gfx/skia/trunk/src/pathops/SkDLineIntersection.cpp

branch
TOR_BUG_3246
changeset 7
129ffea94266
equal deleted inserted replaced
-1:000000000000 0:695322bc66a9
1 /*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 #include "SkIntersections.h"
8 #include "SkPathOpsLine.h"
9
10 /* Determine the intersection point of two lines. This assumes the lines are not parallel,
11 and that that the lines are infinite.
12 From http://en.wikipedia.org/wiki/Line-line_intersection
13 */
14 SkDPoint SkIntersections::Line(const SkDLine& a, const SkDLine& b) {
15 double axLen = a[1].fX - a[0].fX;
16 double ayLen = a[1].fY - a[0].fY;
17 double bxLen = b[1].fX - b[0].fX;
18 double byLen = b[1].fY - b[0].fY;
19 double denom = byLen * axLen - ayLen * bxLen;
20 SkASSERT(denom);
21 double term1 = a[1].fX * a[0].fY - a[1].fY * a[0].fX;
22 double term2 = b[1].fX * b[0].fY - b[1].fY * b[0].fX;
23 SkDPoint p;
24 p.fX = (term1 * bxLen - axLen * term2) / denom;
25 p.fY = (term1 * byLen - ayLen * term2) / denom;
26 return p;
27 }
28
29 void SkIntersections::cleanUpCoincidence() {
30 SkASSERT(fUsed == 2);
31 // both t values are good
32 bool startMatch = fT[0][0] == 0 && (fT[1][0] == 0 || fT[1][0] == 1);
33 bool endMatch = fT[0][1] == 1 && (fT[1][1] == 0 || fT[1][1] == 1);
34 if (startMatch || endMatch) {
35 removeOne(startMatch);
36 return;
37 }
38 // either t value is good
39 bool pStartMatch = fT[0][0] == 0 || fT[1][0] == 0 || fT[1][0] == 1;
40 bool pEndMatch = fT[0][1] == 1 || fT[1][1] == 0 || fT[1][1] == 1;
41 removeOne(pStartMatch || !pEndMatch);
42 }
43
44 void SkIntersections::cleanUpParallelLines(bool parallel) {
45 while (fUsed > 2) {
46 removeOne(1);
47 }
48 if (fUsed == 2 && !parallel) {
49 bool startMatch = fT[0][0] == 0 || fT[1][0] == 0 || fT[1][0] == 1;
50 bool endMatch = fT[0][1] == 1 || fT[1][1] == 0 || fT[1][1] == 1;
51 if ((!startMatch && !endMatch) || approximately_equal(fT[0][0], fT[0][1])) {
52 SkASSERT(startMatch || endMatch);
53 removeOne(endMatch);
54 }
55 }
56 }
57
58 void SkIntersections::computePoints(const SkDLine& line, int used) {
59 fPt[0] = line.ptAtT(fT[0][0]);
60 if ((fUsed = used) == 2) {
61 fPt[1] = line.ptAtT(fT[0][1]);
62 }
63 }
64
65 int SkIntersections::intersectRay(const SkDLine& a, const SkDLine& b) {
66 fMax = 2;
67 SkDVector aLen = a[1] - a[0];
68 SkDVector bLen = b[1] - b[0];
69 /* Slopes match when denom goes to zero:
70 axLen / ayLen == bxLen / byLen
71 (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
72 byLen * axLen == ayLen * bxLen
73 byLen * axLen - ayLen * bxLen == 0 ( == denom )
74 */
75 double denom = bLen.fY * aLen.fX - aLen.fY * bLen.fX;
76 SkDVector ab0 = a[0] - b[0];
77 double numerA = ab0.fY * bLen.fX - bLen.fY * ab0.fX;
78 double numerB = ab0.fY * aLen.fX - aLen.fY * ab0.fX;
79 numerA /= denom;
80 numerB /= denom;
81 int used;
82 if (!approximately_zero(denom)) {
83 fT[0][0] = numerA;
84 fT[1][0] = numerB;
85 used = 1;
86 } else {
87 /* See if the axis intercepts match:
88 ay - ax * ayLen / axLen == by - bx * ayLen / axLen
89 axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
90 axLen * ay - ax * ayLen == axLen * by - bx * ayLen
91 */
92 if (!AlmostEqualUlps(aLen.fX * a[0].fY - aLen.fY * a[0].fX,
93 aLen.fX * b[0].fY - aLen.fY * b[0].fX)) {
94 return fUsed = 0;
95 }
96 // there's no great answer for intersection points for coincident rays, but return something
97 fT[0][0] = fT[1][0] = 0;
98 fT[1][0] = fT[1][1] = 1;
99 used = 2;
100 }
101 computePoints(a, used);
102 return fUsed;
103 }
104
105 // note that this only works if both lines are neither horizontal nor vertical
106 int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
107 fMax = 3; // note that we clean up so that there is no more than two in the end
108 // see if end points intersect the opposite line
109 double t;
110 for (int iA = 0; iA < 2; ++iA) {
111 if ((t = b.exactPoint(a[iA])) >= 0) {
112 insert(iA, t, a[iA]);
113 }
114 }
115 for (int iB = 0; iB < 2; ++iB) {
116 if ((t = a.exactPoint(b[iB])) >= 0) {
117 insert(t, iB, b[iB]);
118 }
119 }
120 /* Determine the intersection point of two line segments
121 Return FALSE if the lines don't intersect
122 from: http://paulbourke.net/geometry/lineline2d/ */
123 double axLen = a[1].fX - a[0].fX;
124 double ayLen = a[1].fY - a[0].fY;
125 double bxLen = b[1].fX - b[0].fX;
126 double byLen = b[1].fY - b[0].fY;
127 /* Slopes match when denom goes to zero:
128 axLen / ayLen == bxLen / byLen
129 (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
130 byLen * axLen == ayLen * bxLen
131 byLen * axLen - ayLen * bxLen == 0 ( == denom )
132 */
133 double axByLen = axLen * byLen;
134 double ayBxLen = ayLen * bxLen;
135 // detect parallel lines the same way here and in SkOpAngle operator <
136 // so that non-parallel means they are also sortable
137 bool unparallel = fAllowNear ? NotAlmostEqualUlps(axByLen, ayBxLen)
138 : NotAlmostDequalUlps(axByLen, ayBxLen);
139 if (unparallel && fUsed == 0) {
140 double ab0y = a[0].fY - b[0].fY;
141 double ab0x = a[0].fX - b[0].fX;
142 double numerA = ab0y * bxLen - byLen * ab0x;
143 double numerB = ab0y * axLen - ayLen * ab0x;
144 double denom = axByLen - ayBxLen;
145 if (between(0, numerA, denom) && between(0, numerB, denom)) {
146 fT[0][0] = numerA / denom;
147 fT[1][0] = numerB / denom;
148 computePoints(a, 1);
149 }
150 }
151 if (fAllowNear || !unparallel) {
152 for (int iA = 0; iA < 2; ++iA) {
153 if ((t = b.nearPoint(a[iA])) >= 0) {
154 insert(iA, t, a[iA]);
155 }
156 }
157 for (int iB = 0; iB < 2; ++iB) {
158 if ((t = a.nearPoint(b[iB])) >= 0) {
159 insert(t, iB, b[iB]);
160 }
161 }
162 }
163 cleanUpParallelLines(!unparallel);
164 SkASSERT(fUsed <= 2);
165 return fUsed;
166 }
167
168 static int horizontal_coincident(const SkDLine& line, double y) {
169 double min = line[0].fY;
170 double max = line[1].fY;
171 if (min > max) {
172 SkTSwap(min, max);
173 }
174 if (min > y || max < y) {
175 return 0;
176 }
177 if (AlmostEqualUlps(min, max) && max - min < fabs(line[0].fX - line[1].fX)) {
178 return 2;
179 }
180 return 1;
181 }
182
183 static double horizontal_intercept(const SkDLine& line, double y) {
184 return SkPinT((y - line[0].fY) / (line[1].fY - line[0].fY));
185 }
186
187 int SkIntersections::horizontal(const SkDLine& line, double y) {
188 fMax = 2;
189 int horizontalType = horizontal_coincident(line, y);
190 if (horizontalType == 1) {
191 fT[0][0] = horizontal_intercept(line, y);
192 } else if (horizontalType == 2) {
193 fT[0][0] = 0;
194 fT[0][1] = 1;
195 }
196 return fUsed = horizontalType;
197 }
198
199 int SkIntersections::horizontal(const SkDLine& line, double left, double right,
200 double y, bool flipped) {
201 fMax = 2;
202 // see if end points intersect the opposite line
203 double t;
204 const SkDPoint leftPt = { left, y };
205 if ((t = line.exactPoint(leftPt)) >= 0) {
206 insert(t, (double) flipped, leftPt);
207 }
208 if (left != right) {
209 const SkDPoint rightPt = { right, y };
210 if ((t = line.exactPoint(rightPt)) >= 0) {
211 insert(t, (double) !flipped, rightPt);
212 }
213 for (int index = 0; index < 2; ++index) {
214 if ((t = SkDLine::ExactPointH(line[index], left, right, y)) >= 0) {
215 insert((double) index, flipped ? 1 - t : t, line[index]);
216 }
217 }
218 }
219 int result = horizontal_coincident(line, y);
220 if (result == 1 && fUsed == 0) {
221 fT[0][0] = horizontal_intercept(line, y);
222 double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX);
223 if (between(left, xIntercept, right)) {
224 fT[1][0] = (xIntercept - left) / (right - left);
225 if (flipped) {
226 // OPTIMIZATION: ? instead of swapping, pass original line, use [1].fX - [0].fX
227 for (int index = 0; index < result; ++index) {
228 fT[1][index] = 1 - fT[1][index];
229 }
230 }
231 fPt[0].fX = xIntercept;
232 fPt[0].fY = y;
233 fUsed = 1;
234 }
235 }
236 if (fAllowNear || result == 2) {
237 if ((t = line.nearPoint(leftPt)) >= 0) {
238 insert(t, (double) flipped, leftPt);
239 }
240 if (left != right) {
241 const SkDPoint rightPt = { right, y };
242 if ((t = line.nearPoint(rightPt)) >= 0) {
243 insert(t, (double) !flipped, rightPt);
244 }
245 for (int index = 0; index < 2; ++index) {
246 if ((t = SkDLine::NearPointH(line[index], left, right, y)) >= 0) {
247 insert((double) index, flipped ? 1 - t : t, line[index]);
248 }
249 }
250 }
251 }
252 cleanUpParallelLines(result == 2);
253 return fUsed;
254 }
255
256 static int vertical_coincident(const SkDLine& line, double x) {
257 double min = line[0].fX;
258 double max = line[1].fX;
259 if (min > max) {
260 SkTSwap(min, max);
261 }
262 if (!precisely_between(min, x, max)) {
263 return 0;
264 }
265 if (AlmostEqualUlps(min, max)) {
266 return 2;
267 }
268 return 1;
269 }
270
271 static double vertical_intercept(const SkDLine& line, double x) {
272 return SkPinT((x - line[0].fX) / (line[1].fX - line[0].fX));
273 }
274
275 int SkIntersections::vertical(const SkDLine& line, double x) {
276 fMax = 2;
277 int verticalType = vertical_coincident(line, x);
278 if (verticalType == 1) {
279 fT[0][0] = vertical_intercept(line, x);
280 } else if (verticalType == 2) {
281 fT[0][0] = 0;
282 fT[0][1] = 1;
283 }
284 return fUsed = verticalType;
285 }
286
287 int SkIntersections::vertical(const SkDLine& line, double top, double bottom,
288 double x, bool flipped) {
289 fMax = 2;
290 // see if end points intersect the opposite line
291 double t;
292 SkDPoint topPt = { x, top };
293 if ((t = line.exactPoint(topPt)) >= 0) {
294 insert(t, (double) flipped, topPt);
295 }
296 if (top != bottom) {
297 SkDPoint bottomPt = { x, bottom };
298 if ((t = line.exactPoint(bottomPt)) >= 0) {
299 insert(t, (double) !flipped, bottomPt);
300 }
301 for (int index = 0; index < 2; ++index) {
302 if ((t = SkDLine::ExactPointV(line[index], top, bottom, x)) >= 0) {
303 insert((double) index, flipped ? 1 - t : t, line[index]);
304 }
305 }
306 }
307 int result = vertical_coincident(line, x);
308 if (result == 1 && fUsed == 0) {
309 fT[0][0] = vertical_intercept(line, x);
310 double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY);
311 if (between(top, yIntercept, bottom)) {
312 fT[1][0] = (yIntercept - top) / (bottom - top);
313 if (flipped) {
314 // OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY
315 for (int index = 0; index < result; ++index) {
316 fT[1][index] = 1 - fT[1][index];
317 }
318 }
319 fPt[0].fX = x;
320 fPt[0].fY = yIntercept;
321 fUsed = 1;
322 }
323 }
324 if (fAllowNear || result == 2) {
325 if ((t = line.nearPoint(topPt)) >= 0) {
326 insert(t, (double) flipped, topPt);
327 }
328 if (top != bottom) {
329 SkDPoint bottomPt = { x, bottom };
330 if ((t = line.nearPoint(bottomPt)) >= 0) {
331 insert(t, (double) !flipped, bottomPt);
332 }
333 for (int index = 0; index < 2; ++index) {
334 if ((t = SkDLine::NearPointV(line[index], top, bottom, x)) >= 0) {
335 insert((double) index, flipped ? 1 - t : t, line[index]);
336 }
337 }
338 }
339 }
340 cleanUpParallelLines(result == 2);
341 return fUsed;
342 }
343
344 // from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py
345 // 4 subs, 2 muls, 1 cmp
346 static bool ccw(const SkDPoint& A, const SkDPoint& B, const SkDPoint& C) {
347 return (C.fY - A.fY) * (B.fX - A.fX) > (B.fY - A.fY) * (C.fX - A.fX);
348 }
349
350 // 16 subs, 8 muls, 6 cmps
351 bool SkIntersections::Test(const SkDLine& a, const SkDLine& b) {
352 return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1])
353 && ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]);
354 }

mercurial