex].active = true;
2111 mSamplersPS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D;
2112 mSamplersPS[samplerIndex].logicalTextureUnit = 0;
2113 mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange);
2114 }
2115 else
2116 {
2117 infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS);
2118 return false;
2119 }
2120 }
2121 else UNREACHABLE();
2122
2123 samplerIndex++;
2124 }
2125 while (samplerIndex < constant.registerIndex + constant.arraySize);
2126 }
2127
2128 Uniform *uniform = NULL;
2129 GLint location = getUniformLocation(constant.name);
2130
2131 if (location >= 0) // Previously defined, type and precision must match
2132 {
2133 uniform = mUniforms[mUniformIndex[location].index];
2134
2135 if (uniform->type != constant.type)
2136 {
2137 infoLog.append("Types for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str());
2138 return false;
2139 }
2140
2141 if (uniform->precision != constant.precision)
2142 {
2143 infoLog.append("Precisions for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str());
2144 return false;
2145 }
2146 }
2147 else
2148 {
2149 uniform = new Uniform(constant.type, constant.precision, constant.name, constant.arraySize);
2150 }
2151
2152 if (!uniform)
2153 {
2154 return false;
2155 }
2156
2157 if (shader == GL_FRAGMENT_SHADER)
2158 {
2159 uniform->psRegisterIndex = constant.registerIndex;
2160 }
2161 else if (shader == GL_VERTEX_SHADER)
2162 {
2163 uniform->vsRegisterIndex = constant.registerIndex;
2164 }
2165 else UNREACHABLE();
2166
2167 if (location >= 0)
2168 {
2169 return uniform->type == constant.type;
2170 }
2171
2172 mUniforms.push_back(uniform);
2173 unsigned int uniformIndex = mUniforms.size() - 1;
2174
2175 for (unsigned int i = 0; i < uniform->elementCount(); i++)
2176 {
2177 mUniformIndex.push_back(UniformLocation(constant.name, i, uniformIndex));
2178 }
2179
2180 if (shader == GL_VERTEX_SHADER)
2181 {
2182 if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedVertexUniformVectors() + mRenderer->getMaxVertexUniformVectors())
2183 {
2184 infoLog.append("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%u)", mRenderer->getMaxVertexUniformVectors());
2185 return false;
2186 }
2187 }
2188 else if (shader == GL_FRAGMENT_SHADER)
2189 {
2190 if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedFragmentUniformVectors() + mRenderer->getMaxFragmentUniformVectors())
2191 {
2192 infoLog.append("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%u)", mRenderer->getMaxFragmentUniformVectors());
2193 return false;
2194 }
2195 }
2196 else UNREACHABLE();
2197
2198 return true;
2199 }
2200
2201 std::string ProgramBinary::generateGeometryShaderHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const
2202 {
2203 // for now we only handle point sprite emulation
2204 ASSERT(usesPointSpriteEmulation());
2205 return generatePointSpriteHLSL(registers, packing, fragmentShader, vertexShader);
2206 }
2207
2208 std::string ProgramBinary::generatePointSpriteHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const
2209 {
2210 ASSERT(registers >= 0);
2211 ASSERT(vertexShader->mUsesPointSize);
2212 ASSERT(mRenderer->getMajorShaderModel() >= 4);
2213
2214 std::string geomHLSL;
2215
2216 std::string varyingSemantic = "TEXCOORD";
2217
2218 std::string fragCoordSemantic;
2219 std::string pointCoordSemantic;
2220
2221 int reservedRegisterIndex = registers;
2222
2223 if (fragmentShader->mUsesFragCoord)
2224 {
2225 fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++);
2226 }
2227
2228 if (fragmentShader->mUsesPointCoord)
2229 {
2230 pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++);
2231 }
2232
2233 geomHLSL += "uniform float4 dx_ViewCoords : register(c1);\n"
2234 "\n"
2235 "struct GS_INPUT\n"
2236 "{\n";
2237
2238 for (int r = 0; r < registers; r++)
2239 {
2240 int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
2241
2242 geomHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
2243 }
2244
2245 if (fragmentShader->mUsesFragCoord)
2246 {
2247 geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
2248 }
2249
2250 geomHLSL += " float gl_PointSize : PSIZE;\n"
2251 " float4 gl_Position : SV_Position;\n"
2252 "};\n"
2253 "\n"
2254 "struct GS_OUTPUT\n"
2255 "{\n";
2256
2257 for (int r = 0; r < registers; r++)
2258 {
2259 int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
2260
2261 geomHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
2262 }
2263
2264 if (fragmentShader->mUsesFragCoord)
2265 {
2266 geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
2267 }
2268
2269 if (fragmentShader->mUsesPointCoord)
2270 {
2271 geomHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n";
2272 }
2273
2274 geomHLSL += " float gl_PointSize : PSIZE;\n"
2275 " float4 gl_Position : SV_Position;\n"
2276 "};\n"
2277 "\n"
2278 "static float2 pointSpriteCorners[] = \n"
2279 "{\n"
2280 " float2( 0.5f, -0.5f),\n"
2281 " float2( 0.5f, 0.5f),\n"
2282 " float2(-0.5f, -0.5f),\n"
2283 " float2(-0.5f, 0.5f)\n"
2284 "};\n"
2285 "\n"
2286 "static float2 pointSpriteTexcoords[] = \n"
2287 "{\n"
2288 " float2(1.0f, 1.0f),\n"
2289 " float2(1.0f, 0.0f),\n"
2290 " float2(0.0f, 1.0f),\n"
2291 " float2(0.0f, 0.0f)\n"
2292 "};\n"
2293 "\n"
2294 "static float minPointSize = " + str(ALIASED_POINT_SIZE_RANGE_MIN) + ".0f;\n"
2295 "static float maxPointSize = " + str(mRenderer->getMaxPointSize()) + ".0f;\n"
2296 "\n"
2297 "[maxvertexcount(4)]\n"
2298 "void main(point GS_INPUT input[1], inout TriangleStream<GS_OUTPUT> outStream)\n"
2299 "{\n"
2300 " GS_OUTPUT output = (GS_OUTPUT)0;\n"
2301 " output.gl_PointSize = input[0].gl_PointSize;\n";
2302
2303 for (int r = 0; r < registers; r++)
2304 {
2305 geomHLSL += " output.v" + str(r) + " = input[0].v" + str(r) + ";\n";
2306 }
2307
2308 if (fragmentShader->mUsesFragCoord)
2309 {
2310 geomHLSL += " output.gl_FragCoord = input[0].gl_FragCoord;\n";
2311 }
2312
2313 geomHLSL += " \n"
2314 " float gl_PointSize = clamp(input[0].gl_PointSize, minPointSize, maxPointSize);\n"
2315 " float4 gl_Position = input[0].gl_Position;\n"
2316 " float2 viewportScale = float2(1.0f / dx_ViewCoords.x, 1.0f / dx_ViewCoords.y) * gl_Position.w;\n";
2317
2318 for (int corner = 0; corner < 4; corner++)
2319 {
2320 geomHLSL += " \n"
2321 " output.gl_Position = gl_Position + float4(pointSpriteCorners[" + str(corner) + "] * viewportScale * gl_PointSize, 0.0f, 0.0f);\n";
2322
2323 if (fragmentShader->mUsesPointCoord)
2324 {
2325 geomHLSL += " output.gl_PointCoord = pointSpriteTexcoords[" + str(corner) + "];\n";
2326 }
2327
2328 geomHLSL += " outStream.Append(output);\n";
2329 }
2330
2331 geomHLSL += " \n"
2332 " outStream.RestartStrip();\n"
2333 "}\n";
2334
2335 return geomHLSL;
2336 }
2337
2338 // This method needs to match OutputHLSL::decorate
2339 std::string ProgramBinary::decorateAttribute(const std::string &name)
2340 {
2341 if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0)
2342 {
2343 return "_" + name;
2344 }
2345
2346 return name;
2347 }
2348
2349 bool ProgramBinary::isValidated() const
2350 {
2351 return mValidated;
2352 }
2353
2354 void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
2355 {
2356 // Skip over inactive attributes
2357 unsigned int activeAttribute = 0;
2358 unsigned int attribute;
2359 for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
2360 {
2361 if (mLinkedAttribute[attribute].name.empty())
2362 {
2363 continue;
2364 }
2365
2366 if (activeAttribute == index)
2367 {
2368 break;
2369 }
2370
2371 activeAttribute++;
2372 }
2373
2374 if (bufsize > 0)
2375 {
2376 const char *string = mLinkedAttribute[attribute].name.c_str();
2377
2378 strncpy(name, string, bufsize);
2379 name[bufsize - 1] = '\0';
2380
2381 if (length)
2382 {
2383 *length = strlen(name);
2384 }
2385 }
2386
2387 *size = 1; // Always a single 'type' instance
2388
2389 *type = mLinkedAttribute[attribute].type;
2390 }
2391
2392 GLint ProgramBinary::getActiveAttributeCount() const
2393 {
2394 int count = 0;
2395
2396 for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
2397 {
2398 if (!mLinkedAttribute[attributeIndex].name.empty())
2399 {
2400 count++;
2401 }
2402 }
2403
2404 return count;
2405 }
2406
2407 GLint ProgramBinary::getActiveAttributeMaxLength() const
2408 {
2409 int maxLength = 0;
2410
2411 for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
2412 {
2413 if (!mLinkedAttribute[attributeIndex].name.empty())
2414 {
2415 maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
2416 }
2417 }
2418
2419 return maxLength;
2420 }
2421
2422 void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
2423 {
2424 ASSERT(index < mUniforms.size()); // index must be smaller than getActiveUniformCount()
2425
2426 if (bufsize > 0)
2427 {
2428 std::string string = mUniforms[index]->name;
2429
2430 if (mUniforms[index]->isArray())
2431 {
2432 string += "[0]";
2433 }
2434
2435 strncpy(name, string.c_str(), bufsize);
2436 name[bufsize - 1] = '\0';
2437
2438 if (length)
2439 {
2440 *length = strlen(name);
2441 }
2442 }
2443
2444 *size = mUniforms[index]->elementCount();
2445
2446 *type = mUniforms[index]->type;
2447 }
2448
2449 GLint ProgramBinary::getActiveUniformCount() const
2450 {
2451 return mUniforms.size();
2452 }
2453
2454 GLint ProgramBinary::getActiveUniformMaxLength() const
2455 {
2456 int maxLength = 0;
2457
2458 unsigned int numUniforms = mUniforms.size();
2459 for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
2460 {
2461 if (!mUniforms[uniformIndex]->name.empty())
2462 {
2463 int length = (int)(mUniforms[uniformIndex]->name.length() + 1);
2464 if (mUniforms[uniformIndex]->isArray())
2465 {
2466 length += 3; // Counting in "[0]".
2467 }
2468 maxLength = std::max(length, maxLength);
2469 }
2470 }
2471
2472 return maxLength;
2473 }
2474
2475 void ProgramBinary::validate(InfoLog &infoLog)
2476 {
2477 applyUniforms();
2478 if (!validateSamplers(&infoLog))
2479 {
2480 mValidated = false;
2481 }
2482 else
2483 {
2484 mValidated = true;
2485 }
2486 }
2487
2488 bool ProgramBinary::validateSamplers(InfoLog *infoLog)
2489 {
2490 // if any two active samplers in a program are of different types, but refer to the same
2491 // texture image unit, and this is the current program, then ValidateProgram will fail, and
2492 // DrawArrays and DrawElements will issue the INVALID_OPERATION error.
2493
2494 const unsigned int maxCombinedTextureImageUnits = mRenderer->getMaxCombinedTextureImageUnits();
2495 TextureType textureUnitType[IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS];
2496
2497 for (unsigned int i = 0; i < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++i)
2498 {
2499 textureUnitType[i] = TEXTURE_UNKNOWN;
2500 }
2501
2502 for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i)
2503 {
2504 if (mSamplersPS[i].active)
2505 {
2506 unsigned int unit = mSamplersPS[i].logicalTextureUnit;
2507
2508 if (unit >= maxCombinedTextureImageUnits)
2509 {
2510 if (infoLog)
2511 {
2512 infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
2513 }
2514
2515 return false;
2516 }
2517
2518 if (textureUnitType[unit] != TEXTURE_UNKNOWN)
2519 {
2520 if (mSamplersPS[i].textureType != textureUnitType[unit])
2521 {
2522 if (infoLog)
2523 {
2524 infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
2525 }
2526
2527 return false;
2528 }
2529 }
2530 else
2531 {
2532 textureUnitType[unit] = mSamplersPS[i].textureType;
2533 }
2534 }
2535 }
2536
2537 for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i)
2538 {
2539 if (mSamplersVS[i].active)
2540 {
2541 unsigned int unit = mSamplersVS[i].logicalTextureUnit;
2542
2543 if (unit >= maxCombinedTextureImageUnits)
2544 {
2545 if (infoLog)
2546 {
2547 infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
2548 }
2549
2550 return false;
2551 }
2552
2553 if (textureUnitType[unit] != TEXTURE_UNKNOWN)
2554 {
2555 if (mSamplersVS[i].textureType != textureUnitType[unit])
2556 {
2557 if (infoLog)
2558 {
2559 infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
2560 }
2561
2562 return false;
2563 }
2564 }
2565 else
2566 {
2567 textureUnitType[unit] = mSamplersVS[i].textureType;
2568 }
2569 }
2570 }
2571
2572 return true;
2573 }
2574
2575 ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(TEXTURE_2D)
2576 {
2577 }
2578
2579 struct AttributeSorter
2580 {
2581 AttributeSorter(const int (&semanticIndices)[MAX_VERTEX_ATTRIBS])
2582 : originalIndices(semanticIndices)
2583 {
2584 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
2585 {
2586 indices[i] = i;
2587 }
2588
2589 std::sort(&indices[0], &indices[MAX_VERTEX_ATTRIBS], *this);
2590 }
2591
2592 bool operator()(int a, int b)
2593 {
2594 return originalIndices[a] == -1 ? false : originalIndices[a] < originalIndices[b];
2595 }
2596
2597 int indices[MAX_VERTEX_ATTRIBS];
2598 const int (&originalIndices)[MAX_VERTEX_ATTRIBS];
2599 };
2600
2601 void ProgramBinary::sortAttributesByLayout(rx::TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS], int sortedSemanticIndices[MAX_VERTEX_ATTRIBS]) const
2602 {
2603 AttributeSorter sorter(mSemanticIndex);
2604
2605 int oldIndices[MAX_VERTEX_ATTRIBS];
2606 rx::TranslatedAttribute oldTranslatedAttributes[MAX_VERTEX_ATTRIBS];
2607
2608 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
2609 {
2610 oldIndices[i] = mSemanticIndex[i];
2611 oldTranslatedAttributes[i] = attributes[i];
2612 }
2613
2614 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
2615 {
2616 int oldIndex = sorter.indices[i];
2617 sortedSemanticIndices[i] = oldIndices[oldIndex];
2618 attributes[i] = oldTranslatedAttributes[oldIndex];
2619 }
2620 }
2621
2622 }

mercurial