|
1 |
|
2 /* |
|
3 * Copyright 2012 Google Inc. |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 #include "GrAAConvexPathRenderer.h" |
|
10 |
|
11 #include "GrContext.h" |
|
12 #include "GrDrawState.h" |
|
13 #include "GrDrawTargetCaps.h" |
|
14 #include "GrEffect.h" |
|
15 #include "GrPathUtils.h" |
|
16 #include "GrTBackendEffectFactory.h" |
|
17 #include "SkString.h" |
|
18 #include "SkStrokeRec.h" |
|
19 #include "SkTrace.h" |
|
20 |
|
21 #include "gl/GrGLEffect.h" |
|
22 #include "gl/GrGLSL.h" |
|
23 #include "gl/GrGLVertexEffect.h" |
|
24 |
|
25 #include "effects/GrVertexEffect.h" |
|
26 |
|
27 GrAAConvexPathRenderer::GrAAConvexPathRenderer() { |
|
28 } |
|
29 |
|
30 struct Segment { |
|
31 enum { |
|
32 // These enum values are assumed in member functions below. |
|
33 kLine = 0, |
|
34 kQuad = 1, |
|
35 } fType; |
|
36 |
|
37 // line uses one pt, quad uses 2 pts |
|
38 GrPoint fPts[2]; |
|
39 // normal to edge ending at each pt |
|
40 GrVec fNorms[2]; |
|
41 // is the corner where the previous segment meets this segment |
|
42 // sharp. If so, fMid is a normalized bisector facing outward. |
|
43 GrVec fMid; |
|
44 |
|
45 int countPoints() { |
|
46 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
|
47 return fType + 1; |
|
48 } |
|
49 const SkPoint& endPt() const { |
|
50 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
|
51 return fPts[fType]; |
|
52 }; |
|
53 const SkPoint& endNorm() const { |
|
54 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
|
55 return fNorms[fType]; |
|
56 }; |
|
57 }; |
|
58 |
|
59 typedef SkTArray<Segment, true> SegmentArray; |
|
60 |
|
61 static void center_of_mass(const SegmentArray& segments, SkPoint* c) { |
|
62 SkScalar area = 0; |
|
63 SkPoint center = {0, 0}; |
|
64 int count = segments.count(); |
|
65 SkPoint p0 = {0, 0}; |
|
66 if (count > 2) { |
|
67 // We translate the polygon so that the first point is at the origin. |
|
68 // This avoids some precision issues with small area polygons far away |
|
69 // from the origin. |
|
70 p0 = segments[0].endPt(); |
|
71 SkPoint pi; |
|
72 SkPoint pj; |
|
73 // the first and last iteration of the below loop would compute |
|
74 // zeros since the starting / ending point is (0,0). So instead we start |
|
75 // at i=1 and make the last iteration i=count-2. |
|
76 pj = segments[1].endPt() - p0; |
|
77 for (int i = 1; i < count - 1; ++i) { |
|
78 pi = pj; |
|
79 const SkPoint pj = segments[i + 1].endPt() - p0; |
|
80 |
|
81 SkScalar t = SkScalarMul(pi.fX, pj.fY) - SkScalarMul(pj.fX, pi.fY); |
|
82 area += t; |
|
83 center.fX += (pi.fX + pj.fX) * t; |
|
84 center.fY += (pi.fY + pj.fY) * t; |
|
85 |
|
86 } |
|
87 } |
|
88 // If the poly has no area then we instead return the average of |
|
89 // its points. |
|
90 if (SkScalarNearlyZero(area)) { |
|
91 SkPoint avg; |
|
92 avg.set(0, 0); |
|
93 for (int i = 0; i < count; ++i) { |
|
94 const SkPoint& pt = segments[i].endPt(); |
|
95 avg.fX += pt.fX; |
|
96 avg.fY += pt.fY; |
|
97 } |
|
98 SkScalar denom = SK_Scalar1 / count; |
|
99 avg.scale(denom); |
|
100 *c = avg; |
|
101 } else { |
|
102 area *= 3; |
|
103 area = SkScalarDiv(SK_Scalar1, area); |
|
104 center.fX = SkScalarMul(center.fX, area); |
|
105 center.fY = SkScalarMul(center.fY, area); |
|
106 // undo the translate of p0 to the origin. |
|
107 *c = center + p0; |
|
108 } |
|
109 SkASSERT(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY)); |
|
110 } |
|
111 |
|
112 static void compute_vectors(SegmentArray* segments, |
|
113 SkPoint* fanPt, |
|
114 SkPath::Direction dir, |
|
115 int* vCount, |
|
116 int* iCount) { |
|
117 center_of_mass(*segments, fanPt); |
|
118 int count = segments->count(); |
|
119 |
|
120 // Make the normals point towards the outside |
|
121 GrPoint::Side normSide; |
|
122 if (dir == SkPath::kCCW_Direction) { |
|
123 normSide = GrPoint::kRight_Side; |
|
124 } else { |
|
125 normSide = GrPoint::kLeft_Side; |
|
126 } |
|
127 |
|
128 *vCount = 0; |
|
129 *iCount = 0; |
|
130 // compute normals at all points |
|
131 for (int a = 0; a < count; ++a) { |
|
132 Segment& sega = (*segments)[a]; |
|
133 int b = (a + 1) % count; |
|
134 Segment& segb = (*segments)[b]; |
|
135 |
|
136 const GrPoint* prevPt = &sega.endPt(); |
|
137 int n = segb.countPoints(); |
|
138 for (int p = 0; p < n; ++p) { |
|
139 segb.fNorms[p] = segb.fPts[p] - *prevPt; |
|
140 segb.fNorms[p].normalize(); |
|
141 segb.fNorms[p].setOrthog(segb.fNorms[p], normSide); |
|
142 prevPt = &segb.fPts[p]; |
|
143 } |
|
144 if (Segment::kLine == segb.fType) { |
|
145 *vCount += 5; |
|
146 *iCount += 9; |
|
147 } else { |
|
148 *vCount += 6; |
|
149 *iCount += 12; |
|
150 } |
|
151 } |
|
152 |
|
153 // compute mid-vectors where segments meet. TODO: Detect shallow corners |
|
154 // and leave out the wedges and close gaps by stitching segments together. |
|
155 for (int a = 0; a < count; ++a) { |
|
156 const Segment& sega = (*segments)[a]; |
|
157 int b = (a + 1) % count; |
|
158 Segment& segb = (*segments)[b]; |
|
159 segb.fMid = segb.fNorms[0] + sega.endNorm(); |
|
160 segb.fMid.normalize(); |
|
161 // corner wedges |
|
162 *vCount += 4; |
|
163 *iCount += 6; |
|
164 } |
|
165 } |
|
166 |
|
167 struct DegenerateTestData { |
|
168 DegenerateTestData() { fStage = kInitial; } |
|
169 bool isDegenerate() const { return kNonDegenerate != fStage; } |
|
170 enum { |
|
171 kInitial, |
|
172 kPoint, |
|
173 kLine, |
|
174 kNonDegenerate |
|
175 } fStage; |
|
176 GrPoint fFirstPoint; |
|
177 GrVec fLineNormal; |
|
178 SkScalar fLineC; |
|
179 }; |
|
180 |
|
181 static const SkScalar kClose = (SK_Scalar1 / 16); |
|
182 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); |
|
183 |
|
184 static void update_degenerate_test(DegenerateTestData* data, const GrPoint& pt) { |
|
185 switch (data->fStage) { |
|
186 case DegenerateTestData::kInitial: |
|
187 data->fFirstPoint = pt; |
|
188 data->fStage = DegenerateTestData::kPoint; |
|
189 break; |
|
190 case DegenerateTestData::kPoint: |
|
191 if (pt.distanceToSqd(data->fFirstPoint) > kCloseSqd) { |
|
192 data->fLineNormal = pt - data->fFirstPoint; |
|
193 data->fLineNormal.normalize(); |
|
194 data->fLineNormal.setOrthog(data->fLineNormal); |
|
195 data->fLineC = -data->fLineNormal.dot(data->fFirstPoint); |
|
196 data->fStage = DegenerateTestData::kLine; |
|
197 } |
|
198 break; |
|
199 case DegenerateTestData::kLine: |
|
200 if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) { |
|
201 data->fStage = DegenerateTestData::kNonDegenerate; |
|
202 } |
|
203 case DegenerateTestData::kNonDegenerate: |
|
204 break; |
|
205 default: |
|
206 GrCrash("Unexpected degenerate test stage."); |
|
207 } |
|
208 } |
|
209 |
|
210 static inline bool get_direction(const SkPath& path, const SkMatrix& m, SkPath::Direction* dir) { |
|
211 if (!path.cheapComputeDirection(dir)) { |
|
212 return false; |
|
213 } |
|
214 // check whether m reverses the orientation |
|
215 SkASSERT(!m.hasPerspective()); |
|
216 SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) - |
|
217 SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY)); |
|
218 if (det2x2 < 0) { |
|
219 *dir = SkPath::OppositeDirection(*dir); |
|
220 } |
|
221 return true; |
|
222 } |
|
223 |
|
224 static inline void add_line_to_segment(const SkPoint& pt, |
|
225 SegmentArray* segments, |
|
226 SkRect* devBounds) { |
|
227 segments->push_back(); |
|
228 segments->back().fType = Segment::kLine; |
|
229 segments->back().fPts[0] = pt; |
|
230 devBounds->growToInclude(pt.fX, pt.fY); |
|
231 } |
|
232 |
|
233 #ifdef SK_DEBUG |
|
234 static inline bool contains_inclusive(const SkRect& rect, const SkPoint& p) { |
|
235 return p.fX >= rect.fLeft && p.fX <= rect.fRight && p.fY >= rect.fTop && p.fY <= rect.fBottom; |
|
236 } |
|
237 #endif |
|
238 |
|
239 static inline void add_quad_segment(const SkPoint pts[3], |
|
240 SegmentArray* segments, |
|
241 SkRect* devBounds) { |
|
242 if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || pts[1].distanceToSqd(pts[2]) < kCloseSqd) { |
|
243 if (pts[0] != pts[2]) { |
|
244 add_line_to_segment(pts[2], segments, devBounds); |
|
245 } |
|
246 } else { |
|
247 segments->push_back(); |
|
248 segments->back().fType = Segment::kQuad; |
|
249 segments->back().fPts[0] = pts[1]; |
|
250 segments->back().fPts[1] = pts[2]; |
|
251 SkASSERT(contains_inclusive(*devBounds, pts[0])); |
|
252 devBounds->growToInclude(pts + 1, 2); |
|
253 } |
|
254 } |
|
255 |
|
256 static inline void add_cubic_segments(const SkPoint pts[4], |
|
257 SkPath::Direction dir, |
|
258 SegmentArray* segments, |
|
259 SkRect* devBounds) { |
|
260 SkSTArray<15, SkPoint, true> quads; |
|
261 GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads); |
|
262 int count = quads.count(); |
|
263 for (int q = 0; q < count; q += 3) { |
|
264 add_quad_segment(&quads[q], segments, devBounds); |
|
265 } |
|
266 } |
|
267 |
|
268 static bool get_segments(const SkPath& path, |
|
269 const SkMatrix& m, |
|
270 SegmentArray* segments, |
|
271 SkPoint* fanPt, |
|
272 int* vCount, |
|
273 int* iCount, |
|
274 SkRect* devBounds) { |
|
275 SkPath::Iter iter(path, true); |
|
276 // This renderer over-emphasizes very thin path regions. We use the distance |
|
277 // to the path from the sample to compute coverage. Every pixel intersected |
|
278 // by the path will be hit and the maximum distance is sqrt(2)/2. We don't |
|
279 // notice that the sample may be close to a very thin area of the path and |
|
280 // thus should be very light. This is particularly egregious for degenerate |
|
281 // line paths. We detect paths that are very close to a line (zero area) and |
|
282 // draw nothing. |
|
283 DegenerateTestData degenerateData; |
|
284 SkPath::Direction dir; |
|
285 // get_direction can fail for some degenerate paths. |
|
286 if (!get_direction(path, m, &dir)) { |
|
287 return false; |
|
288 } |
|
289 |
|
290 for (;;) { |
|
291 GrPoint pts[4]; |
|
292 SkPath::Verb verb = iter.next(pts); |
|
293 switch (verb) { |
|
294 case SkPath::kMove_Verb: |
|
295 m.mapPoints(pts, 1); |
|
296 update_degenerate_test(°enerateData, pts[0]); |
|
297 devBounds->set(pts->fX, pts->fY, pts->fX, pts->fY); |
|
298 break; |
|
299 case SkPath::kLine_Verb: { |
|
300 m.mapPoints(&pts[1], 1); |
|
301 update_degenerate_test(°enerateData, pts[1]); |
|
302 add_line_to_segment(pts[1], segments, devBounds); |
|
303 break; |
|
304 } |
|
305 case SkPath::kQuad_Verb: |
|
306 m.mapPoints(pts, 3); |
|
307 update_degenerate_test(°enerateData, pts[1]); |
|
308 update_degenerate_test(°enerateData, pts[2]); |
|
309 add_quad_segment(pts, segments, devBounds); |
|
310 break; |
|
311 case SkPath::kCubic_Verb: { |
|
312 m.mapPoints(pts, 4); |
|
313 update_degenerate_test(°enerateData, pts[1]); |
|
314 update_degenerate_test(°enerateData, pts[2]); |
|
315 update_degenerate_test(°enerateData, pts[3]); |
|
316 add_cubic_segments(pts, dir, segments, devBounds); |
|
317 break; |
|
318 }; |
|
319 case SkPath::kDone_Verb: |
|
320 if (degenerateData.isDegenerate()) { |
|
321 return false; |
|
322 } else { |
|
323 compute_vectors(segments, fanPt, dir, vCount, iCount); |
|
324 return true; |
|
325 } |
|
326 default: |
|
327 break; |
|
328 } |
|
329 } |
|
330 } |
|
331 |
|
332 struct QuadVertex { |
|
333 GrPoint fPos; |
|
334 GrPoint fUV; |
|
335 SkScalar fD0; |
|
336 SkScalar fD1; |
|
337 }; |
|
338 |
|
339 struct Draw { |
|
340 Draw() : fVertexCnt(0), fIndexCnt(0) {} |
|
341 int fVertexCnt; |
|
342 int fIndexCnt; |
|
343 }; |
|
344 |
|
345 typedef SkTArray<Draw, true> DrawArray; |
|
346 |
|
347 static void create_vertices(const SegmentArray& segments, |
|
348 const SkPoint& fanPt, |
|
349 DrawArray* draws, |
|
350 QuadVertex* verts, |
|
351 uint16_t* idxs) { |
|
352 Draw* draw = &draws->push_back(); |
|
353 // alias just to make vert/index assignments easier to read. |
|
354 int* v = &draw->fVertexCnt; |
|
355 int* i = &draw->fIndexCnt; |
|
356 |
|
357 int count = segments.count(); |
|
358 for (int a = 0; a < count; ++a) { |
|
359 const Segment& sega = segments[a]; |
|
360 int b = (a + 1) % count; |
|
361 const Segment& segb = segments[b]; |
|
362 |
|
363 // Check whether adding the verts for this segment to the current draw would cause index |
|
364 // values to overflow. |
|
365 int vCount = 4; |
|
366 if (Segment::kLine == segb.fType) { |
|
367 vCount += 5; |
|
368 } else { |
|
369 vCount += 6; |
|
370 } |
|
371 if (draw->fVertexCnt + vCount > (1 << 16)) { |
|
372 verts += *v; |
|
373 idxs += *i; |
|
374 draw = &draws->push_back(); |
|
375 v = &draw->fVertexCnt; |
|
376 i = &draw->fIndexCnt; |
|
377 } |
|
378 |
|
379 // FIXME: These tris are inset in the 1 unit arc around the corner |
|
380 verts[*v + 0].fPos = sega.endPt(); |
|
381 verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm(); |
|
382 verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid; |
|
383 verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0]; |
|
384 verts[*v + 0].fUV.set(0,0); |
|
385 verts[*v + 1].fUV.set(0,-SK_Scalar1); |
|
386 verts[*v + 2].fUV.set(0,-SK_Scalar1); |
|
387 verts[*v + 3].fUV.set(0,-SK_Scalar1); |
|
388 verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; |
|
389 verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; |
|
390 verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; |
|
391 verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; |
|
392 |
|
393 idxs[*i + 0] = *v + 0; |
|
394 idxs[*i + 1] = *v + 2; |
|
395 idxs[*i + 2] = *v + 1; |
|
396 idxs[*i + 3] = *v + 0; |
|
397 idxs[*i + 4] = *v + 3; |
|
398 idxs[*i + 5] = *v + 2; |
|
399 |
|
400 *v += 4; |
|
401 *i += 6; |
|
402 |
|
403 if (Segment::kLine == segb.fType) { |
|
404 verts[*v + 0].fPos = fanPt; |
|
405 verts[*v + 1].fPos = sega.endPt(); |
|
406 verts[*v + 2].fPos = segb.fPts[0]; |
|
407 |
|
408 verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0]; |
|
409 verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0]; |
|
410 |
|
411 // we draw the line edge as a degenerate quad (u is 0, v is the |
|
412 // signed distance to the edge) |
|
413 SkScalar dist = fanPt.distanceToLineBetween(verts[*v + 1].fPos, |
|
414 verts[*v + 2].fPos); |
|
415 verts[*v + 0].fUV.set(0, dist); |
|
416 verts[*v + 1].fUV.set(0, 0); |
|
417 verts[*v + 2].fUV.set(0, 0); |
|
418 verts[*v + 3].fUV.set(0, -SK_Scalar1); |
|
419 verts[*v + 4].fUV.set(0, -SK_Scalar1); |
|
420 |
|
421 verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; |
|
422 verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; |
|
423 verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; |
|
424 verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; |
|
425 verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1; |
|
426 |
|
427 idxs[*i + 0] = *v + 0; |
|
428 idxs[*i + 1] = *v + 2; |
|
429 idxs[*i + 2] = *v + 1; |
|
430 |
|
431 idxs[*i + 3] = *v + 3; |
|
432 idxs[*i + 4] = *v + 1; |
|
433 idxs[*i + 5] = *v + 2; |
|
434 |
|
435 idxs[*i + 6] = *v + 4; |
|
436 idxs[*i + 7] = *v + 3; |
|
437 idxs[*i + 8] = *v + 2; |
|
438 |
|
439 *v += 5; |
|
440 *i += 9; |
|
441 } else { |
|
442 GrPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]}; |
|
443 |
|
444 GrVec midVec = segb.fNorms[0] + segb.fNorms[1]; |
|
445 midVec.normalize(); |
|
446 |
|
447 verts[*v + 0].fPos = fanPt; |
|
448 verts[*v + 1].fPos = qpts[0]; |
|
449 verts[*v + 2].fPos = qpts[2]; |
|
450 verts[*v + 3].fPos = qpts[0] + segb.fNorms[0]; |
|
451 verts[*v + 4].fPos = qpts[2] + segb.fNorms[1]; |
|
452 verts[*v + 5].fPos = qpts[1] + midVec; |
|
453 |
|
454 SkScalar c = segb.fNorms[0].dot(qpts[0]); |
|
455 verts[*v + 0].fD0 = -segb.fNorms[0].dot(fanPt) + c; |
|
456 verts[*v + 1].fD0 = 0.f; |
|
457 verts[*v + 2].fD0 = -segb.fNorms[0].dot(qpts[2]) + c; |
|
458 verts[*v + 3].fD0 = -SK_ScalarMax/100; |
|
459 verts[*v + 4].fD0 = -SK_ScalarMax/100; |
|
460 verts[*v + 5].fD0 = -SK_ScalarMax/100; |
|
461 |
|
462 c = segb.fNorms[1].dot(qpts[2]); |
|
463 verts[*v + 0].fD1 = -segb.fNorms[1].dot(fanPt) + c; |
|
464 verts[*v + 1].fD1 = -segb.fNorms[1].dot(qpts[0]) + c; |
|
465 verts[*v + 2].fD1 = 0.f; |
|
466 verts[*v + 3].fD1 = -SK_ScalarMax/100; |
|
467 verts[*v + 4].fD1 = -SK_ScalarMax/100; |
|
468 verts[*v + 5].fD1 = -SK_ScalarMax/100; |
|
469 |
|
470 GrPathUtils::QuadUVMatrix toUV(qpts); |
|
471 toUV.apply<6, sizeof(QuadVertex), sizeof(GrPoint)>(verts + *v); |
|
472 |
|
473 idxs[*i + 0] = *v + 3; |
|
474 idxs[*i + 1] = *v + 1; |
|
475 idxs[*i + 2] = *v + 2; |
|
476 idxs[*i + 3] = *v + 4; |
|
477 idxs[*i + 4] = *v + 3; |
|
478 idxs[*i + 5] = *v + 2; |
|
479 |
|
480 idxs[*i + 6] = *v + 5; |
|
481 idxs[*i + 7] = *v + 3; |
|
482 idxs[*i + 8] = *v + 4; |
|
483 |
|
484 idxs[*i + 9] = *v + 0; |
|
485 idxs[*i + 10] = *v + 2; |
|
486 idxs[*i + 11] = *v + 1; |
|
487 |
|
488 *v += 6; |
|
489 *i += 12; |
|
490 } |
|
491 } |
|
492 } |
|
493 |
|
494 /////////////////////////////////////////////////////////////////////////////// |
|
495 |
|
496 /* |
|
497 * Quadratic specified by 0=u^2-v canonical coords. u and v are the first |
|
498 * two components of the vertex attribute. Coverage is based on signed |
|
499 * distance with negative being inside, positive outside. The edge is specified in |
|
500 * window space (y-down). If either the third or fourth component of the interpolated |
|
501 * vertex coord is > 0 then the pixel is considered outside the edge. This is used to |
|
502 * attempt to trim to a portion of the infinite quad. |
|
503 * Requires shader derivative instruction support. |
|
504 */ |
|
505 |
|
506 class QuadEdgeEffect : public GrVertexEffect { |
|
507 public: |
|
508 |
|
509 static GrEffectRef* Create() { |
|
510 GR_CREATE_STATIC_EFFECT(gQuadEdgeEffect, QuadEdgeEffect, ()); |
|
511 gQuadEdgeEffect->ref(); |
|
512 return gQuadEdgeEffect; |
|
513 } |
|
514 |
|
515 virtual ~QuadEdgeEffect() {} |
|
516 |
|
517 static const char* Name() { return "QuadEdge"; } |
|
518 |
|
519 virtual void getConstantColorComponents(GrColor* color, |
|
520 uint32_t* validFlags) const SK_OVERRIDE { |
|
521 *validFlags = 0; |
|
522 } |
|
523 |
|
524 virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { |
|
525 return GrTBackendEffectFactory<QuadEdgeEffect>::getInstance(); |
|
526 } |
|
527 |
|
528 class GLEffect : public GrGLVertexEffect { |
|
529 public: |
|
530 GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) |
|
531 : INHERITED (factory) {} |
|
532 |
|
533 virtual void emitCode(GrGLFullShaderBuilder* builder, |
|
534 const GrDrawEffect& drawEffect, |
|
535 EffectKey key, |
|
536 const char* outputColor, |
|
537 const char* inputColor, |
|
538 const TransformedCoordsArray&, |
|
539 const TextureSamplerArray& samplers) SK_OVERRIDE { |
|
540 const char *vsName, *fsName; |
|
541 const SkString* attrName = |
|
542 builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); |
|
543 builder->fsCodeAppendf("\t\tfloat edgeAlpha;\n"); |
|
544 |
|
545 SkAssertResult(builder->enableFeature( |
|
546 GrGLShaderBuilder::kStandardDerivatives_GLSLFeature)); |
|
547 builder->addVarying(kVec4f_GrSLType, "QuadEdge", &vsName, &fsName); |
|
548 |
|
549 // keep the derivative instructions outside the conditional |
|
550 builder->fsCodeAppendf("\t\tvec2 duvdx = dFdx(%s.xy);\n", fsName); |
|
551 builder->fsCodeAppendf("\t\tvec2 duvdy = dFdy(%s.xy);\n", fsName); |
|
552 builder->fsCodeAppendf("\t\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName); |
|
553 // today we know z and w are in device space. We could use derivatives |
|
554 builder->fsCodeAppendf("\t\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, |
|
555 fsName); |
|
556 builder->fsCodeAppendf ("\t\t} else {\n"); |
|
557 builder->fsCodeAppendf("\t\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" |
|
558 "\t\t\t 2.0*%s.x*duvdy.x - duvdy.y);\n", |
|
559 fsName, fsName); |
|
560 builder->fsCodeAppendf("\t\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, |
|
561 fsName); |
|
562 builder->fsCodeAppendf("\t\t\tedgeAlpha = " |
|
563 "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n\t\t}\n"); |
|
564 |
|
565 |
|
566 builder->fsCodeAppendf("\t%s = %s;\n", outputColor, |
|
567 (GrGLSLExpr4(inputColor) * GrGLSLExpr1("edgeAlpha")).c_str()); |
|
568 |
|
569 builder->vsCodeAppendf("\t%s = %s;\n", vsName, attrName->c_str()); |
|
570 } |
|
571 |
|
572 static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { |
|
573 return 0x0; |
|
574 } |
|
575 |
|
576 virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE {} |
|
577 |
|
578 private: |
|
579 typedef GrGLVertexEffect INHERITED; |
|
580 }; |
|
581 |
|
582 private: |
|
583 QuadEdgeEffect() { |
|
584 this->addVertexAttrib(kVec4f_GrSLType); |
|
585 } |
|
586 |
|
587 virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE { |
|
588 return true; |
|
589 } |
|
590 |
|
591 GR_DECLARE_EFFECT_TEST; |
|
592 |
|
593 typedef GrVertexEffect INHERITED; |
|
594 }; |
|
595 |
|
596 GR_DEFINE_EFFECT_TEST(QuadEdgeEffect); |
|
597 |
|
598 GrEffectRef* QuadEdgeEffect::TestCreate(SkRandom* random, |
|
599 GrContext*, |
|
600 const GrDrawTargetCaps& caps, |
|
601 GrTexture*[]) { |
|
602 // Doesn't work without derivative instructions. |
|
603 return caps.shaderDerivativeSupport() ? QuadEdgeEffect::Create() : NULL; |
|
604 } |
|
605 |
|
606 /////////////////////////////////////////////////////////////////////////////// |
|
607 |
|
608 bool GrAAConvexPathRenderer::canDrawPath(const SkPath& path, |
|
609 const SkStrokeRec& stroke, |
|
610 const GrDrawTarget* target, |
|
611 bool antiAlias) const { |
|
612 return (target->caps()->shaderDerivativeSupport() && antiAlias && |
|
613 stroke.isFillStyle() && !path.isInverseFillType() && path.isConvex()); |
|
614 } |
|
615 |
|
616 namespace { |
|
617 |
|
618 // position + edge |
|
619 extern const GrVertexAttrib gPathAttribs[] = { |
|
620 {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
|
621 {kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding} |
|
622 }; |
|
623 |
|
624 }; |
|
625 |
|
626 bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath, |
|
627 const SkStrokeRec&, |
|
628 GrDrawTarget* target, |
|
629 bool antiAlias) { |
|
630 |
|
631 const SkPath* path = &origPath; |
|
632 if (path->isEmpty()) { |
|
633 return true; |
|
634 } |
|
635 |
|
636 SkMatrix viewMatrix = target->getDrawState().getViewMatrix(); |
|
637 GrDrawTarget::AutoStateRestore asr; |
|
638 if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) { |
|
639 return false; |
|
640 } |
|
641 GrDrawState* drawState = target->drawState(); |
|
642 |
|
643 // We use the fact that SkPath::transform path does subdivision based on |
|
644 // perspective. Otherwise, we apply the view matrix when copying to the |
|
645 // segment representation. |
|
646 SkPath tmpPath; |
|
647 if (viewMatrix.hasPerspective()) { |
|
648 origPath.transform(viewMatrix, &tmpPath); |
|
649 path = &tmpPath; |
|
650 viewMatrix = SkMatrix::I(); |
|
651 } |
|
652 |
|
653 QuadVertex *verts; |
|
654 uint16_t* idxs; |
|
655 |
|
656 int vCount; |
|
657 int iCount; |
|
658 enum { |
|
659 kPreallocSegmentCnt = 512 / sizeof(Segment), |
|
660 kPreallocDrawCnt = 4, |
|
661 }; |
|
662 SkSTArray<kPreallocSegmentCnt, Segment, true> segments; |
|
663 SkPoint fanPt; |
|
664 |
|
665 // We can't simply use the path bounds because we may degenerate cubics to quads which produces |
|
666 // new control points outside the original convex hull. |
|
667 SkRect devBounds; |
|
668 if (!get_segments(*path, viewMatrix, &segments, &fanPt, &vCount, &iCount, &devBounds)) { |
|
669 return false; |
|
670 } |
|
671 |
|
672 // Our computed verts should all be within one pixel of the segment control points. |
|
673 devBounds.outset(SK_Scalar1, SK_Scalar1); |
|
674 |
|
675 drawState->setVertexAttribs<gPathAttribs>(SK_ARRAY_COUNT(gPathAttribs)); |
|
676 |
|
677 static const int kEdgeAttrIndex = 1; |
|
678 GrEffectRef* quadEffect = QuadEdgeEffect::Create(); |
|
679 drawState->addCoverageEffect(quadEffect, kEdgeAttrIndex)->unref(); |
|
680 |
|
681 GrDrawTarget::AutoReleaseGeometry arg(target, vCount, iCount); |
|
682 if (!arg.succeeded()) { |
|
683 return false; |
|
684 } |
|
685 SkASSERT(sizeof(QuadVertex) == drawState->getVertexSize()); |
|
686 verts = reinterpret_cast<QuadVertex*>(arg.vertices()); |
|
687 idxs = reinterpret_cast<uint16_t*>(arg.indices()); |
|
688 |
|
689 SkSTArray<kPreallocDrawCnt, Draw, true> draws; |
|
690 create_vertices(segments, fanPt, &draws, verts, idxs); |
|
691 |
|
692 // Check devBounds |
|
693 #ifdef SK_DEBUG |
|
694 SkRect tolDevBounds = devBounds; |
|
695 tolDevBounds.outset(SK_Scalar1 / 10000, SK_Scalar1 / 10000); |
|
696 SkRect actualBounds; |
|
697 actualBounds.set(verts[0].fPos, verts[1].fPos); |
|
698 for (int i = 2; i < vCount; ++i) { |
|
699 actualBounds.growToInclude(verts[i].fPos.fX, verts[i].fPos.fY); |
|
700 } |
|
701 SkASSERT(tolDevBounds.contains(actualBounds)); |
|
702 #endif |
|
703 |
|
704 int vOffset = 0; |
|
705 for (int i = 0; i < draws.count(); ++i) { |
|
706 const Draw& draw = draws[i]; |
|
707 target->drawIndexed(kTriangles_GrPrimitiveType, |
|
708 vOffset, // start vertex |
|
709 0, // start index |
|
710 draw.fVertexCnt, |
|
711 draw.fIndexCnt, |
|
712 &devBounds); |
|
713 vOffset += draw.fVertexCnt; |
|
714 } |
|
715 |
|
716 return true; |
|
717 } |