|
1 /* |
|
2 * Copyright 2012 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 #include "SkIntersections.h" |
|
8 #include "SkPathOpsLine.h" |
|
9 |
|
10 /* Determine the intersection point of two lines. This assumes the lines are not parallel, |
|
11 and that that the lines are infinite. |
|
12 From http://en.wikipedia.org/wiki/Line-line_intersection |
|
13 */ |
|
14 SkDPoint SkIntersections::Line(const SkDLine& a, const SkDLine& b) { |
|
15 double axLen = a[1].fX - a[0].fX; |
|
16 double ayLen = a[1].fY - a[0].fY; |
|
17 double bxLen = b[1].fX - b[0].fX; |
|
18 double byLen = b[1].fY - b[0].fY; |
|
19 double denom = byLen * axLen - ayLen * bxLen; |
|
20 SkASSERT(denom); |
|
21 double term1 = a[1].fX * a[0].fY - a[1].fY * a[0].fX; |
|
22 double term2 = b[1].fX * b[0].fY - b[1].fY * b[0].fX; |
|
23 SkDPoint p; |
|
24 p.fX = (term1 * bxLen - axLen * term2) / denom; |
|
25 p.fY = (term1 * byLen - ayLen * term2) / denom; |
|
26 return p; |
|
27 } |
|
28 |
|
29 void SkIntersections::cleanUpCoincidence() { |
|
30 SkASSERT(fUsed == 2); |
|
31 // both t values are good |
|
32 bool startMatch = fT[0][0] == 0 && (fT[1][0] == 0 || fT[1][0] == 1); |
|
33 bool endMatch = fT[0][1] == 1 && (fT[1][1] == 0 || fT[1][1] == 1); |
|
34 if (startMatch || endMatch) { |
|
35 removeOne(startMatch); |
|
36 return; |
|
37 } |
|
38 // either t value is good |
|
39 bool pStartMatch = fT[0][0] == 0 || fT[1][0] == 0 || fT[1][0] == 1; |
|
40 bool pEndMatch = fT[0][1] == 1 || fT[1][1] == 0 || fT[1][1] == 1; |
|
41 removeOne(pStartMatch || !pEndMatch); |
|
42 } |
|
43 |
|
44 void SkIntersections::cleanUpParallelLines(bool parallel) { |
|
45 while (fUsed > 2) { |
|
46 removeOne(1); |
|
47 } |
|
48 if (fUsed == 2 && !parallel) { |
|
49 bool startMatch = fT[0][0] == 0 || fT[1][0] == 0 || fT[1][0] == 1; |
|
50 bool endMatch = fT[0][1] == 1 || fT[1][1] == 0 || fT[1][1] == 1; |
|
51 if ((!startMatch && !endMatch) || approximately_equal(fT[0][0], fT[0][1])) { |
|
52 SkASSERT(startMatch || endMatch); |
|
53 removeOne(endMatch); |
|
54 } |
|
55 } |
|
56 } |
|
57 |
|
58 void SkIntersections::computePoints(const SkDLine& line, int used) { |
|
59 fPt[0] = line.ptAtT(fT[0][0]); |
|
60 if ((fUsed = used) == 2) { |
|
61 fPt[1] = line.ptAtT(fT[0][1]); |
|
62 } |
|
63 } |
|
64 |
|
65 int SkIntersections::intersectRay(const SkDLine& a, const SkDLine& b) { |
|
66 fMax = 2; |
|
67 SkDVector aLen = a[1] - a[0]; |
|
68 SkDVector bLen = b[1] - b[0]; |
|
69 /* Slopes match when denom goes to zero: |
|
70 axLen / ayLen == bxLen / byLen |
|
71 (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen |
|
72 byLen * axLen == ayLen * bxLen |
|
73 byLen * axLen - ayLen * bxLen == 0 ( == denom ) |
|
74 */ |
|
75 double denom = bLen.fY * aLen.fX - aLen.fY * bLen.fX; |
|
76 SkDVector ab0 = a[0] - b[0]; |
|
77 double numerA = ab0.fY * bLen.fX - bLen.fY * ab0.fX; |
|
78 double numerB = ab0.fY * aLen.fX - aLen.fY * ab0.fX; |
|
79 numerA /= denom; |
|
80 numerB /= denom; |
|
81 int used; |
|
82 if (!approximately_zero(denom)) { |
|
83 fT[0][0] = numerA; |
|
84 fT[1][0] = numerB; |
|
85 used = 1; |
|
86 } else { |
|
87 /* See if the axis intercepts match: |
|
88 ay - ax * ayLen / axLen == by - bx * ayLen / axLen |
|
89 axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen) |
|
90 axLen * ay - ax * ayLen == axLen * by - bx * ayLen |
|
91 */ |
|
92 if (!AlmostEqualUlps(aLen.fX * a[0].fY - aLen.fY * a[0].fX, |
|
93 aLen.fX * b[0].fY - aLen.fY * b[0].fX)) { |
|
94 return fUsed = 0; |
|
95 } |
|
96 // there's no great answer for intersection points for coincident rays, but return something |
|
97 fT[0][0] = fT[1][0] = 0; |
|
98 fT[1][0] = fT[1][1] = 1; |
|
99 used = 2; |
|
100 } |
|
101 computePoints(a, used); |
|
102 return fUsed; |
|
103 } |
|
104 |
|
105 // note that this only works if both lines are neither horizontal nor vertical |
|
106 int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) { |
|
107 fMax = 3; // note that we clean up so that there is no more than two in the end |
|
108 // see if end points intersect the opposite line |
|
109 double t; |
|
110 for (int iA = 0; iA < 2; ++iA) { |
|
111 if ((t = b.exactPoint(a[iA])) >= 0) { |
|
112 insert(iA, t, a[iA]); |
|
113 } |
|
114 } |
|
115 for (int iB = 0; iB < 2; ++iB) { |
|
116 if ((t = a.exactPoint(b[iB])) >= 0) { |
|
117 insert(t, iB, b[iB]); |
|
118 } |
|
119 } |
|
120 /* Determine the intersection point of two line segments |
|
121 Return FALSE if the lines don't intersect |
|
122 from: http://paulbourke.net/geometry/lineline2d/ */ |
|
123 double axLen = a[1].fX - a[0].fX; |
|
124 double ayLen = a[1].fY - a[0].fY; |
|
125 double bxLen = b[1].fX - b[0].fX; |
|
126 double byLen = b[1].fY - b[0].fY; |
|
127 /* Slopes match when denom goes to zero: |
|
128 axLen / ayLen == bxLen / byLen |
|
129 (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen |
|
130 byLen * axLen == ayLen * bxLen |
|
131 byLen * axLen - ayLen * bxLen == 0 ( == denom ) |
|
132 */ |
|
133 double axByLen = axLen * byLen; |
|
134 double ayBxLen = ayLen * bxLen; |
|
135 // detect parallel lines the same way here and in SkOpAngle operator < |
|
136 // so that non-parallel means they are also sortable |
|
137 bool unparallel = fAllowNear ? NotAlmostEqualUlps(axByLen, ayBxLen) |
|
138 : NotAlmostDequalUlps(axByLen, ayBxLen); |
|
139 if (unparallel && fUsed == 0) { |
|
140 double ab0y = a[0].fY - b[0].fY; |
|
141 double ab0x = a[0].fX - b[0].fX; |
|
142 double numerA = ab0y * bxLen - byLen * ab0x; |
|
143 double numerB = ab0y * axLen - ayLen * ab0x; |
|
144 double denom = axByLen - ayBxLen; |
|
145 if (between(0, numerA, denom) && between(0, numerB, denom)) { |
|
146 fT[0][0] = numerA / denom; |
|
147 fT[1][0] = numerB / denom; |
|
148 computePoints(a, 1); |
|
149 } |
|
150 } |
|
151 if (fAllowNear || !unparallel) { |
|
152 for (int iA = 0; iA < 2; ++iA) { |
|
153 if ((t = b.nearPoint(a[iA])) >= 0) { |
|
154 insert(iA, t, a[iA]); |
|
155 } |
|
156 } |
|
157 for (int iB = 0; iB < 2; ++iB) { |
|
158 if ((t = a.nearPoint(b[iB])) >= 0) { |
|
159 insert(t, iB, b[iB]); |
|
160 } |
|
161 } |
|
162 } |
|
163 cleanUpParallelLines(!unparallel); |
|
164 SkASSERT(fUsed <= 2); |
|
165 return fUsed; |
|
166 } |
|
167 |
|
168 static int horizontal_coincident(const SkDLine& line, double y) { |
|
169 double min = line[0].fY; |
|
170 double max = line[1].fY; |
|
171 if (min > max) { |
|
172 SkTSwap(min, max); |
|
173 } |
|
174 if (min > y || max < y) { |
|
175 return 0; |
|
176 } |
|
177 if (AlmostEqualUlps(min, max) && max - min < fabs(line[0].fX - line[1].fX)) { |
|
178 return 2; |
|
179 } |
|
180 return 1; |
|
181 } |
|
182 |
|
183 static double horizontal_intercept(const SkDLine& line, double y) { |
|
184 return SkPinT((y - line[0].fY) / (line[1].fY - line[0].fY)); |
|
185 } |
|
186 |
|
187 int SkIntersections::horizontal(const SkDLine& line, double y) { |
|
188 fMax = 2; |
|
189 int horizontalType = horizontal_coincident(line, y); |
|
190 if (horizontalType == 1) { |
|
191 fT[0][0] = horizontal_intercept(line, y); |
|
192 } else if (horizontalType == 2) { |
|
193 fT[0][0] = 0; |
|
194 fT[0][1] = 1; |
|
195 } |
|
196 return fUsed = horizontalType; |
|
197 } |
|
198 |
|
199 int SkIntersections::horizontal(const SkDLine& line, double left, double right, |
|
200 double y, bool flipped) { |
|
201 fMax = 2; |
|
202 // see if end points intersect the opposite line |
|
203 double t; |
|
204 const SkDPoint leftPt = { left, y }; |
|
205 if ((t = line.exactPoint(leftPt)) >= 0) { |
|
206 insert(t, (double) flipped, leftPt); |
|
207 } |
|
208 if (left != right) { |
|
209 const SkDPoint rightPt = { right, y }; |
|
210 if ((t = line.exactPoint(rightPt)) >= 0) { |
|
211 insert(t, (double) !flipped, rightPt); |
|
212 } |
|
213 for (int index = 0; index < 2; ++index) { |
|
214 if ((t = SkDLine::ExactPointH(line[index], left, right, y)) >= 0) { |
|
215 insert((double) index, flipped ? 1 - t : t, line[index]); |
|
216 } |
|
217 } |
|
218 } |
|
219 int result = horizontal_coincident(line, y); |
|
220 if (result == 1 && fUsed == 0) { |
|
221 fT[0][0] = horizontal_intercept(line, y); |
|
222 double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX); |
|
223 if (between(left, xIntercept, right)) { |
|
224 fT[1][0] = (xIntercept - left) / (right - left); |
|
225 if (flipped) { |
|
226 // OPTIMIZATION: ? instead of swapping, pass original line, use [1].fX - [0].fX |
|
227 for (int index = 0; index < result; ++index) { |
|
228 fT[1][index] = 1 - fT[1][index]; |
|
229 } |
|
230 } |
|
231 fPt[0].fX = xIntercept; |
|
232 fPt[0].fY = y; |
|
233 fUsed = 1; |
|
234 } |
|
235 } |
|
236 if (fAllowNear || result == 2) { |
|
237 if ((t = line.nearPoint(leftPt)) >= 0) { |
|
238 insert(t, (double) flipped, leftPt); |
|
239 } |
|
240 if (left != right) { |
|
241 const SkDPoint rightPt = { right, y }; |
|
242 if ((t = line.nearPoint(rightPt)) >= 0) { |
|
243 insert(t, (double) !flipped, rightPt); |
|
244 } |
|
245 for (int index = 0; index < 2; ++index) { |
|
246 if ((t = SkDLine::NearPointH(line[index], left, right, y)) >= 0) { |
|
247 insert((double) index, flipped ? 1 - t : t, line[index]); |
|
248 } |
|
249 } |
|
250 } |
|
251 } |
|
252 cleanUpParallelLines(result == 2); |
|
253 return fUsed; |
|
254 } |
|
255 |
|
256 static int vertical_coincident(const SkDLine& line, double x) { |
|
257 double min = line[0].fX; |
|
258 double max = line[1].fX; |
|
259 if (min > max) { |
|
260 SkTSwap(min, max); |
|
261 } |
|
262 if (!precisely_between(min, x, max)) { |
|
263 return 0; |
|
264 } |
|
265 if (AlmostEqualUlps(min, max)) { |
|
266 return 2; |
|
267 } |
|
268 return 1; |
|
269 } |
|
270 |
|
271 static double vertical_intercept(const SkDLine& line, double x) { |
|
272 return SkPinT((x - line[0].fX) / (line[1].fX - line[0].fX)); |
|
273 } |
|
274 |
|
275 int SkIntersections::vertical(const SkDLine& line, double x) { |
|
276 fMax = 2; |
|
277 int verticalType = vertical_coincident(line, x); |
|
278 if (verticalType == 1) { |
|
279 fT[0][0] = vertical_intercept(line, x); |
|
280 } else if (verticalType == 2) { |
|
281 fT[0][0] = 0; |
|
282 fT[0][1] = 1; |
|
283 } |
|
284 return fUsed = verticalType; |
|
285 } |
|
286 |
|
287 int SkIntersections::vertical(const SkDLine& line, double top, double bottom, |
|
288 double x, bool flipped) { |
|
289 fMax = 2; |
|
290 // see if end points intersect the opposite line |
|
291 double t; |
|
292 SkDPoint topPt = { x, top }; |
|
293 if ((t = line.exactPoint(topPt)) >= 0) { |
|
294 insert(t, (double) flipped, topPt); |
|
295 } |
|
296 if (top != bottom) { |
|
297 SkDPoint bottomPt = { x, bottom }; |
|
298 if ((t = line.exactPoint(bottomPt)) >= 0) { |
|
299 insert(t, (double) !flipped, bottomPt); |
|
300 } |
|
301 for (int index = 0; index < 2; ++index) { |
|
302 if ((t = SkDLine::ExactPointV(line[index], top, bottom, x)) >= 0) { |
|
303 insert((double) index, flipped ? 1 - t : t, line[index]); |
|
304 } |
|
305 } |
|
306 } |
|
307 int result = vertical_coincident(line, x); |
|
308 if (result == 1 && fUsed == 0) { |
|
309 fT[0][0] = vertical_intercept(line, x); |
|
310 double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY); |
|
311 if (between(top, yIntercept, bottom)) { |
|
312 fT[1][0] = (yIntercept - top) / (bottom - top); |
|
313 if (flipped) { |
|
314 // OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY |
|
315 for (int index = 0; index < result; ++index) { |
|
316 fT[1][index] = 1 - fT[1][index]; |
|
317 } |
|
318 } |
|
319 fPt[0].fX = x; |
|
320 fPt[0].fY = yIntercept; |
|
321 fUsed = 1; |
|
322 } |
|
323 } |
|
324 if (fAllowNear || result == 2) { |
|
325 if ((t = line.nearPoint(topPt)) >= 0) { |
|
326 insert(t, (double) flipped, topPt); |
|
327 } |
|
328 if (top != bottom) { |
|
329 SkDPoint bottomPt = { x, bottom }; |
|
330 if ((t = line.nearPoint(bottomPt)) >= 0) { |
|
331 insert(t, (double) !flipped, bottomPt); |
|
332 } |
|
333 for (int index = 0; index < 2; ++index) { |
|
334 if ((t = SkDLine::NearPointV(line[index], top, bottom, x)) >= 0) { |
|
335 insert((double) index, flipped ? 1 - t : t, line[index]); |
|
336 } |
|
337 } |
|
338 } |
|
339 } |
|
340 cleanUpParallelLines(result == 2); |
|
341 return fUsed; |
|
342 } |
|
343 |
|
344 // from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py |
|
345 // 4 subs, 2 muls, 1 cmp |
|
346 static bool ccw(const SkDPoint& A, const SkDPoint& B, const SkDPoint& C) { |
|
347 return (C.fY - A.fY) * (B.fX - A.fX) > (B.fY - A.fY) * (C.fX - A.fX); |
|
348 } |
|
349 |
|
350 // 16 subs, 8 muls, 6 cmps |
|
351 bool SkIntersections::Test(const SkDLine& a, const SkDLine& b) { |
|
352 return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1]) |
|
353 && ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]); |
|
354 } |