gfx/skia/trunk/src/pathops/SkDCubicIntersection.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     1 /*
     2  * Copyright 2012 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     8 #include "SkIntersections.h"
     9 #include "SkPathOpsCubic.h"
    10 #include "SkPathOpsLine.h"
    11 #include "SkPathOpsPoint.h"
    12 #include "SkPathOpsQuad.h"
    13 #include "SkPathOpsRect.h"
    14 #include "SkReduceOrder.h"
    15 #include "SkTSort.h"
    17 #if ONE_OFF_DEBUG
    18 static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}};
    19 static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}};
    20 #endif
    22 #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1
    23 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0
    24 #define SWAP_TOP_DEBUG 0
    26 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision
    28 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) {
    29     SkDCubic part = cubic.subDivide(tStart, tEnd);
    30     SkDQuad quad = part.toQuad();
    31     // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
    32     // extremely shallow quadratic?
    33     int order = reducer->reduce(quad);
    34 #if DEBUG_QUAD_PART
    35     SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
    36             " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
    37             cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
    38             cubic[3].fX, cubic[3].fY, tStart, tEnd);
    39     SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n"
    40              "  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
    41             part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY,
    42             part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
    43             quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
    44 #if DEBUG_QUAD_PART_SHOW_SIMPLE
    45     SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY);
    46     if (order > 1) {
    47         SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
    48     }
    49     if (order > 2) {
    50         SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
    51     }
    52     SkDebugf(")\n");
    53     SkASSERT(order < 4 && order > 0);
    54 #endif
    55 #endif
    56     return order;
    57 }
    59 static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2,
    60         int order2, SkIntersections& i) {
    61     if (order1 == 3 && order2 == 3) {
    62         i.intersect(simple1, simple2);
    63     } else if (order1 <= 2 && order2 <= 2) {
    64         i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
    65     } else if (order1 == 3 && order2 <= 2) {
    66         i.intersect(simple1, (const SkDLine&) simple2);
    67     } else {
    68         SkASSERT(order1 <= 2 && order2 == 3);
    69         i.intersect(simple2, (const SkDLine&) simple1);
    70         i.swapPts();
    71     }
    72 }
    74 // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
    75 // chase intersections near quadratic ends, requiring odd hacks to find them.
    76 static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
    77         double t2s, double t2e, double precisionScale, SkIntersections& i) {
    78     i.upDepth();
    79     SkDCubic c1 = cubic1.subDivide(t1s, t1e);
    80     SkDCubic c2 = cubic2.subDivide(t2s, t2e);
    81     SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
    82     // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
    83     c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
    84     SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
    85     c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
    86     double t1Start = t1s;
    87     int ts1Count = ts1.count();
    88     for (int i1 = 0; i1 <= ts1Count; ++i1) {
    89         const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
    90         const double t1 = t1s + (t1e - t1s) * tEnd1;
    91         SkReduceOrder s1;
    92         int o1 = quadPart(cubic1, t1Start, t1, &s1);
    93         double t2Start = t2s;
    94         int ts2Count = ts2.count();
    95         for (int i2 = 0; i2 <= ts2Count; ++i2) {
    96             const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
    97             const double t2 = t2s + (t2e - t2s) * tEnd2;
    98             if (&cubic1 == &cubic2 && t1Start >= t2Start) {
    99                 t2Start = t2;
   100                 continue;
   101             }
   102             SkReduceOrder s2;
   103             int o2 = quadPart(cubic2, t2Start, t2, &s2);
   104         #if ONE_OFF_DEBUG
   105             char tab[] = "                  ";
   106             if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
   107                     && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
   108                 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
   109                         __FUNCTION__, t1Start, t1, t2Start, t2);
   110                 SkIntersections xlocals;
   111                 xlocals.allowNear(false);
   112                 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
   113                 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
   114             }
   115         #endif
   116             SkIntersections locals;
   117             locals.allowNear(false);
   118             intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
   119             int tCount = locals.used();
   120             for (int tIdx = 0; tIdx < tCount; ++tIdx) {
   121                 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
   122                 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
   123     // if the computed t is not sufficiently precise, iterate
   124                 SkDPoint p1 = cubic1.ptAtT(to1);
   125                 SkDPoint p2 = cubic2.ptAtT(to2);
   126                 if (p1.approximatelyEqual(p2)) {
   127     // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller
   128 //                    SkASSERT(!locals.isCoincident(tIdx));
   129                     if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
   130                         if (i.swapped()) {  //  FIXME: insert should respect swap
   131                             i.insert(to2, to1, p1);
   132                         } else {
   133                             i.insert(to1, to2, p1);
   134                         }
   135                     }
   136                 } else {
   137                     double offset = precisionScale / 16;  // FIME: const is arbitrary: test, refine
   138                     double c1Bottom = tIdx == 0 ? 0 :
   139                             (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
   140                     double c1Min = SkTMax(c1Bottom, to1 - offset);
   141                     double c1Top = tIdx == tCount - 1 ? 1 :
   142                             (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
   143                     double c1Max = SkTMin(c1Top, to1 + offset);
   144                     double c2Min = SkTMax(0., to2 - offset);
   145                     double c2Max = SkTMin(1., to2 + offset);
   146                 #if ONE_OFF_DEBUG
   147                     SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
   148                             __FUNCTION__,
   149                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
   150                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
   151                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
   152                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
   153                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
   154                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
   155                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
   156                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
   157                     SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
   158                             " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
   159                             i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
   160                             to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
   161                     SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
   162                             " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
   163                             c1Max, c2Min, c2Max);
   164                 #endif
   165                     intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
   166                 #if ONE_OFF_DEBUG
   167                     SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
   168                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
   169                 #endif
   170                     if (tCount > 1) {
   171                         c1Min = SkTMax(0., to1 - offset);
   172                         c1Max = SkTMin(1., to1 + offset);
   173                         double c2Bottom = tIdx == 0 ? to2 :
   174                                 (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
   175                         double c2Top = tIdx == tCount - 1 ? to2 :
   176                                 (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
   177                         if (c2Bottom > c2Top) {
   178                             SkTSwap(c2Bottom, c2Top);
   179                         }
   180                         if (c2Bottom == to2) {
   181                             c2Bottom = 0;
   182                         }
   183                         if (c2Top == to2) {
   184                             c2Top = 1;
   185                         }
   186                         c2Min = SkTMax(c2Bottom, to2 - offset);
   187                         c2Max = SkTMin(c2Top, to2 + offset);
   188                     #if ONE_OFF_DEBUG
   189                         SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
   190                             __FUNCTION__,
   191                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
   192                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
   193                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
   194                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
   195                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
   196                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
   197                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
   198                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
   199                         SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
   200                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
   201                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
   202                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
   203                         SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
   204                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
   205                                 c1Max, c2Min, c2Max);
   206                     #endif
   207                         intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
   208                 #if ONE_OFF_DEBUG
   209                     SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
   210                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
   211                 #endif
   212                         c1Min = SkTMax(c1Bottom, to1 - offset);
   213                         c1Max = SkTMin(c1Top, to1 + offset);
   214                     #if ONE_OFF_DEBUG
   215                         SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
   216                         __FUNCTION__,
   217                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
   218                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
   219                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
   220                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
   221                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
   222                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
   223                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
   224                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
   225                         SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
   226                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
   227                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
   228                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
   229                         SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
   230                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
   231                                 c1Max, c2Min, c2Max);
   232                     #endif
   233                         intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
   234                 #if ONE_OFF_DEBUG
   235                     SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
   236                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
   237                 #endif
   238                     }
   239           //          intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
   240                     // FIXME: if no intersection is found, either quadratics intersected where
   241                     // cubics did not, or the intersection was missed. In the former case, expect
   242                     // the quadratics to be nearly parallel at the point of intersection, and check
   243                     // for that.
   244                 }
   245             }
   246             t2Start = t2;
   247         }
   248         t1Start = t1;
   249     }
   250     i.downDepth();
   251 }
   253     // if two ends intersect, check middle for coincidence
   254 bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) {
   255     if (fUsed < 2) {
   256         return false;
   257     }
   258     int last = fUsed - 1;
   259     double tRange1 = fT[0][last] - fT[0][0];
   260     double tRange2 = fT[1][last] - fT[1][0];
   261     for (int index = 1; index < 5; ++index) {
   262         double testT1 = fT[0][0] + tRange1 * index / 5;
   263         double testT2 = fT[1][0] + tRange2 * index / 5;
   264         SkDPoint testPt1 = c1.ptAtT(testT1);
   265         SkDPoint testPt2 = c2.ptAtT(testT2);
   266         if (!testPt1.approximatelyEqual(testPt2)) {
   267             return false;
   268         }
   269     }
   270     if (fUsed > 2) {
   271         fPt[1] = fPt[last];
   272         fT[0][1] = fT[0][last];
   273         fT[1][1] = fT[1][last];
   274         fUsed = 2;
   275     }
   276     fIsCoincident[0] = fIsCoincident[1] = 0x03;
   277     return true;
   278 }
   280 #define LINE_FRACTION 0.1
   282 // intersect the end of the cubic with the other. Try lines from the end to control and opposite
   283 // end to determine range of t on opposite cubic.
   284 bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) {
   285     int t1Index = start ? 0 : 3;
   286     double testT = (double) !start;
   287     bool swap = swapped();
   288     // quad/quad at this point checks to see if exact matches have already been found
   289     // cubic/cubic can't reject so easily since cubics can intersect same point more than once
   290     SkDLine tmpLine;
   291     tmpLine[0] = tmpLine[1] = cubic2[t1Index];
   292     tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
   293     tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
   294     SkIntersections impTs;
   295     impTs.allowNear(false);
   296     impTs.intersectRay(cubic1, tmpLine);
   297     for (int index = 0; index < impTs.used(); ++index) {
   298         SkDPoint realPt = impTs.pt(index);
   299         if (!tmpLine[0].approximatelyEqual(realPt)) {
   300             continue;
   301         }
   302         if (swap) {
   303             insert(testT, impTs[0][index], tmpLine[0]);
   304         } else {
   305             insert(impTs[0][index], testT, tmpLine[0]);
   306         }
   307         return true;
   308     }
   309     return false;
   310 }
   312 void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
   313                          const SkDRect& bounds2) {
   314     SkDLine line;
   315     int t1Index = start ? 0 : 3;
   316     double testT = (double) !start;
   317    // don't bother if the two cubics are connnected
   318     static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this
   319     static const int kMaxLineCubicIntersections = 3;
   320     SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals;
   321     line[0] = cubic1[t1Index];
   322     // this variant looks for intersections with the end point and lines parallel to other points
   323     for (int index = 0; index < kPointsInCubic; ++index) {
   324         if (index == t1Index) {
   325             continue;
   326         }
   327         SkDVector dxy1 = cubic1[index] - line[0];
   328         dxy1 /= SkDCubic::gPrecisionUnit;
   329         line[1] = line[0] + dxy1;
   330         SkDRect lineBounds;
   331         lineBounds.setBounds(line);
   332         if (!bounds2.intersects(&lineBounds)) {
   333             continue;
   334         }
   335         SkIntersections local;
   336         if (!local.intersect(cubic2, line)) {
   337             continue;
   338         }
   339         for (int idx2 = 0; idx2 < local.used(); ++idx2) {
   340             double foundT = local[0][idx2];
   341             if (approximately_less_than_zero(foundT)
   342                     || approximately_greater_than_one(foundT)) {
   343                 continue;
   344             }
   345             if (local.pt(idx2).approximatelyEqual(line[0])) {
   346                 if (swapped()) {  // FIXME: insert should respect swap
   347                     insert(foundT, testT, line[0]);
   348                 } else {
   349                     insert(testT, foundT, line[0]);
   350                 }
   351             } else {
   352                 tVals.push_back(foundT);
   353             }
   354         }
   355     }
   356     if (tVals.count() == 0) {
   357         return;
   358     }
   359     SkTQSort<double>(tVals.begin(), tVals.end() - 1);
   360     double tMin1 = start ? 0 : 1 - LINE_FRACTION;
   361     double tMax1 = start ? LINE_FRACTION : 1;
   362     int tIdx = 0;
   363     do {
   364         int tLast = tIdx;
   365         while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
   366             ++tLast;
   367         }
   368         double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
   369         double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
   370         int lastUsed = used();
   371         ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
   372         if (lastUsed == used()) {
   373             tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
   374             tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
   375             ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
   376         }
   377         tIdx = tLast + 1;
   378     } while (tIdx < tVals.count());
   379     return;
   380 }
   382 const double CLOSE_ENOUGH = 0.001;
   384 static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
   385     if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
   386         return false;
   387     }
   388     pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
   389     return true;
   390 }
   392 static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
   393     int last = i.used() - 1;
   394     if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
   395         return false;
   396     }
   397     pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
   398     return true;
   399 }
   401 static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) {
   402 // the idea here is to see at minimum do a quick reject by rotating all points
   403 // to either side of the line formed by connecting the endpoints
   404 // if the opposite curves points are on the line or on the other side, the
   405 // curves at most intersect at the endpoints
   406     for (int oddMan = 0; oddMan < 4; ++oddMan) {
   407         const SkDPoint* endPt[3];
   408         for (int opp = 1; opp < 4; ++opp) {
   409             int end = oddMan ^ opp;  // choose a value not equal to oddMan
   410             endPt[opp - 1] = &c1[end];
   411         }
   412         for (int triTest = 0; triTest < 3; ++triTest) {
   413             double origX = endPt[triTest]->fX;
   414             double origY = endPt[triTest]->fY;
   415             int oppTest = triTest + 1;
   416             if (3 == oppTest) {
   417                 oppTest = 0;
   418             }
   419             double adj = endPt[oppTest]->fX - origX;
   420             double opp = endPt[oppTest]->fY - origY;
   421             double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp;
   422             if (approximately_zero(sign)) {
   423                 goto tryNextHalfPlane;
   424             }
   425             for (int n = 0; n < 4; ++n) {
   426                 double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp;
   427                 if (test * sign > 0 && !precisely_zero(test)) {
   428                     goto tryNextHalfPlane;
   429                 }
   430             }
   431         }
   432         return true;
   433 tryNextHalfPlane:
   434         ;
   435     }
   436     return false;
   437 }
   439 int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
   440     if (fMax == 0) {
   441         fMax = 9;
   442     }
   443     bool selfIntersect = &c1 == &c2;
   444     if (selfIntersect) {
   445         if (c1[0].approximatelyEqual(c1[3])) {
   446             insert(0, 1, c1[0]);
   447             return fUsed;
   448         }
   449     } else {
   450         // OPTIMIZATION: set exact end bits here to avoid cubic exact end later
   451         for (int i1 = 0; i1 < 4; i1 += 3) {
   452             for (int i2 = 0; i2 < 4; i2 += 3) {
   453                 if (c1[i1].approximatelyEqual(c2[i2])) {
   454                     insert(i1 >> 1, i2 >> 1, c1[i1]);
   455                 }
   456             }
   457         }
   458     }
   459     SkASSERT(fUsed < 4);
   460     if (!selfIntersect) {
   461         if (only_end_pts_in_common(c1, c2)) {
   462             return fUsed;
   463         }
   464         if (only_end_pts_in_common(c2, c1)) {
   465             return fUsed;
   466         }
   467     }
   468     // quad/quad does linear test here -- cubic does not
   469     // cubics which are really lines should have been detected in reduce step earlier
   470     int exactEndBits = 0;
   471     if (selfIntersect) {
   472         if (fUsed) {
   473             return fUsed;
   474         }
   475     } else {
   476         exactEndBits |= cubicExactEnd(c1, false, c2) << 0;
   477         exactEndBits |= cubicExactEnd(c1, true, c2) << 1;
   478         swap();
   479         exactEndBits |= cubicExactEnd(c2, false, c1) << 2;
   480         exactEndBits |= cubicExactEnd(c2, true, c1) << 3;
   481         swap();
   482     }
   483     if (cubicCheckCoincidence(c1, c2)) {
   484         SkASSERT(!selfIntersect);
   485         return fUsed;
   486     }
   487     // FIXME: pass in cached bounds from caller
   488     SkDRect c2Bounds;
   489     c2Bounds.setBounds(c2);
   490     if (!(exactEndBits & 4)) {
   491         cubicNearEnd(c1, false, c2, c2Bounds);
   492     }
   493     if (!(exactEndBits & 8)) {
   494         cubicNearEnd(c1, true, c2, c2Bounds);
   495     }
   496     if (!selfIntersect) {
   497         SkDRect c1Bounds;
   498         c1Bounds.setBounds(c1);  // OPTIMIZE use setRawBounds ?
   499         swap();
   500         if (!(exactEndBits & 1)) {
   501             cubicNearEnd(c2, false, c1, c1Bounds);
   502         }
   503         if (!(exactEndBits & 2)) {
   504             cubicNearEnd(c2, true, c1, c1Bounds);
   505         }
   506         swap();
   507     }
   508     if (cubicCheckCoincidence(c1, c2)) {
   509         SkASSERT(!selfIntersect);
   510         return fUsed;
   511     }
   512     SkIntersections i;
   513     i.fAllowNear = false;
   514     i.fMax = 9;
   515     ::intersect(c1, 0, 1, c2, 0, 1, 1, i);
   516     int compCount = i.used();
   517     if (compCount) {
   518         int exactCount = used();
   519         if (exactCount == 0) {
   520             set(i);
   521         } else {
   522             // at least one is exact or near, and at least one was computed. Eliminate duplicates
   523             for (int exIdx = 0; exIdx < exactCount; ++exIdx) {
   524                 for (int cpIdx = 0; cpIdx < compCount; ) {
   525                     if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) {
   526                         i.removeOne(cpIdx);
   527                         --compCount;
   528                         continue;
   529                     }
   530                     double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2;
   531                     SkDPoint pt = c1.ptAtT(tAvg);
   532                     if (!pt.approximatelyEqual(fPt[exIdx])) {
   533                         ++cpIdx;
   534                         continue;
   535                     }
   536                     tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2;
   537                     pt = c2.ptAtT(tAvg);
   538                     if (!pt.approximatelyEqual(fPt[exIdx])) {
   539                         ++cpIdx;
   540                         continue;
   541                     }
   542                     i.removeOne(cpIdx);
   543                     --compCount;
   544                 }
   545             }
   546             // if mid t evaluates to nearly the same point, skip the t
   547             for (int cpIdx = 0; cpIdx < compCount - 1; ) {
   548                 double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2;
   549                 SkDPoint pt = c1.ptAtT(tAvg);
   550                 if (!pt.approximatelyEqual(fPt[cpIdx])) {
   551                     ++cpIdx;
   552                     continue;
   553                 }
   554                 tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2;
   555                 pt = c2.ptAtT(tAvg);
   556                 if (!pt.approximatelyEqual(fPt[cpIdx])) {
   557                     ++cpIdx;
   558                     continue;
   559                 }
   560                 i.removeOne(cpIdx);
   561                 --compCount;
   562             }
   563             // in addition to adding below missing function, think about how to say
   564             append(i);
   565         }
   566     }
   567     // If an end point and a second point very close to the end is returned, the second
   568     // point may have been detected because the approximate quads
   569     // intersected at the end and close to it. Verify that the second point is valid.
   570     if (fUsed <= 1) {
   571         return fUsed;
   572     }
   573     SkDPoint pt[2];
   574     if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
   575             && pt[0].approximatelyEqual(pt[1])) {
   576         removeOne(1);
   577     }
   578     if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
   579             && pt[0].approximatelyEqual(pt[1])) {
   580         removeOne(used() - 2);
   581     }
   582     // vet the pairs of t values to see if the mid value is also on the curve. If so, mark
   583     // the span as coincident
   584     if (fUsed >= 2 && !coincidentUsed()) {
   585         int last = fUsed - 1;
   586         int match = 0;
   587         for (int index = 0; index < last; ++index) {
   588             double mid1 = (fT[0][index] + fT[0][index + 1]) / 2;
   589             double mid2 = (fT[1][index] + fT[1][index + 1]) / 2;
   590             pt[0] = c1.ptAtT(mid1);
   591             pt[1] = c2.ptAtT(mid2);
   592             if (pt[0].approximatelyEqual(pt[1])) {
   593                 match |= 1 << index;
   594             }
   595         }
   596         if (match) {
   597 #if DEBUG_CONCIDENT
   598             if (((match + 1) & match) != 0) {
   599                 SkDebugf("%s coincident hole\n", __FUNCTION__);
   600             }
   601 #endif
   602             // for now, assume that everything from start to finish is coincident
   603             if (fUsed > 2) {
   604                   fPt[1] = fPt[last];
   605                   fT[0][1] = fT[0][last];
   606                   fT[1][1] = fT[1][last];
   607                   fIsCoincident[0] = 0x03;
   608                   fIsCoincident[1] = 0x03;
   609                   fUsed = 2;
   610             }
   611         }
   612     }
   613     return fUsed;
   614 }
   616 // Up promote the quad to a cubic.
   617 // OPTIMIZATION If this is a common use case, optimize by duplicating
   618 // the intersect 3 loop to avoid the promotion  / demotion code
   619 int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
   620     fMax = 6;
   621     SkDCubic up = quad.toCubic();
   622     (void) intersect(cubic, up);
   623     return used();
   624 }
   626 /* http://www.ag.jku.at/compass/compasssample.pdf
   627 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
   628 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
   629 SINTEF Applied Mathematics http://www.sintef.no )
   630 describes a method to find the self intersection of a cubic by taking the gradient of the implicit
   631 form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
   633 int SkIntersections::intersect(const SkDCubic& c) {
   634     fMax = 1;
   635     // check to see if x or y end points are the extrema. Are other quick rejects possible?
   636     if (c.endsAreExtremaInXOrY()) {
   637         return false;
   638     }
   639     (void) intersect(c, c);
   640     if (used() > 0) {
   641         SkASSERT(used() == 1);
   642         if (fT[0][0] > fT[1][0]) {
   643             swapPts();
   644         }
   645     }
   646     return used();
   647 }

mercurial