|
1 /* |
|
2 * Copyright 2012 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 |
|
8 #include "SkIntersections.h" |
|
9 #include "SkPathOpsCubic.h" |
|
10 #include "SkPathOpsLine.h" |
|
11 #include "SkPathOpsPoint.h" |
|
12 #include "SkPathOpsQuad.h" |
|
13 #include "SkPathOpsRect.h" |
|
14 #include "SkReduceOrder.h" |
|
15 #include "SkTSort.h" |
|
16 |
|
17 #if ONE_OFF_DEBUG |
|
18 static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}}; |
|
19 static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}}; |
|
20 #endif |
|
21 |
|
22 #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1 |
|
23 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0 |
|
24 #define SWAP_TOP_DEBUG 0 |
|
25 |
|
26 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision |
|
27 |
|
28 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) { |
|
29 SkDCubic part = cubic.subDivide(tStart, tEnd); |
|
30 SkDQuad quad = part.toQuad(); |
|
31 // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an |
|
32 // extremely shallow quadratic? |
|
33 int order = reducer->reduce(quad); |
|
34 #if DEBUG_QUAD_PART |
|
35 SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" |
|
36 " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY, |
|
37 cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, |
|
38 cubic[3].fX, cubic[3].fY, tStart, tEnd); |
|
39 SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n" |
|
40 " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", |
|
41 part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY, |
|
42 part[3].fX, part[3].fY, quad[0].fX, quad[0].fY, |
|
43 quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); |
|
44 #if DEBUG_QUAD_PART_SHOW_SIMPLE |
|
45 SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY); |
|
46 if (order > 1) { |
|
47 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY); |
|
48 } |
|
49 if (order > 2) { |
|
50 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY); |
|
51 } |
|
52 SkDebugf(")\n"); |
|
53 SkASSERT(order < 4 && order > 0); |
|
54 #endif |
|
55 #endif |
|
56 return order; |
|
57 } |
|
58 |
|
59 static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2, |
|
60 int order2, SkIntersections& i) { |
|
61 if (order1 == 3 && order2 == 3) { |
|
62 i.intersect(simple1, simple2); |
|
63 } else if (order1 <= 2 && order2 <= 2) { |
|
64 i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2); |
|
65 } else if (order1 == 3 && order2 <= 2) { |
|
66 i.intersect(simple1, (const SkDLine&) simple2); |
|
67 } else { |
|
68 SkASSERT(order1 <= 2 && order2 == 3); |
|
69 i.intersect(simple2, (const SkDLine&) simple1); |
|
70 i.swapPts(); |
|
71 } |
|
72 } |
|
73 |
|
74 // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently |
|
75 // chase intersections near quadratic ends, requiring odd hacks to find them. |
|
76 static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2, |
|
77 double t2s, double t2e, double precisionScale, SkIntersections& i) { |
|
78 i.upDepth(); |
|
79 SkDCubic c1 = cubic1.subDivide(t1s, t1e); |
|
80 SkDCubic c2 = cubic2.subDivide(t2s, t2e); |
|
81 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1; |
|
82 // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection) |
|
83 c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1); |
|
84 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2; |
|
85 c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2); |
|
86 double t1Start = t1s; |
|
87 int ts1Count = ts1.count(); |
|
88 for (int i1 = 0; i1 <= ts1Count; ++i1) { |
|
89 const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; |
|
90 const double t1 = t1s + (t1e - t1s) * tEnd1; |
|
91 SkReduceOrder s1; |
|
92 int o1 = quadPart(cubic1, t1Start, t1, &s1); |
|
93 double t2Start = t2s; |
|
94 int ts2Count = ts2.count(); |
|
95 for (int i2 = 0; i2 <= ts2Count; ++i2) { |
|
96 const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; |
|
97 const double t2 = t2s + (t2e - t2s) * tEnd2; |
|
98 if (&cubic1 == &cubic2 && t1Start >= t2Start) { |
|
99 t2Start = t2; |
|
100 continue; |
|
101 } |
|
102 SkReduceOrder s2; |
|
103 int o2 = quadPart(cubic2, t2Start, t2, &s2); |
|
104 #if ONE_OFF_DEBUG |
|
105 char tab[] = " "; |
|
106 if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 |
|
107 && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { |
|
108 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, |
|
109 __FUNCTION__, t1Start, t1, t2Start, t2); |
|
110 SkIntersections xlocals; |
|
111 xlocals.allowNear(false); |
|
112 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals); |
|
113 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); |
|
114 } |
|
115 #endif |
|
116 SkIntersections locals; |
|
117 locals.allowNear(false); |
|
118 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); |
|
119 int tCount = locals.used(); |
|
120 for (int tIdx = 0; tIdx < tCount; ++tIdx) { |
|
121 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; |
|
122 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; |
|
123 // if the computed t is not sufficiently precise, iterate |
|
124 SkDPoint p1 = cubic1.ptAtT(to1); |
|
125 SkDPoint p2 = cubic2.ptAtT(to2); |
|
126 if (p1.approximatelyEqual(p2)) { |
|
127 // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller |
|
128 // SkASSERT(!locals.isCoincident(tIdx)); |
|
129 if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { |
|
130 if (i.swapped()) { // FIXME: insert should respect swap |
|
131 i.insert(to2, to1, p1); |
|
132 } else { |
|
133 i.insert(to1, to2, p1); |
|
134 } |
|
135 } |
|
136 } else { |
|
137 double offset = precisionScale / 16; // FIME: const is arbitrary: test, refine |
|
138 double c1Bottom = tIdx == 0 ? 0 : |
|
139 (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2; |
|
140 double c1Min = SkTMax(c1Bottom, to1 - offset); |
|
141 double c1Top = tIdx == tCount - 1 ? 1 : |
|
142 (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2; |
|
143 double c1Max = SkTMin(c1Top, to1 + offset); |
|
144 double c2Min = SkTMax(0., to2 - offset); |
|
145 double c2Max = SkTMin(1., to2 + offset); |
|
146 #if ONE_OFF_DEBUG |
|
147 SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, |
|
148 __FUNCTION__, |
|
149 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max |
|
150 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, |
|
151 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset |
|
152 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, |
|
153 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max |
|
154 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, |
|
155 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset |
|
156 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); |
|
157 SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" |
|
158 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", |
|
159 i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1., |
|
160 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); |
|
161 SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" |
|
162 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, |
|
163 c1Max, c2Min, c2Max); |
|
164 #endif |
|
165 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); |
|
166 #if ONE_OFF_DEBUG |
|
167 SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, |
|
168 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); |
|
169 #endif |
|
170 if (tCount > 1) { |
|
171 c1Min = SkTMax(0., to1 - offset); |
|
172 c1Max = SkTMin(1., to1 + offset); |
|
173 double c2Bottom = tIdx == 0 ? to2 : |
|
174 (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2; |
|
175 double c2Top = tIdx == tCount - 1 ? to2 : |
|
176 (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2; |
|
177 if (c2Bottom > c2Top) { |
|
178 SkTSwap(c2Bottom, c2Top); |
|
179 } |
|
180 if (c2Bottom == to2) { |
|
181 c2Bottom = 0; |
|
182 } |
|
183 if (c2Top == to2) { |
|
184 c2Top = 1; |
|
185 } |
|
186 c2Min = SkTMax(c2Bottom, to2 - offset); |
|
187 c2Max = SkTMin(c2Top, to2 + offset); |
|
188 #if ONE_OFF_DEBUG |
|
189 SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, |
|
190 __FUNCTION__, |
|
191 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max |
|
192 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, |
|
193 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset |
|
194 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, |
|
195 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max |
|
196 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, |
|
197 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset |
|
198 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); |
|
199 SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" |
|
200 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", |
|
201 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, |
|
202 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); |
|
203 SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" |
|
204 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, |
|
205 c1Max, c2Min, c2Max); |
|
206 #endif |
|
207 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); |
|
208 #if ONE_OFF_DEBUG |
|
209 SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, |
|
210 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); |
|
211 #endif |
|
212 c1Min = SkTMax(c1Bottom, to1 - offset); |
|
213 c1Max = SkTMin(c1Top, to1 + offset); |
|
214 #if ONE_OFF_DEBUG |
|
215 SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, |
|
216 __FUNCTION__, |
|
217 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max |
|
218 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, |
|
219 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset |
|
220 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, |
|
221 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max |
|
222 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, |
|
223 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset |
|
224 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); |
|
225 SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" |
|
226 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", |
|
227 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, |
|
228 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); |
|
229 SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" |
|
230 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, |
|
231 c1Max, c2Min, c2Max); |
|
232 #endif |
|
233 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); |
|
234 #if ONE_OFF_DEBUG |
|
235 SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, |
|
236 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); |
|
237 #endif |
|
238 } |
|
239 // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); |
|
240 // FIXME: if no intersection is found, either quadratics intersected where |
|
241 // cubics did not, or the intersection was missed. In the former case, expect |
|
242 // the quadratics to be nearly parallel at the point of intersection, and check |
|
243 // for that. |
|
244 } |
|
245 } |
|
246 t2Start = t2; |
|
247 } |
|
248 t1Start = t1; |
|
249 } |
|
250 i.downDepth(); |
|
251 } |
|
252 |
|
253 // if two ends intersect, check middle for coincidence |
|
254 bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) { |
|
255 if (fUsed < 2) { |
|
256 return false; |
|
257 } |
|
258 int last = fUsed - 1; |
|
259 double tRange1 = fT[0][last] - fT[0][0]; |
|
260 double tRange2 = fT[1][last] - fT[1][0]; |
|
261 for (int index = 1; index < 5; ++index) { |
|
262 double testT1 = fT[0][0] + tRange1 * index / 5; |
|
263 double testT2 = fT[1][0] + tRange2 * index / 5; |
|
264 SkDPoint testPt1 = c1.ptAtT(testT1); |
|
265 SkDPoint testPt2 = c2.ptAtT(testT2); |
|
266 if (!testPt1.approximatelyEqual(testPt2)) { |
|
267 return false; |
|
268 } |
|
269 } |
|
270 if (fUsed > 2) { |
|
271 fPt[1] = fPt[last]; |
|
272 fT[0][1] = fT[0][last]; |
|
273 fT[1][1] = fT[1][last]; |
|
274 fUsed = 2; |
|
275 } |
|
276 fIsCoincident[0] = fIsCoincident[1] = 0x03; |
|
277 return true; |
|
278 } |
|
279 |
|
280 #define LINE_FRACTION 0.1 |
|
281 |
|
282 // intersect the end of the cubic with the other. Try lines from the end to control and opposite |
|
283 // end to determine range of t on opposite cubic. |
|
284 bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) { |
|
285 int t1Index = start ? 0 : 3; |
|
286 double testT = (double) !start; |
|
287 bool swap = swapped(); |
|
288 // quad/quad at this point checks to see if exact matches have already been found |
|
289 // cubic/cubic can't reject so easily since cubics can intersect same point more than once |
|
290 SkDLine tmpLine; |
|
291 tmpLine[0] = tmpLine[1] = cubic2[t1Index]; |
|
292 tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY; |
|
293 tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX; |
|
294 SkIntersections impTs; |
|
295 impTs.allowNear(false); |
|
296 impTs.intersectRay(cubic1, tmpLine); |
|
297 for (int index = 0; index < impTs.used(); ++index) { |
|
298 SkDPoint realPt = impTs.pt(index); |
|
299 if (!tmpLine[0].approximatelyEqual(realPt)) { |
|
300 continue; |
|
301 } |
|
302 if (swap) { |
|
303 insert(testT, impTs[0][index], tmpLine[0]); |
|
304 } else { |
|
305 insert(impTs[0][index], testT, tmpLine[0]); |
|
306 } |
|
307 return true; |
|
308 } |
|
309 return false; |
|
310 } |
|
311 |
|
312 void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2, |
|
313 const SkDRect& bounds2) { |
|
314 SkDLine line; |
|
315 int t1Index = start ? 0 : 3; |
|
316 double testT = (double) !start; |
|
317 // don't bother if the two cubics are connnected |
|
318 static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this |
|
319 static const int kMaxLineCubicIntersections = 3; |
|
320 SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals; |
|
321 line[0] = cubic1[t1Index]; |
|
322 // this variant looks for intersections with the end point and lines parallel to other points |
|
323 for (int index = 0; index < kPointsInCubic; ++index) { |
|
324 if (index == t1Index) { |
|
325 continue; |
|
326 } |
|
327 SkDVector dxy1 = cubic1[index] - line[0]; |
|
328 dxy1 /= SkDCubic::gPrecisionUnit; |
|
329 line[1] = line[0] + dxy1; |
|
330 SkDRect lineBounds; |
|
331 lineBounds.setBounds(line); |
|
332 if (!bounds2.intersects(&lineBounds)) { |
|
333 continue; |
|
334 } |
|
335 SkIntersections local; |
|
336 if (!local.intersect(cubic2, line)) { |
|
337 continue; |
|
338 } |
|
339 for (int idx2 = 0; idx2 < local.used(); ++idx2) { |
|
340 double foundT = local[0][idx2]; |
|
341 if (approximately_less_than_zero(foundT) |
|
342 || approximately_greater_than_one(foundT)) { |
|
343 continue; |
|
344 } |
|
345 if (local.pt(idx2).approximatelyEqual(line[0])) { |
|
346 if (swapped()) { // FIXME: insert should respect swap |
|
347 insert(foundT, testT, line[0]); |
|
348 } else { |
|
349 insert(testT, foundT, line[0]); |
|
350 } |
|
351 } else { |
|
352 tVals.push_back(foundT); |
|
353 } |
|
354 } |
|
355 } |
|
356 if (tVals.count() == 0) { |
|
357 return; |
|
358 } |
|
359 SkTQSort<double>(tVals.begin(), tVals.end() - 1); |
|
360 double tMin1 = start ? 0 : 1 - LINE_FRACTION; |
|
361 double tMax1 = start ? LINE_FRACTION : 1; |
|
362 int tIdx = 0; |
|
363 do { |
|
364 int tLast = tIdx; |
|
365 while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) { |
|
366 ++tLast; |
|
367 } |
|
368 double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); |
|
369 double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); |
|
370 int lastUsed = used(); |
|
371 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); |
|
372 if (lastUsed == used()) { |
|
373 tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); |
|
374 tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0); |
|
375 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); |
|
376 } |
|
377 tIdx = tLast + 1; |
|
378 } while (tIdx < tVals.count()); |
|
379 return; |
|
380 } |
|
381 |
|
382 const double CLOSE_ENOUGH = 0.001; |
|
383 |
|
384 static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { |
|
385 if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { |
|
386 return false; |
|
387 } |
|
388 pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2); |
|
389 return true; |
|
390 } |
|
391 |
|
392 static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { |
|
393 int last = i.used() - 1; |
|
394 if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) { |
|
395 return false; |
|
396 } |
|
397 pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2); |
|
398 return true; |
|
399 } |
|
400 |
|
401 static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) { |
|
402 // the idea here is to see at minimum do a quick reject by rotating all points |
|
403 // to either side of the line formed by connecting the endpoints |
|
404 // if the opposite curves points are on the line or on the other side, the |
|
405 // curves at most intersect at the endpoints |
|
406 for (int oddMan = 0; oddMan < 4; ++oddMan) { |
|
407 const SkDPoint* endPt[3]; |
|
408 for (int opp = 1; opp < 4; ++opp) { |
|
409 int end = oddMan ^ opp; // choose a value not equal to oddMan |
|
410 endPt[opp - 1] = &c1[end]; |
|
411 } |
|
412 for (int triTest = 0; triTest < 3; ++triTest) { |
|
413 double origX = endPt[triTest]->fX; |
|
414 double origY = endPt[triTest]->fY; |
|
415 int oppTest = triTest + 1; |
|
416 if (3 == oppTest) { |
|
417 oppTest = 0; |
|
418 } |
|
419 double adj = endPt[oppTest]->fX - origX; |
|
420 double opp = endPt[oppTest]->fY - origY; |
|
421 double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp; |
|
422 if (approximately_zero(sign)) { |
|
423 goto tryNextHalfPlane; |
|
424 } |
|
425 for (int n = 0; n < 4; ++n) { |
|
426 double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp; |
|
427 if (test * sign > 0 && !precisely_zero(test)) { |
|
428 goto tryNextHalfPlane; |
|
429 } |
|
430 } |
|
431 } |
|
432 return true; |
|
433 tryNextHalfPlane: |
|
434 ; |
|
435 } |
|
436 return false; |
|
437 } |
|
438 |
|
439 int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { |
|
440 if (fMax == 0) { |
|
441 fMax = 9; |
|
442 } |
|
443 bool selfIntersect = &c1 == &c2; |
|
444 if (selfIntersect) { |
|
445 if (c1[0].approximatelyEqual(c1[3])) { |
|
446 insert(0, 1, c1[0]); |
|
447 return fUsed; |
|
448 } |
|
449 } else { |
|
450 // OPTIMIZATION: set exact end bits here to avoid cubic exact end later |
|
451 for (int i1 = 0; i1 < 4; i1 += 3) { |
|
452 for (int i2 = 0; i2 < 4; i2 += 3) { |
|
453 if (c1[i1].approximatelyEqual(c2[i2])) { |
|
454 insert(i1 >> 1, i2 >> 1, c1[i1]); |
|
455 } |
|
456 } |
|
457 } |
|
458 } |
|
459 SkASSERT(fUsed < 4); |
|
460 if (!selfIntersect) { |
|
461 if (only_end_pts_in_common(c1, c2)) { |
|
462 return fUsed; |
|
463 } |
|
464 if (only_end_pts_in_common(c2, c1)) { |
|
465 return fUsed; |
|
466 } |
|
467 } |
|
468 // quad/quad does linear test here -- cubic does not |
|
469 // cubics which are really lines should have been detected in reduce step earlier |
|
470 int exactEndBits = 0; |
|
471 if (selfIntersect) { |
|
472 if (fUsed) { |
|
473 return fUsed; |
|
474 } |
|
475 } else { |
|
476 exactEndBits |= cubicExactEnd(c1, false, c2) << 0; |
|
477 exactEndBits |= cubicExactEnd(c1, true, c2) << 1; |
|
478 swap(); |
|
479 exactEndBits |= cubicExactEnd(c2, false, c1) << 2; |
|
480 exactEndBits |= cubicExactEnd(c2, true, c1) << 3; |
|
481 swap(); |
|
482 } |
|
483 if (cubicCheckCoincidence(c1, c2)) { |
|
484 SkASSERT(!selfIntersect); |
|
485 return fUsed; |
|
486 } |
|
487 // FIXME: pass in cached bounds from caller |
|
488 SkDRect c2Bounds; |
|
489 c2Bounds.setBounds(c2); |
|
490 if (!(exactEndBits & 4)) { |
|
491 cubicNearEnd(c1, false, c2, c2Bounds); |
|
492 } |
|
493 if (!(exactEndBits & 8)) { |
|
494 cubicNearEnd(c1, true, c2, c2Bounds); |
|
495 } |
|
496 if (!selfIntersect) { |
|
497 SkDRect c1Bounds; |
|
498 c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? |
|
499 swap(); |
|
500 if (!(exactEndBits & 1)) { |
|
501 cubicNearEnd(c2, false, c1, c1Bounds); |
|
502 } |
|
503 if (!(exactEndBits & 2)) { |
|
504 cubicNearEnd(c2, true, c1, c1Bounds); |
|
505 } |
|
506 swap(); |
|
507 } |
|
508 if (cubicCheckCoincidence(c1, c2)) { |
|
509 SkASSERT(!selfIntersect); |
|
510 return fUsed; |
|
511 } |
|
512 SkIntersections i; |
|
513 i.fAllowNear = false; |
|
514 i.fMax = 9; |
|
515 ::intersect(c1, 0, 1, c2, 0, 1, 1, i); |
|
516 int compCount = i.used(); |
|
517 if (compCount) { |
|
518 int exactCount = used(); |
|
519 if (exactCount == 0) { |
|
520 set(i); |
|
521 } else { |
|
522 // at least one is exact or near, and at least one was computed. Eliminate duplicates |
|
523 for (int exIdx = 0; exIdx < exactCount; ++exIdx) { |
|
524 for (int cpIdx = 0; cpIdx < compCount; ) { |
|
525 if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) { |
|
526 i.removeOne(cpIdx); |
|
527 --compCount; |
|
528 continue; |
|
529 } |
|
530 double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2; |
|
531 SkDPoint pt = c1.ptAtT(tAvg); |
|
532 if (!pt.approximatelyEqual(fPt[exIdx])) { |
|
533 ++cpIdx; |
|
534 continue; |
|
535 } |
|
536 tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2; |
|
537 pt = c2.ptAtT(tAvg); |
|
538 if (!pt.approximatelyEqual(fPt[exIdx])) { |
|
539 ++cpIdx; |
|
540 continue; |
|
541 } |
|
542 i.removeOne(cpIdx); |
|
543 --compCount; |
|
544 } |
|
545 } |
|
546 // if mid t evaluates to nearly the same point, skip the t |
|
547 for (int cpIdx = 0; cpIdx < compCount - 1; ) { |
|
548 double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2; |
|
549 SkDPoint pt = c1.ptAtT(tAvg); |
|
550 if (!pt.approximatelyEqual(fPt[cpIdx])) { |
|
551 ++cpIdx; |
|
552 continue; |
|
553 } |
|
554 tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2; |
|
555 pt = c2.ptAtT(tAvg); |
|
556 if (!pt.approximatelyEqual(fPt[cpIdx])) { |
|
557 ++cpIdx; |
|
558 continue; |
|
559 } |
|
560 i.removeOne(cpIdx); |
|
561 --compCount; |
|
562 } |
|
563 // in addition to adding below missing function, think about how to say |
|
564 append(i); |
|
565 } |
|
566 } |
|
567 // If an end point and a second point very close to the end is returned, the second |
|
568 // point may have been detected because the approximate quads |
|
569 // intersected at the end and close to it. Verify that the second point is valid. |
|
570 if (fUsed <= 1) { |
|
571 return fUsed; |
|
572 } |
|
573 SkDPoint pt[2]; |
|
574 if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) |
|
575 && pt[0].approximatelyEqual(pt[1])) { |
|
576 removeOne(1); |
|
577 } |
|
578 if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1]) |
|
579 && pt[0].approximatelyEqual(pt[1])) { |
|
580 removeOne(used() - 2); |
|
581 } |
|
582 // vet the pairs of t values to see if the mid value is also on the curve. If so, mark |
|
583 // the span as coincident |
|
584 if (fUsed >= 2 && !coincidentUsed()) { |
|
585 int last = fUsed - 1; |
|
586 int match = 0; |
|
587 for (int index = 0; index < last; ++index) { |
|
588 double mid1 = (fT[0][index] + fT[0][index + 1]) / 2; |
|
589 double mid2 = (fT[1][index] + fT[1][index + 1]) / 2; |
|
590 pt[0] = c1.ptAtT(mid1); |
|
591 pt[1] = c2.ptAtT(mid2); |
|
592 if (pt[0].approximatelyEqual(pt[1])) { |
|
593 match |= 1 << index; |
|
594 } |
|
595 } |
|
596 if (match) { |
|
597 #if DEBUG_CONCIDENT |
|
598 if (((match + 1) & match) != 0) { |
|
599 SkDebugf("%s coincident hole\n", __FUNCTION__); |
|
600 } |
|
601 #endif |
|
602 // for now, assume that everything from start to finish is coincident |
|
603 if (fUsed > 2) { |
|
604 fPt[1] = fPt[last]; |
|
605 fT[0][1] = fT[0][last]; |
|
606 fT[1][1] = fT[1][last]; |
|
607 fIsCoincident[0] = 0x03; |
|
608 fIsCoincident[1] = 0x03; |
|
609 fUsed = 2; |
|
610 } |
|
611 } |
|
612 } |
|
613 return fUsed; |
|
614 } |
|
615 |
|
616 // Up promote the quad to a cubic. |
|
617 // OPTIMIZATION If this is a common use case, optimize by duplicating |
|
618 // the intersect 3 loop to avoid the promotion / demotion code |
|
619 int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { |
|
620 fMax = 6; |
|
621 SkDCubic up = quad.toCubic(); |
|
622 (void) intersect(cubic, up); |
|
623 return used(); |
|
624 } |
|
625 |
|
626 /* http://www.ag.jku.at/compass/compasssample.pdf |
|
627 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen |
|
628 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no |
|
629 SINTEF Applied Mathematics http://www.sintef.no ) |
|
630 describes a method to find the self intersection of a cubic by taking the gradient of the implicit |
|
631 form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/ |
|
632 |
|
633 int SkIntersections::intersect(const SkDCubic& c) { |
|
634 fMax = 1; |
|
635 // check to see if x or y end points are the extrema. Are other quick rejects possible? |
|
636 if (c.endsAreExtremaInXOrY()) { |
|
637 return false; |
|
638 } |
|
639 (void) intersect(c, c); |
|
640 if (used() > 0) { |
|
641 SkASSERT(used() == 1); |
|
642 if (fT[0][0] > fT[1][0]) { |
|
643 swapPts(); |
|
644 } |
|
645 } |
|
646 return used(); |
|
647 } |