|
1 // Copyright (c) 2010 Google Inc. All Rights Reserved. |
|
2 // |
|
3 // Redistribution and use in source and binary forms, with or without |
|
4 // modification, are permitted provided that the following conditions are |
|
5 // met: |
|
6 // |
|
7 // * Redistributions of source code must retain the above copyright |
|
8 // notice, this list of conditions and the following disclaimer. |
|
9 // * Redistributions in binary form must reproduce the above |
|
10 // copyright notice, this list of conditions and the following disclaimer |
|
11 // in the documentation and/or other materials provided with the |
|
12 // distribution. |
|
13 // * Neither the name of Google Inc. nor the names of its |
|
14 // contributors may be used to endorse or promote products derived from |
|
15 // this software without specific prior written permission. |
|
16 // |
|
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
28 |
|
29 // CFI reader author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com> |
|
30 |
|
31 // Implementation of dwarf2reader::LineInfo, dwarf2reader::CompilationUnit, |
|
32 // and dwarf2reader::CallFrameInfo. See dwarf2reader.h for details. |
|
33 |
|
34 #include "common/dwarf/dwarf2reader.h" |
|
35 |
|
36 #include <assert.h> |
|
37 #include <stdint.h> |
|
38 #include <stdio.h> |
|
39 #include <string.h> |
|
40 |
|
41 #include <map> |
|
42 #include <memory> |
|
43 #include <stack> |
|
44 #include <string> |
|
45 #include <utility> |
|
46 |
|
47 #include "common/dwarf/bytereader-inl.h" |
|
48 #include "common/dwarf/bytereader.h" |
|
49 #include "common/dwarf/line_state_machine.h" |
|
50 #include "common/using_std_string.h" |
|
51 |
|
52 namespace dwarf2reader { |
|
53 |
|
54 CompilationUnit::CompilationUnit(const SectionMap& sections, uint64 offset, |
|
55 ByteReader* reader, Dwarf2Handler* handler) |
|
56 : offset_from_section_start_(offset), reader_(reader), |
|
57 sections_(sections), handler_(handler), abbrevs_(NULL), |
|
58 string_buffer_(NULL), string_buffer_length_(0) {} |
|
59 |
|
60 // Read a DWARF2/3 abbreviation section. |
|
61 // Each abbrev consists of a abbreviation number, a tag, a byte |
|
62 // specifying whether the tag has children, and a list of |
|
63 // attribute/form pairs. |
|
64 // The list of forms is terminated by a 0 for the attribute, and a |
|
65 // zero for the form. The entire abbreviation section is terminated |
|
66 // by a zero for the code. |
|
67 |
|
68 void CompilationUnit::ReadAbbrevs() { |
|
69 if (abbrevs_) |
|
70 return; |
|
71 |
|
72 // First get the debug_abbrev section. ".debug_abbrev" is the name |
|
73 // recommended in the DWARF spec, and used on Linux; |
|
74 // "__debug_abbrev" is the name used in Mac OS X Mach-O files. |
|
75 SectionMap::const_iterator iter = sections_.find(".debug_abbrev"); |
|
76 if (iter == sections_.end()) |
|
77 iter = sections_.find("__debug_abbrev"); |
|
78 assert(iter != sections_.end()); |
|
79 |
|
80 abbrevs_ = new std::vector<Abbrev>; |
|
81 abbrevs_->resize(1); |
|
82 |
|
83 // The only way to check whether we are reading over the end of the |
|
84 // buffer would be to first compute the size of the leb128 data by |
|
85 // reading it, then go back and read it again. |
|
86 const char* abbrev_start = iter->second.first + |
|
87 header_.abbrev_offset; |
|
88 const char* abbrevptr = abbrev_start; |
|
89 #ifndef NDEBUG |
|
90 const uint64 abbrev_length = iter->second.second - header_.abbrev_offset; |
|
91 #endif |
|
92 |
|
93 while (1) { |
|
94 CompilationUnit::Abbrev abbrev; |
|
95 size_t len; |
|
96 const uint64 number = reader_->ReadUnsignedLEB128(abbrevptr, &len); |
|
97 |
|
98 if (number == 0) |
|
99 break; |
|
100 abbrev.number = number; |
|
101 abbrevptr += len; |
|
102 |
|
103 assert(abbrevptr < abbrev_start + abbrev_length); |
|
104 const uint64 tag = reader_->ReadUnsignedLEB128(abbrevptr, &len); |
|
105 abbrevptr += len; |
|
106 abbrev.tag = static_cast<enum DwarfTag>(tag); |
|
107 |
|
108 assert(abbrevptr < abbrev_start + abbrev_length); |
|
109 abbrev.has_children = reader_->ReadOneByte(abbrevptr); |
|
110 abbrevptr += 1; |
|
111 |
|
112 assert(abbrevptr < abbrev_start + abbrev_length); |
|
113 |
|
114 while (1) { |
|
115 const uint64 nametemp = reader_->ReadUnsignedLEB128(abbrevptr, &len); |
|
116 abbrevptr += len; |
|
117 |
|
118 assert(abbrevptr < abbrev_start + abbrev_length); |
|
119 const uint64 formtemp = reader_->ReadUnsignedLEB128(abbrevptr, &len); |
|
120 abbrevptr += len; |
|
121 if (nametemp == 0 && formtemp == 0) |
|
122 break; |
|
123 |
|
124 const enum DwarfAttribute name = |
|
125 static_cast<enum DwarfAttribute>(nametemp); |
|
126 const enum DwarfForm form = static_cast<enum DwarfForm>(formtemp); |
|
127 abbrev.attributes.push_back(std::make_pair(name, form)); |
|
128 } |
|
129 assert(abbrev.number == abbrevs_->size()); |
|
130 abbrevs_->push_back(abbrev); |
|
131 } |
|
132 } |
|
133 |
|
134 // Skips a single DIE's attributes. |
|
135 const char* CompilationUnit::SkipDIE(const char* start, |
|
136 const Abbrev& abbrev) { |
|
137 for (AttributeList::const_iterator i = abbrev.attributes.begin(); |
|
138 i != abbrev.attributes.end(); |
|
139 i++) { |
|
140 start = SkipAttribute(start, i->second); |
|
141 } |
|
142 return start; |
|
143 } |
|
144 |
|
145 // Skips a single attribute form's data. |
|
146 const char* CompilationUnit::SkipAttribute(const char* start, |
|
147 enum DwarfForm form) { |
|
148 size_t len; |
|
149 |
|
150 switch (form) { |
|
151 case DW_FORM_indirect: |
|
152 form = static_cast<enum DwarfForm>(reader_->ReadUnsignedLEB128(start, |
|
153 &len)); |
|
154 start += len; |
|
155 return SkipAttribute(start, form); |
|
156 |
|
157 case DW_FORM_flag_present: |
|
158 return start; |
|
159 case DW_FORM_data1: |
|
160 case DW_FORM_flag: |
|
161 case DW_FORM_ref1: |
|
162 return start + 1; |
|
163 case DW_FORM_ref2: |
|
164 case DW_FORM_data2: |
|
165 return start + 2; |
|
166 case DW_FORM_ref4: |
|
167 case DW_FORM_data4: |
|
168 return start + 4; |
|
169 case DW_FORM_ref8: |
|
170 case DW_FORM_data8: |
|
171 case DW_FORM_ref_sig8: |
|
172 return start + 8; |
|
173 case DW_FORM_string: |
|
174 return start + strlen(start) + 1; |
|
175 case DW_FORM_udata: |
|
176 case DW_FORM_ref_udata: |
|
177 reader_->ReadUnsignedLEB128(start, &len); |
|
178 return start + len; |
|
179 |
|
180 case DW_FORM_sdata: |
|
181 reader_->ReadSignedLEB128(start, &len); |
|
182 return start + len; |
|
183 case DW_FORM_addr: |
|
184 return start + reader_->AddressSize(); |
|
185 case DW_FORM_ref_addr: |
|
186 // DWARF2 and 3 differ on whether ref_addr is address size or |
|
187 // offset size. |
|
188 assert(header_.version == 2 || header_.version == 3); |
|
189 if (header_.version == 2) { |
|
190 return start + reader_->AddressSize(); |
|
191 } else if (header_.version == 3) { |
|
192 return start + reader_->OffsetSize(); |
|
193 } |
|
194 |
|
195 case DW_FORM_block1: |
|
196 return start + 1 + reader_->ReadOneByte(start); |
|
197 case DW_FORM_block2: |
|
198 return start + 2 + reader_->ReadTwoBytes(start); |
|
199 case DW_FORM_block4: |
|
200 return start + 4 + reader_->ReadFourBytes(start); |
|
201 case DW_FORM_block: |
|
202 case DW_FORM_exprloc: { |
|
203 uint64 size = reader_->ReadUnsignedLEB128(start, &len); |
|
204 return start + size + len; |
|
205 } |
|
206 case DW_FORM_strp: |
|
207 case DW_FORM_sec_offset: |
|
208 return start + reader_->OffsetSize(); |
|
209 } |
|
210 fprintf(stderr,"Unhandled form type"); |
|
211 return NULL; |
|
212 } |
|
213 |
|
214 // Read a DWARF2/3 header. |
|
215 // The header is variable length in DWARF3 (and DWARF2 as extended by |
|
216 // most compilers), and consists of an length field, a version number, |
|
217 // the offset in the .debug_abbrev section for our abbrevs, and an |
|
218 // address size. |
|
219 void CompilationUnit::ReadHeader() { |
|
220 const char* headerptr = buffer_; |
|
221 size_t initial_length_size; |
|
222 |
|
223 assert(headerptr + 4 < buffer_ + buffer_length_); |
|
224 const uint64 initial_length |
|
225 = reader_->ReadInitialLength(headerptr, &initial_length_size); |
|
226 headerptr += initial_length_size; |
|
227 header_.length = initial_length; |
|
228 |
|
229 assert(headerptr + 2 < buffer_ + buffer_length_); |
|
230 header_.version = reader_->ReadTwoBytes(headerptr); |
|
231 headerptr += 2; |
|
232 |
|
233 assert(headerptr + reader_->OffsetSize() < buffer_ + buffer_length_); |
|
234 header_.abbrev_offset = reader_->ReadOffset(headerptr); |
|
235 headerptr += reader_->OffsetSize(); |
|
236 |
|
237 assert(headerptr + 1 < buffer_ + buffer_length_); |
|
238 header_.address_size = reader_->ReadOneByte(headerptr); |
|
239 reader_->SetAddressSize(header_.address_size); |
|
240 headerptr += 1; |
|
241 |
|
242 after_header_ = headerptr; |
|
243 |
|
244 // This check ensures that we don't have to do checking during the |
|
245 // reading of DIEs. header_.length does not include the size of the |
|
246 // initial length. |
|
247 assert(buffer_ + initial_length_size + header_.length <= |
|
248 buffer_ + buffer_length_); |
|
249 } |
|
250 |
|
251 uint64 CompilationUnit::Start() { |
|
252 // First get the debug_info section. ".debug_info" is the name |
|
253 // recommended in the DWARF spec, and used on Linux; "__debug_info" |
|
254 // is the name used in Mac OS X Mach-O files. |
|
255 SectionMap::const_iterator iter = sections_.find(".debug_info"); |
|
256 if (iter == sections_.end()) |
|
257 iter = sections_.find("__debug_info"); |
|
258 assert(iter != sections_.end()); |
|
259 |
|
260 // Set up our buffer |
|
261 buffer_ = iter->second.first + offset_from_section_start_; |
|
262 buffer_length_ = iter->second.second - offset_from_section_start_; |
|
263 |
|
264 // Read the header |
|
265 ReadHeader(); |
|
266 |
|
267 // Figure out the real length from the end of the initial length to |
|
268 // the end of the compilation unit, since that is the value we |
|
269 // return. |
|
270 uint64 ourlength = header_.length; |
|
271 if (reader_->OffsetSize() == 8) |
|
272 ourlength += 12; |
|
273 else |
|
274 ourlength += 4; |
|
275 |
|
276 // See if the user wants this compilation unit, and if not, just return. |
|
277 if (!handler_->StartCompilationUnit(offset_from_section_start_, |
|
278 reader_->AddressSize(), |
|
279 reader_->OffsetSize(), |
|
280 header_.length, |
|
281 header_.version)) |
|
282 return ourlength; |
|
283 |
|
284 // Otherwise, continue by reading our abbreviation entries. |
|
285 ReadAbbrevs(); |
|
286 |
|
287 // Set the string section if we have one. ".debug_str" is the name |
|
288 // recommended in the DWARF spec, and used on Linux; "__debug_str" |
|
289 // is the name used in Mac OS X Mach-O files. |
|
290 iter = sections_.find(".debug_str"); |
|
291 if (iter == sections_.end()) |
|
292 iter = sections_.find("__debug_str"); |
|
293 if (iter != sections_.end()) { |
|
294 string_buffer_ = iter->second.first; |
|
295 string_buffer_length_ = iter->second.second; |
|
296 } |
|
297 |
|
298 // Now that we have our abbreviations, start processing DIE's. |
|
299 ProcessDIEs(); |
|
300 |
|
301 return ourlength; |
|
302 } |
|
303 |
|
304 // If one really wanted, you could merge SkipAttribute and |
|
305 // ProcessAttribute |
|
306 // This is all boring data manipulation and calling of the handler. |
|
307 const char* CompilationUnit::ProcessAttribute( |
|
308 uint64 dieoffset, const char* start, enum DwarfAttribute attr, |
|
309 enum DwarfForm form) { |
|
310 size_t len; |
|
311 |
|
312 switch (form) { |
|
313 // DW_FORM_indirect is never used because it is such a space |
|
314 // waster. |
|
315 case DW_FORM_indirect: |
|
316 form = static_cast<enum DwarfForm>(reader_->ReadUnsignedLEB128(start, |
|
317 &len)); |
|
318 start += len; |
|
319 return ProcessAttribute(dieoffset, start, attr, form); |
|
320 |
|
321 case DW_FORM_flag_present: |
|
322 handler_->ProcessAttributeUnsigned(dieoffset, attr, form, 1); |
|
323 return start; |
|
324 case DW_FORM_data1: |
|
325 case DW_FORM_flag: |
|
326 handler_->ProcessAttributeUnsigned(dieoffset, attr, form, |
|
327 reader_->ReadOneByte(start)); |
|
328 return start + 1; |
|
329 case DW_FORM_data2: |
|
330 handler_->ProcessAttributeUnsigned(dieoffset, attr, form, |
|
331 reader_->ReadTwoBytes(start)); |
|
332 return start + 2; |
|
333 case DW_FORM_data4: |
|
334 handler_->ProcessAttributeUnsigned(dieoffset, attr, form, |
|
335 reader_->ReadFourBytes(start)); |
|
336 return start + 4; |
|
337 case DW_FORM_data8: |
|
338 handler_->ProcessAttributeUnsigned(dieoffset, attr, form, |
|
339 reader_->ReadEightBytes(start)); |
|
340 return start + 8; |
|
341 case DW_FORM_string: { |
|
342 const char* str = start; |
|
343 handler_->ProcessAttributeString(dieoffset, attr, form, |
|
344 str); |
|
345 return start + strlen(str) + 1; |
|
346 } |
|
347 case DW_FORM_udata: |
|
348 handler_->ProcessAttributeUnsigned(dieoffset, attr, form, |
|
349 reader_->ReadUnsignedLEB128(start, |
|
350 &len)); |
|
351 return start + len; |
|
352 |
|
353 case DW_FORM_sdata: |
|
354 handler_->ProcessAttributeSigned(dieoffset, attr, form, |
|
355 reader_->ReadSignedLEB128(start, &len)); |
|
356 return start + len; |
|
357 case DW_FORM_addr: |
|
358 handler_->ProcessAttributeUnsigned(dieoffset, attr, form, |
|
359 reader_->ReadAddress(start)); |
|
360 return start + reader_->AddressSize(); |
|
361 case DW_FORM_sec_offset: |
|
362 handler_->ProcessAttributeUnsigned(dieoffset, attr, form, |
|
363 reader_->ReadOffset(start)); |
|
364 return start + reader_->OffsetSize(); |
|
365 |
|
366 case DW_FORM_ref1: |
|
367 handler_->ProcessAttributeReference(dieoffset, attr, form, |
|
368 reader_->ReadOneByte(start) |
|
369 + offset_from_section_start_); |
|
370 return start + 1; |
|
371 case DW_FORM_ref2: |
|
372 handler_->ProcessAttributeReference(dieoffset, attr, form, |
|
373 reader_->ReadTwoBytes(start) |
|
374 + offset_from_section_start_); |
|
375 return start + 2; |
|
376 case DW_FORM_ref4: |
|
377 handler_->ProcessAttributeReference(dieoffset, attr, form, |
|
378 reader_->ReadFourBytes(start) |
|
379 + offset_from_section_start_); |
|
380 return start + 4; |
|
381 case DW_FORM_ref8: |
|
382 handler_->ProcessAttributeReference(dieoffset, attr, form, |
|
383 reader_->ReadEightBytes(start) |
|
384 + offset_from_section_start_); |
|
385 return start + 8; |
|
386 case DW_FORM_ref_udata: |
|
387 handler_->ProcessAttributeReference(dieoffset, attr, form, |
|
388 reader_->ReadUnsignedLEB128(start, |
|
389 &len) |
|
390 + offset_from_section_start_); |
|
391 return start + len; |
|
392 case DW_FORM_ref_addr: |
|
393 // DWARF2 and 3 differ on whether ref_addr is address size or |
|
394 // offset size. |
|
395 assert(header_.version == 2 || header_.version == 3); |
|
396 if (header_.version == 2) { |
|
397 handler_->ProcessAttributeReference(dieoffset, attr, form, |
|
398 reader_->ReadAddress(start)); |
|
399 return start + reader_->AddressSize(); |
|
400 } else if (header_.version == 3) { |
|
401 handler_->ProcessAttributeReference(dieoffset, attr, form, |
|
402 reader_->ReadOffset(start)); |
|
403 return start + reader_->OffsetSize(); |
|
404 } |
|
405 break; |
|
406 case DW_FORM_ref_sig8: |
|
407 handler_->ProcessAttributeSignature(dieoffset, attr, form, |
|
408 reader_->ReadEightBytes(start)); |
|
409 return start + 8; |
|
410 |
|
411 case DW_FORM_block1: { |
|
412 uint64 datalen = reader_->ReadOneByte(start); |
|
413 handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 1, |
|
414 datalen); |
|
415 return start + 1 + datalen; |
|
416 } |
|
417 case DW_FORM_block2: { |
|
418 uint64 datalen = reader_->ReadTwoBytes(start); |
|
419 handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 2, |
|
420 datalen); |
|
421 return start + 2 + datalen; |
|
422 } |
|
423 case DW_FORM_block4: { |
|
424 uint64 datalen = reader_->ReadFourBytes(start); |
|
425 handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 4, |
|
426 datalen); |
|
427 return start + 4 + datalen; |
|
428 } |
|
429 case DW_FORM_block: |
|
430 case DW_FORM_exprloc: { |
|
431 uint64 datalen = reader_->ReadUnsignedLEB128(start, &len); |
|
432 handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + len, |
|
433 datalen); |
|
434 return start + datalen + len; |
|
435 } |
|
436 case DW_FORM_strp: { |
|
437 assert(string_buffer_ != NULL); |
|
438 |
|
439 const uint64 offset = reader_->ReadOffset(start); |
|
440 assert(string_buffer_ + offset < string_buffer_ + string_buffer_length_); |
|
441 |
|
442 const char* str = string_buffer_ + offset; |
|
443 handler_->ProcessAttributeString(dieoffset, attr, form, |
|
444 str); |
|
445 return start + reader_->OffsetSize(); |
|
446 } |
|
447 } |
|
448 fprintf(stderr, "Unhandled form type\n"); |
|
449 return NULL; |
|
450 } |
|
451 |
|
452 const char* CompilationUnit::ProcessDIE(uint64 dieoffset, |
|
453 const char* start, |
|
454 const Abbrev& abbrev) { |
|
455 for (AttributeList::const_iterator i = abbrev.attributes.begin(); |
|
456 i != abbrev.attributes.end(); |
|
457 i++) { |
|
458 start = ProcessAttribute(dieoffset, start, i->first, i->second); |
|
459 } |
|
460 return start; |
|
461 } |
|
462 |
|
463 void CompilationUnit::ProcessDIEs() { |
|
464 const char* dieptr = after_header_; |
|
465 size_t len; |
|
466 |
|
467 // lengthstart is the place the length field is based on. |
|
468 // It is the point in the header after the initial length field |
|
469 const char* lengthstart = buffer_; |
|
470 |
|
471 // In 64 bit dwarf, the initial length is 12 bytes, because of the |
|
472 // 0xffffffff at the start. |
|
473 if (reader_->OffsetSize() == 8) |
|
474 lengthstart += 12; |
|
475 else |
|
476 lengthstart += 4; |
|
477 |
|
478 std::stack<uint64> die_stack; |
|
479 |
|
480 while (dieptr < (lengthstart + header_.length)) { |
|
481 // We give the user the absolute offset from the beginning of |
|
482 // debug_info, since they need it to deal with ref_addr forms. |
|
483 uint64 absolute_offset = (dieptr - buffer_) + offset_from_section_start_; |
|
484 |
|
485 uint64 abbrev_num = reader_->ReadUnsignedLEB128(dieptr, &len); |
|
486 |
|
487 dieptr += len; |
|
488 |
|
489 // Abbrev == 0 represents the end of a list of children, or padding |
|
490 // at the end of the compilation unit. |
|
491 if (abbrev_num == 0) { |
|
492 if (die_stack.size() == 0) |
|
493 // If it is padding, then we are done with the compilation unit's DIEs. |
|
494 return; |
|
495 const uint64 offset = die_stack.top(); |
|
496 die_stack.pop(); |
|
497 handler_->EndDIE(offset); |
|
498 continue; |
|
499 } |
|
500 |
|
501 const Abbrev& abbrev = abbrevs_->at(static_cast<size_t>(abbrev_num)); |
|
502 const enum DwarfTag tag = abbrev.tag; |
|
503 if (!handler_->StartDIE(absolute_offset, tag)) { |
|
504 dieptr = SkipDIE(dieptr, abbrev); |
|
505 } else { |
|
506 dieptr = ProcessDIE(absolute_offset, dieptr, abbrev); |
|
507 } |
|
508 |
|
509 if (abbrev.has_children) { |
|
510 die_stack.push(absolute_offset); |
|
511 } else { |
|
512 handler_->EndDIE(absolute_offset); |
|
513 } |
|
514 } |
|
515 } |
|
516 |
|
517 LineInfo::LineInfo(const char* buffer, uint64 buffer_length, |
|
518 ByteReader* reader, LineInfoHandler* handler): |
|
519 handler_(handler), reader_(reader), buffer_(buffer), |
|
520 buffer_length_(buffer_length) { |
|
521 header_.std_opcode_lengths = NULL; |
|
522 } |
|
523 |
|
524 uint64 LineInfo::Start() { |
|
525 ReadHeader(); |
|
526 ReadLines(); |
|
527 return after_header_ - buffer_; |
|
528 } |
|
529 |
|
530 // The header for a debug_line section is mildly complicated, because |
|
531 // the line info is very tightly encoded. |
|
532 void LineInfo::ReadHeader() { |
|
533 const char* lineptr = buffer_; |
|
534 size_t initial_length_size; |
|
535 |
|
536 const uint64 initial_length |
|
537 = reader_->ReadInitialLength(lineptr, &initial_length_size); |
|
538 |
|
539 lineptr += initial_length_size; |
|
540 header_.total_length = initial_length; |
|
541 assert(buffer_ + initial_length_size + header_.total_length <= |
|
542 buffer_ + buffer_length_); |
|
543 |
|
544 // Address size *must* be set by CU ahead of time. |
|
545 assert(reader_->AddressSize() != 0); |
|
546 |
|
547 header_.version = reader_->ReadTwoBytes(lineptr); |
|
548 lineptr += 2; |
|
549 |
|
550 header_.prologue_length = reader_->ReadOffset(lineptr); |
|
551 lineptr += reader_->OffsetSize(); |
|
552 |
|
553 header_.min_insn_length = reader_->ReadOneByte(lineptr); |
|
554 lineptr += 1; |
|
555 |
|
556 header_.default_is_stmt = reader_->ReadOneByte(lineptr); |
|
557 lineptr += 1; |
|
558 |
|
559 header_.line_base = *reinterpret_cast<const int8*>(lineptr); |
|
560 lineptr += 1; |
|
561 |
|
562 header_.line_range = reader_->ReadOneByte(lineptr); |
|
563 lineptr += 1; |
|
564 |
|
565 header_.opcode_base = reader_->ReadOneByte(lineptr); |
|
566 lineptr += 1; |
|
567 |
|
568 header_.std_opcode_lengths = new std::vector<unsigned char>; |
|
569 header_.std_opcode_lengths->resize(header_.opcode_base + 1); |
|
570 (*header_.std_opcode_lengths)[0] = 0; |
|
571 for (int i = 1; i < header_.opcode_base; i++) { |
|
572 (*header_.std_opcode_lengths)[i] = reader_->ReadOneByte(lineptr); |
|
573 lineptr += 1; |
|
574 } |
|
575 |
|
576 // It is legal for the directory entry table to be empty. |
|
577 if (*lineptr) { |
|
578 uint32 dirindex = 1; |
|
579 while (*lineptr) { |
|
580 const char* dirname = lineptr; |
|
581 handler_->DefineDir(dirname, dirindex); |
|
582 lineptr += strlen(dirname) + 1; |
|
583 dirindex++; |
|
584 } |
|
585 } |
|
586 lineptr++; |
|
587 |
|
588 // It is also legal for the file entry table to be empty. |
|
589 if (*lineptr) { |
|
590 uint32 fileindex = 1; |
|
591 size_t len; |
|
592 while (*lineptr) { |
|
593 const char* filename = lineptr; |
|
594 lineptr += strlen(filename) + 1; |
|
595 |
|
596 uint64 dirindex = reader_->ReadUnsignedLEB128(lineptr, &len); |
|
597 lineptr += len; |
|
598 |
|
599 uint64 mod_time = reader_->ReadUnsignedLEB128(lineptr, &len); |
|
600 lineptr += len; |
|
601 |
|
602 uint64 filelength = reader_->ReadUnsignedLEB128(lineptr, &len); |
|
603 lineptr += len; |
|
604 handler_->DefineFile(filename, fileindex, static_cast<uint32>(dirindex), |
|
605 mod_time, filelength); |
|
606 fileindex++; |
|
607 } |
|
608 } |
|
609 lineptr++; |
|
610 |
|
611 after_header_ = lineptr; |
|
612 } |
|
613 |
|
614 /* static */ |
|
615 bool LineInfo::ProcessOneOpcode(ByteReader* reader, |
|
616 LineInfoHandler* handler, |
|
617 const struct LineInfoHeader &header, |
|
618 const char* start, |
|
619 struct LineStateMachine* lsm, |
|
620 size_t* len, |
|
621 uintptr pc, |
|
622 bool *lsm_passes_pc) { |
|
623 size_t oplen = 0; |
|
624 size_t templen; |
|
625 uint8 opcode = reader->ReadOneByte(start); |
|
626 oplen++; |
|
627 start++; |
|
628 |
|
629 // If the opcode is great than the opcode_base, it is a special |
|
630 // opcode. Most line programs consist mainly of special opcodes. |
|
631 if (opcode >= header.opcode_base) { |
|
632 opcode -= header.opcode_base; |
|
633 const int64 advance_address = (opcode / header.line_range) |
|
634 * header.min_insn_length; |
|
635 const int32 advance_line = (opcode % header.line_range) |
|
636 + header.line_base; |
|
637 |
|
638 // Check if the lsm passes "pc". If so, mark it as passed. |
|
639 if (lsm_passes_pc && |
|
640 lsm->address <= pc && pc < lsm->address + advance_address) { |
|
641 *lsm_passes_pc = true; |
|
642 } |
|
643 |
|
644 lsm->address += advance_address; |
|
645 lsm->line_num += advance_line; |
|
646 lsm->basic_block = true; |
|
647 *len = oplen; |
|
648 return true; |
|
649 } |
|
650 |
|
651 // Otherwise, we have the regular opcodes |
|
652 switch (opcode) { |
|
653 case DW_LNS_copy: { |
|
654 lsm->basic_block = false; |
|
655 *len = oplen; |
|
656 return true; |
|
657 } |
|
658 |
|
659 case DW_LNS_advance_pc: { |
|
660 uint64 advance_address = reader->ReadUnsignedLEB128(start, &templen); |
|
661 oplen += templen; |
|
662 |
|
663 // Check if the lsm passes "pc". If so, mark it as passed. |
|
664 if (lsm_passes_pc && lsm->address <= pc && |
|
665 pc < lsm->address + header.min_insn_length * advance_address) { |
|
666 *lsm_passes_pc = true; |
|
667 } |
|
668 |
|
669 lsm->address += header.min_insn_length * advance_address; |
|
670 } |
|
671 break; |
|
672 case DW_LNS_advance_line: { |
|
673 const int64 advance_line = reader->ReadSignedLEB128(start, &templen); |
|
674 oplen += templen; |
|
675 lsm->line_num += static_cast<int32>(advance_line); |
|
676 |
|
677 // With gcc 4.2.1, we can get the line_no here for the first time |
|
678 // since DW_LNS_advance_line is called after DW_LNE_set_address is |
|
679 // called. So we check if the lsm passes "pc" here, not in |
|
680 // DW_LNE_set_address. |
|
681 if (lsm_passes_pc && lsm->address == pc) { |
|
682 *lsm_passes_pc = true; |
|
683 } |
|
684 } |
|
685 break; |
|
686 case DW_LNS_set_file: { |
|
687 const uint64 fileno = reader->ReadUnsignedLEB128(start, &templen); |
|
688 oplen += templen; |
|
689 lsm->file_num = static_cast<uint32>(fileno); |
|
690 } |
|
691 break; |
|
692 case DW_LNS_set_column: { |
|
693 const uint64 colno = reader->ReadUnsignedLEB128(start, &templen); |
|
694 oplen += templen; |
|
695 lsm->column_num = static_cast<uint32>(colno); |
|
696 } |
|
697 break; |
|
698 case DW_LNS_negate_stmt: { |
|
699 lsm->is_stmt = !lsm->is_stmt; |
|
700 } |
|
701 break; |
|
702 case DW_LNS_set_basic_block: { |
|
703 lsm->basic_block = true; |
|
704 } |
|
705 break; |
|
706 case DW_LNS_fixed_advance_pc: { |
|
707 const uint16 advance_address = reader->ReadTwoBytes(start); |
|
708 oplen += 2; |
|
709 |
|
710 // Check if the lsm passes "pc". If so, mark it as passed. |
|
711 if (lsm_passes_pc && |
|
712 lsm->address <= pc && pc < lsm->address + advance_address) { |
|
713 *lsm_passes_pc = true; |
|
714 } |
|
715 |
|
716 lsm->address += advance_address; |
|
717 } |
|
718 break; |
|
719 case DW_LNS_const_add_pc: { |
|
720 const int64 advance_address = header.min_insn_length |
|
721 * ((255 - header.opcode_base) |
|
722 / header.line_range); |
|
723 |
|
724 // Check if the lsm passes "pc". If so, mark it as passed. |
|
725 if (lsm_passes_pc && |
|
726 lsm->address <= pc && pc < lsm->address + advance_address) { |
|
727 *lsm_passes_pc = true; |
|
728 } |
|
729 |
|
730 lsm->address += advance_address; |
|
731 } |
|
732 break; |
|
733 case DW_LNS_extended_op: { |
|
734 const uint64 extended_op_len = reader->ReadUnsignedLEB128(start, |
|
735 &templen); |
|
736 start += templen; |
|
737 oplen += templen + extended_op_len; |
|
738 |
|
739 const uint64 extended_op = reader->ReadOneByte(start); |
|
740 start++; |
|
741 |
|
742 switch (extended_op) { |
|
743 case DW_LNE_end_sequence: { |
|
744 lsm->end_sequence = true; |
|
745 *len = oplen; |
|
746 return true; |
|
747 } |
|
748 break; |
|
749 case DW_LNE_set_address: { |
|
750 // With gcc 4.2.1, we cannot tell the line_no here since |
|
751 // DW_LNE_set_address is called before DW_LNS_advance_line is |
|
752 // called. So we do not check if the lsm passes "pc" here. See |
|
753 // also the comment in DW_LNS_advance_line. |
|
754 uint64 address = reader->ReadAddress(start); |
|
755 lsm->address = address; |
|
756 } |
|
757 break; |
|
758 case DW_LNE_define_file: { |
|
759 const char* filename = start; |
|
760 |
|
761 templen = strlen(filename) + 1; |
|
762 start += templen; |
|
763 |
|
764 uint64 dirindex = reader->ReadUnsignedLEB128(start, &templen); |
|
765 oplen += templen; |
|
766 |
|
767 const uint64 mod_time = reader->ReadUnsignedLEB128(start, |
|
768 &templen); |
|
769 oplen += templen; |
|
770 |
|
771 const uint64 filelength = reader->ReadUnsignedLEB128(start, |
|
772 &templen); |
|
773 oplen += templen; |
|
774 |
|
775 if (handler) { |
|
776 handler->DefineFile(filename, -1, static_cast<uint32>(dirindex), |
|
777 mod_time, filelength); |
|
778 } |
|
779 } |
|
780 break; |
|
781 } |
|
782 } |
|
783 break; |
|
784 |
|
785 default: { |
|
786 // Ignore unknown opcode silently |
|
787 if (header.std_opcode_lengths) { |
|
788 for (int i = 0; i < (*header.std_opcode_lengths)[opcode]; i++) { |
|
789 reader->ReadUnsignedLEB128(start, &templen); |
|
790 start += templen; |
|
791 oplen += templen; |
|
792 } |
|
793 } |
|
794 } |
|
795 break; |
|
796 } |
|
797 *len = oplen; |
|
798 return false; |
|
799 } |
|
800 |
|
801 void LineInfo::ReadLines() { |
|
802 struct LineStateMachine lsm; |
|
803 |
|
804 // lengthstart is the place the length field is based on. |
|
805 // It is the point in the header after the initial length field |
|
806 const char* lengthstart = buffer_; |
|
807 |
|
808 // In 64 bit dwarf, the initial length is 12 bytes, because of the |
|
809 // 0xffffffff at the start. |
|
810 if (reader_->OffsetSize() == 8) |
|
811 lengthstart += 12; |
|
812 else |
|
813 lengthstart += 4; |
|
814 |
|
815 const char* lineptr = after_header_; |
|
816 lsm.Reset(header_.default_is_stmt); |
|
817 |
|
818 // The LineInfoHandler interface expects each line's length along |
|
819 // with its address, but DWARF only provides addresses (sans |
|
820 // length), and an end-of-sequence address; one infers the length |
|
821 // from the next address. So we report a line only when we get the |
|
822 // next line's address, or the end-of-sequence address. |
|
823 bool have_pending_line = false; |
|
824 uint64 pending_address = 0; |
|
825 uint32 pending_file_num = 0, pending_line_num = 0, pending_column_num = 0; |
|
826 |
|
827 while (lineptr < lengthstart + header_.total_length) { |
|
828 size_t oplength; |
|
829 bool add_row = ProcessOneOpcode(reader_, handler_, header_, |
|
830 lineptr, &lsm, &oplength, (uintptr)-1, |
|
831 NULL); |
|
832 if (add_row) { |
|
833 if (have_pending_line) |
|
834 handler_->AddLine(pending_address, lsm.address - pending_address, |
|
835 pending_file_num, pending_line_num, |
|
836 pending_column_num); |
|
837 if (lsm.end_sequence) { |
|
838 lsm.Reset(header_.default_is_stmt); |
|
839 have_pending_line = false; |
|
840 } else { |
|
841 pending_address = lsm.address; |
|
842 pending_file_num = lsm.file_num; |
|
843 pending_line_num = lsm.line_num; |
|
844 pending_column_num = lsm.column_num; |
|
845 have_pending_line = true; |
|
846 } |
|
847 } |
|
848 lineptr += oplength; |
|
849 } |
|
850 |
|
851 after_header_ = lengthstart + header_.total_length; |
|
852 } |
|
853 |
|
854 // A DWARF rule for recovering the address or value of a register, or |
|
855 // computing the canonical frame address. There is one subclass of this for |
|
856 // each '*Rule' member function in CallFrameInfo::Handler. |
|
857 // |
|
858 // It's annoying that we have to handle Rules using pointers (because |
|
859 // the concrete instances can have an arbitrary size). They're small, |
|
860 // so it would be much nicer if we could just handle them by value |
|
861 // instead of fretting about ownership and destruction. |
|
862 // |
|
863 // It seems like all these could simply be instances of std::tr1::bind, |
|
864 // except that we need instances to be EqualityComparable, too. |
|
865 // |
|
866 // This could logically be nested within State, but then the qualified names |
|
867 // get horrendous. |
|
868 class CallFrameInfo::Rule { |
|
869 public: |
|
870 virtual ~Rule() { } |
|
871 |
|
872 // Tell HANDLER that, at ADDRESS in the program, REGISTER can be |
|
873 // recovered using this rule. If REGISTER is kCFARegister, then this rule |
|
874 // describes how to compute the canonical frame address. Return what the |
|
875 // HANDLER member function returned. |
|
876 virtual bool Handle(Handler *handler, |
|
877 uint64 address, int register) const = 0; |
|
878 |
|
879 // Equality on rules. We use these to decide which rules we need |
|
880 // to report after a DW_CFA_restore_state instruction. |
|
881 virtual bool operator==(const Rule &rhs) const = 0; |
|
882 |
|
883 bool operator!=(const Rule &rhs) const { return ! (*this == rhs); } |
|
884 |
|
885 // Return a pointer to a copy of this rule. |
|
886 virtual Rule *Copy() const = 0; |
|
887 |
|
888 // If this is a base+offset rule, change its base register to REG. |
|
889 // Otherwise, do nothing. (Ugly, but required for DW_CFA_def_cfa_register.) |
|
890 virtual void SetBaseRegister(unsigned reg) { } |
|
891 |
|
892 // If this is a base+offset rule, change its offset to OFFSET. Otherwise, |
|
893 // do nothing. (Ugly, but required for DW_CFA_def_cfa_offset.) |
|
894 virtual void SetOffset(long long offset) { } |
|
895 |
|
896 // A RTTI workaround, to make it possible to implement equality |
|
897 // comparisons on classes derived from this one. |
|
898 enum CFIRTag { |
|
899 CFIR_UNDEFINED_RULE, |
|
900 CFIR_SAME_VALUE_RULE, |
|
901 CFIR_OFFSET_RULE, |
|
902 CFIR_VAL_OFFSET_RULE, |
|
903 CFIR_REGISTER_RULE, |
|
904 CFIR_EXPRESSION_RULE, |
|
905 CFIR_VAL_EXPRESSION_RULE |
|
906 }; |
|
907 |
|
908 // Produce the tag that identifies the child class of this object. |
|
909 virtual CFIRTag getTag() const = 0; |
|
910 }; |
|
911 |
|
912 // Rule: the value the register had in the caller cannot be recovered. |
|
913 class CallFrameInfo::UndefinedRule: public CallFrameInfo::Rule { |
|
914 public: |
|
915 UndefinedRule() { } |
|
916 ~UndefinedRule() { } |
|
917 CFIRTag getTag() const { return CFIR_UNDEFINED_RULE; } |
|
918 bool Handle(Handler *handler, uint64 address, int reg) const { |
|
919 return handler->UndefinedRule(address, reg); |
|
920 } |
|
921 bool operator==(const Rule &rhs) const { |
|
922 if (rhs.getTag() != CFIR_UNDEFINED_RULE) return false; |
|
923 return true; |
|
924 } |
|
925 Rule *Copy() const { return new UndefinedRule(*this); } |
|
926 }; |
|
927 |
|
928 // Rule: the register's value is the same as that it had in the caller. |
|
929 class CallFrameInfo::SameValueRule: public CallFrameInfo::Rule { |
|
930 public: |
|
931 SameValueRule() { } |
|
932 ~SameValueRule() { } |
|
933 CFIRTag getTag() const { return CFIR_SAME_VALUE_RULE; } |
|
934 bool Handle(Handler *handler, uint64 address, int reg) const { |
|
935 return handler->SameValueRule(address, reg); |
|
936 } |
|
937 bool operator==(const Rule &rhs) const { |
|
938 if (rhs.getTag() != CFIR_SAME_VALUE_RULE) return false; |
|
939 return true; |
|
940 } |
|
941 Rule *Copy() const { return new SameValueRule(*this); } |
|
942 }; |
|
943 |
|
944 // Rule: the register is saved at OFFSET from BASE_REGISTER. BASE_REGISTER |
|
945 // may be CallFrameInfo::Handler::kCFARegister. |
|
946 class CallFrameInfo::OffsetRule: public CallFrameInfo::Rule { |
|
947 public: |
|
948 OffsetRule(int base_register, long offset) |
|
949 : base_register_(base_register), offset_(offset) { } |
|
950 ~OffsetRule() { } |
|
951 CFIRTag getTag() const { return CFIR_OFFSET_RULE; } |
|
952 bool Handle(Handler *handler, uint64 address, int reg) const { |
|
953 return handler->OffsetRule(address, reg, base_register_, offset_); |
|
954 } |
|
955 bool operator==(const Rule &rhs) const { |
|
956 if (rhs.getTag() != CFIR_OFFSET_RULE) return false; |
|
957 const OffsetRule *our_rhs = static_cast<const OffsetRule *>(&rhs); |
|
958 return (base_register_ == our_rhs->base_register_ && |
|
959 offset_ == our_rhs->offset_); |
|
960 } |
|
961 Rule *Copy() const { return new OffsetRule(*this); } |
|
962 // We don't actually need SetBaseRegister or SetOffset here, since they |
|
963 // are only ever applied to CFA rules, for DW_CFA_def_cfa_offset, and it |
|
964 // doesn't make sense to use OffsetRule for computing the CFA: it |
|
965 // computes the address at which a register is saved, not a value. |
|
966 private: |
|
967 int base_register_; |
|
968 long offset_; |
|
969 }; |
|
970 |
|
971 // Rule: the value the register had in the caller is the value of |
|
972 // BASE_REGISTER plus offset. BASE_REGISTER may be |
|
973 // CallFrameInfo::Handler::kCFARegister. |
|
974 class CallFrameInfo::ValOffsetRule: public CallFrameInfo::Rule { |
|
975 public: |
|
976 ValOffsetRule(int base_register, long offset) |
|
977 : base_register_(base_register), offset_(offset) { } |
|
978 ~ValOffsetRule() { } |
|
979 CFIRTag getTag() const { return CFIR_VAL_OFFSET_RULE; } |
|
980 bool Handle(Handler *handler, uint64 address, int reg) const { |
|
981 return handler->ValOffsetRule(address, reg, base_register_, offset_); |
|
982 } |
|
983 bool operator==(const Rule &rhs) const { |
|
984 if (rhs.getTag() != CFIR_VAL_OFFSET_RULE) return false; |
|
985 const ValOffsetRule *our_rhs = static_cast<const ValOffsetRule *>(&rhs); |
|
986 return (base_register_ == our_rhs->base_register_ && |
|
987 offset_ == our_rhs->offset_); |
|
988 } |
|
989 Rule *Copy() const { return new ValOffsetRule(*this); } |
|
990 void SetBaseRegister(unsigned reg) { base_register_ = reg; } |
|
991 void SetOffset(long long offset) { offset_ = offset; } |
|
992 private: |
|
993 int base_register_; |
|
994 long offset_; |
|
995 }; |
|
996 |
|
997 // Rule: the register has been saved in another register REGISTER_NUMBER_. |
|
998 class CallFrameInfo::RegisterRule: public CallFrameInfo::Rule { |
|
999 public: |
|
1000 explicit RegisterRule(int register_number) |
|
1001 : register_number_(register_number) { } |
|
1002 ~RegisterRule() { } |
|
1003 CFIRTag getTag() const { return CFIR_REGISTER_RULE; } |
|
1004 bool Handle(Handler *handler, uint64 address, int reg) const { |
|
1005 return handler->RegisterRule(address, reg, register_number_); |
|
1006 } |
|
1007 bool operator==(const Rule &rhs) const { |
|
1008 if (rhs.getTag() != CFIR_REGISTER_RULE) return false; |
|
1009 const RegisterRule *our_rhs = static_cast<const RegisterRule *>(&rhs); |
|
1010 return (register_number_ == our_rhs->register_number_); |
|
1011 } |
|
1012 Rule *Copy() const { return new RegisterRule(*this); } |
|
1013 private: |
|
1014 int register_number_; |
|
1015 }; |
|
1016 |
|
1017 // Rule: EXPRESSION evaluates to the address at which the register is saved. |
|
1018 class CallFrameInfo::ExpressionRule: public CallFrameInfo::Rule { |
|
1019 public: |
|
1020 explicit ExpressionRule(const string &expression) |
|
1021 : expression_(expression) { } |
|
1022 ~ExpressionRule() { } |
|
1023 CFIRTag getTag() const { return CFIR_EXPRESSION_RULE; } |
|
1024 bool Handle(Handler *handler, uint64 address, int reg) const { |
|
1025 return handler->ExpressionRule(address, reg, expression_); |
|
1026 } |
|
1027 bool operator==(const Rule &rhs) const { |
|
1028 if (rhs.getTag() != CFIR_EXPRESSION_RULE) return false; |
|
1029 const ExpressionRule *our_rhs = static_cast<const ExpressionRule *>(&rhs); |
|
1030 return (expression_ == our_rhs->expression_); |
|
1031 } |
|
1032 Rule *Copy() const { return new ExpressionRule(*this); } |
|
1033 private: |
|
1034 string expression_; |
|
1035 }; |
|
1036 |
|
1037 // Rule: EXPRESSION evaluates to the address at which the register is saved. |
|
1038 class CallFrameInfo::ValExpressionRule: public CallFrameInfo::Rule { |
|
1039 public: |
|
1040 explicit ValExpressionRule(const string &expression) |
|
1041 : expression_(expression) { } |
|
1042 ~ValExpressionRule() { } |
|
1043 CFIRTag getTag() const { return CFIR_VAL_EXPRESSION_RULE; } |
|
1044 bool Handle(Handler *handler, uint64 address, int reg) const { |
|
1045 return handler->ValExpressionRule(address, reg, expression_); |
|
1046 } |
|
1047 bool operator==(const Rule &rhs) const { |
|
1048 if (rhs.getTag() != CFIR_VAL_EXPRESSION_RULE) return false; |
|
1049 const ValExpressionRule *our_rhs = |
|
1050 static_cast<const ValExpressionRule *>(&rhs); |
|
1051 return (expression_ == our_rhs->expression_); |
|
1052 } |
|
1053 Rule *Copy() const { return new ValExpressionRule(*this); } |
|
1054 private: |
|
1055 string expression_; |
|
1056 }; |
|
1057 |
|
1058 // A map from register numbers to rules. |
|
1059 class CallFrameInfo::RuleMap { |
|
1060 public: |
|
1061 RuleMap() : cfa_rule_(NULL) { } |
|
1062 RuleMap(const RuleMap &rhs) : cfa_rule_(NULL) { *this = rhs; } |
|
1063 ~RuleMap() { Clear(); } |
|
1064 |
|
1065 RuleMap &operator=(const RuleMap &rhs); |
|
1066 |
|
1067 // Set the rule for computing the CFA to RULE. Take ownership of RULE. |
|
1068 void SetCFARule(Rule *rule) { delete cfa_rule_; cfa_rule_ = rule; } |
|
1069 |
|
1070 // Return the current CFA rule. Unlike RegisterRule, this RuleMap retains |
|
1071 // ownership of the rule. We use this for DW_CFA_def_cfa_offset and |
|
1072 // DW_CFA_def_cfa_register, and for detecting references to the CFA before |
|
1073 // a rule for it has been established. |
|
1074 Rule *CFARule() const { return cfa_rule_; } |
|
1075 |
|
1076 // Return the rule for REG, or NULL if there is none. The caller takes |
|
1077 // ownership of the result. |
|
1078 Rule *RegisterRule(int reg) const; |
|
1079 |
|
1080 // Set the rule for computing REG to RULE. Take ownership of RULE. |
|
1081 void SetRegisterRule(int reg, Rule *rule); |
|
1082 |
|
1083 // Make all the appropriate calls to HANDLER as if we were changing from |
|
1084 // this RuleMap to NEW_RULES at ADDRESS. We use this to implement |
|
1085 // DW_CFA_restore_state, where lots of rules can change simultaneously. |
|
1086 // Return true if all handlers returned true; otherwise, return false. |
|
1087 bool HandleTransitionTo(Handler *handler, uint64 address, |
|
1088 const RuleMap &new_rules) const; |
|
1089 |
|
1090 private: |
|
1091 // A map from register numbers to Rules. |
|
1092 typedef std::map<int, Rule *> RuleByNumber; |
|
1093 |
|
1094 // Remove all register rules and clear cfa_rule_. |
|
1095 void Clear(); |
|
1096 |
|
1097 // The rule for computing the canonical frame address. This RuleMap owns |
|
1098 // this rule. |
|
1099 Rule *cfa_rule_; |
|
1100 |
|
1101 // A map from register numbers to postfix expressions to recover |
|
1102 // their values. This RuleMap owns the Rules the map refers to. |
|
1103 RuleByNumber registers_; |
|
1104 }; |
|
1105 |
|
1106 CallFrameInfo::RuleMap &CallFrameInfo::RuleMap::operator=(const RuleMap &rhs) { |
|
1107 Clear(); |
|
1108 // Since each map owns the rules it refers to, assignment must copy them. |
|
1109 if (rhs.cfa_rule_) cfa_rule_ = rhs.cfa_rule_->Copy(); |
|
1110 for (RuleByNumber::const_iterator it = rhs.registers_.begin(); |
|
1111 it != rhs.registers_.end(); it++) |
|
1112 registers_[it->first] = it->second->Copy(); |
|
1113 return *this; |
|
1114 } |
|
1115 |
|
1116 CallFrameInfo::Rule *CallFrameInfo::RuleMap::RegisterRule(int reg) const { |
|
1117 assert(reg != Handler::kCFARegister); |
|
1118 RuleByNumber::const_iterator it = registers_.find(reg); |
|
1119 if (it != registers_.end()) |
|
1120 return it->second->Copy(); |
|
1121 else |
|
1122 return NULL; |
|
1123 } |
|
1124 |
|
1125 void CallFrameInfo::RuleMap::SetRegisterRule(int reg, Rule *rule) { |
|
1126 assert(reg != Handler::kCFARegister); |
|
1127 assert(rule); |
|
1128 Rule **slot = ®isters_[reg]; |
|
1129 delete *slot; |
|
1130 *slot = rule; |
|
1131 } |
|
1132 |
|
1133 bool CallFrameInfo::RuleMap::HandleTransitionTo( |
|
1134 Handler *handler, |
|
1135 uint64 address, |
|
1136 const RuleMap &new_rules) const { |
|
1137 // Transition from cfa_rule_ to new_rules.cfa_rule_. |
|
1138 if (cfa_rule_ && new_rules.cfa_rule_) { |
|
1139 if (*cfa_rule_ != *new_rules.cfa_rule_ && |
|
1140 !new_rules.cfa_rule_->Handle(handler, address, |
|
1141 Handler::kCFARegister)) |
|
1142 return false; |
|
1143 } else if (cfa_rule_) { |
|
1144 // this RuleMap has a CFA rule but new_rules doesn't. |
|
1145 // CallFrameInfo::Handler has no way to handle this --- and shouldn't; |
|
1146 // it's garbage input. The instruction interpreter should have |
|
1147 // detected this and warned, so take no action here. |
|
1148 } else if (new_rules.cfa_rule_) { |
|
1149 // This shouldn't be possible: NEW_RULES is some prior state, and |
|
1150 // there's no way to remove entries. |
|
1151 assert(0); |
|
1152 } else { |
|
1153 // Both CFA rules are empty. No action needed. |
|
1154 } |
|
1155 |
|
1156 // Traverse the two maps in order by register number, and report |
|
1157 // whatever differences we find. |
|
1158 RuleByNumber::const_iterator old_it = registers_.begin(); |
|
1159 RuleByNumber::const_iterator new_it = new_rules.registers_.begin(); |
|
1160 while (old_it != registers_.end() && new_it != new_rules.registers_.end()) { |
|
1161 if (old_it->first < new_it->first) { |
|
1162 // This RuleMap has an entry for old_it->first, but NEW_RULES |
|
1163 // doesn't. |
|
1164 // |
|
1165 // This isn't really the right thing to do, but since CFI generally |
|
1166 // only mentions callee-saves registers, and GCC's convention for |
|
1167 // callee-saves registers is that they are unchanged, it's a good |
|
1168 // approximation. |
|
1169 if (!handler->SameValueRule(address, old_it->first)) |
|
1170 return false; |
|
1171 old_it++; |
|
1172 } else if (old_it->first > new_it->first) { |
|
1173 // NEW_RULES has entry for new_it->first, but this RuleMap |
|
1174 // doesn't. This shouldn't be possible: NEW_RULES is some prior |
|
1175 // state, and there's no way to remove entries. |
|
1176 assert(0); |
|
1177 } else { |
|
1178 // Both maps have an entry for this register. Report the new |
|
1179 // rule if it is different. |
|
1180 if (*old_it->second != *new_it->second && |
|
1181 !new_it->second->Handle(handler, address, new_it->first)) |
|
1182 return false; |
|
1183 new_it++, old_it++; |
|
1184 } |
|
1185 } |
|
1186 // Finish off entries from this RuleMap with no counterparts in new_rules. |
|
1187 while (old_it != registers_.end()) { |
|
1188 if (!handler->SameValueRule(address, old_it->first)) |
|
1189 return false; |
|
1190 old_it++; |
|
1191 } |
|
1192 // Since we only make transitions from a rule set to some previously |
|
1193 // saved rule set, and we can only add rules to the map, NEW_RULES |
|
1194 // must have fewer rules than *this. |
|
1195 assert(new_it == new_rules.registers_.end()); |
|
1196 |
|
1197 return true; |
|
1198 } |
|
1199 |
|
1200 // Remove all register rules and clear cfa_rule_. |
|
1201 void CallFrameInfo::RuleMap::Clear() { |
|
1202 delete cfa_rule_; |
|
1203 cfa_rule_ = NULL; |
|
1204 for (RuleByNumber::iterator it = registers_.begin(); |
|
1205 it != registers_.end(); it++) |
|
1206 delete it->second; |
|
1207 registers_.clear(); |
|
1208 } |
|
1209 |
|
1210 // The state of the call frame information interpreter as it processes |
|
1211 // instructions from a CIE and FDE. |
|
1212 class CallFrameInfo::State { |
|
1213 public: |
|
1214 // Create a call frame information interpreter state with the given |
|
1215 // reporter, reader, handler, and initial call frame info address. |
|
1216 State(ByteReader *reader, Handler *handler, Reporter *reporter, |
|
1217 uint64 address) |
|
1218 : reader_(reader), handler_(handler), reporter_(reporter), |
|
1219 address_(address), entry_(NULL), cursor_(NULL) { } |
|
1220 |
|
1221 // Interpret instructions from CIE, save the resulting rule set for |
|
1222 // DW_CFA_restore instructions, and return true. On error, report |
|
1223 // the problem to reporter_ and return false. |
|
1224 bool InterpretCIE(const CIE &cie); |
|
1225 |
|
1226 // Interpret instructions from FDE, and return true. On error, |
|
1227 // report the problem to reporter_ and return false. |
|
1228 bool InterpretFDE(const FDE &fde); |
|
1229 |
|
1230 private: |
|
1231 // The operands of a CFI instruction, for ParseOperands. |
|
1232 struct Operands { |
|
1233 unsigned register_number; // A register number. |
|
1234 uint64 offset; // An offset or address. |
|
1235 long signed_offset; // A signed offset. |
|
1236 string expression; // A DWARF expression. |
|
1237 }; |
|
1238 |
|
1239 // Parse CFI instruction operands from STATE's instruction stream as |
|
1240 // described by FORMAT. On success, populate OPERANDS with the |
|
1241 // results, and return true. On failure, report the problem and |
|
1242 // return false. |
|
1243 // |
|
1244 // Each character of FORMAT should be one of the following: |
|
1245 // |
|
1246 // 'r' unsigned LEB128 register number (OPERANDS->register_number) |
|
1247 // 'o' unsigned LEB128 offset (OPERANDS->offset) |
|
1248 // 's' signed LEB128 offset (OPERANDS->signed_offset) |
|
1249 // 'a' machine-size address (OPERANDS->offset) |
|
1250 // (If the CIE has a 'z' augmentation string, 'a' uses the |
|
1251 // encoding specified by the 'R' argument.) |
|
1252 // '1' a one-byte offset (OPERANDS->offset) |
|
1253 // '2' a two-byte offset (OPERANDS->offset) |
|
1254 // '4' a four-byte offset (OPERANDS->offset) |
|
1255 // '8' an eight-byte offset (OPERANDS->offset) |
|
1256 // 'e' a DW_FORM_block holding a (OPERANDS->expression) |
|
1257 // DWARF expression |
|
1258 bool ParseOperands(const char *format, Operands *operands); |
|
1259 |
|
1260 // Interpret one CFI instruction from STATE's instruction stream, update |
|
1261 // STATE, report any rule changes to handler_, and return true. On |
|
1262 // failure, report the problem and return false. |
|
1263 bool DoInstruction(); |
|
1264 |
|
1265 // The following Do* member functions are subroutines of DoInstruction, |
|
1266 // factoring out the actual work of operations that have several |
|
1267 // different encodings. |
|
1268 |
|
1269 // Set the CFA rule to be the value of BASE_REGISTER plus OFFSET, and |
|
1270 // return true. On failure, report and return false. (Used for |
|
1271 // DW_CFA_def_cfa and DW_CFA_def_cfa_sf.) |
|
1272 bool DoDefCFA(unsigned base_register, long offset); |
|
1273 |
|
1274 // Change the offset of the CFA rule to OFFSET, and return true. On |
|
1275 // failure, report and return false. (Subroutine for |
|
1276 // DW_CFA_def_cfa_offset and DW_CFA_def_cfa_offset_sf.) |
|
1277 bool DoDefCFAOffset(long offset); |
|
1278 |
|
1279 // Specify that REG can be recovered using RULE, and return true. On |
|
1280 // failure, report and return false. |
|
1281 bool DoRule(unsigned reg, Rule *rule); |
|
1282 |
|
1283 // Specify that REG can be found at OFFSET from the CFA, and return true. |
|
1284 // On failure, report and return false. (Subroutine for DW_CFA_offset, |
|
1285 // DW_CFA_offset_extended, and DW_CFA_offset_extended_sf.) |
|
1286 bool DoOffset(unsigned reg, long offset); |
|
1287 |
|
1288 // Specify that the caller's value for REG is the CFA plus OFFSET, |
|
1289 // and return true. On failure, report and return false. (Subroutine |
|
1290 // for DW_CFA_val_offset and DW_CFA_val_offset_sf.) |
|
1291 bool DoValOffset(unsigned reg, long offset); |
|
1292 |
|
1293 // Restore REG to the rule established in the CIE, and return true. On |
|
1294 // failure, report and return false. (Subroutine for DW_CFA_restore and |
|
1295 // DW_CFA_restore_extended.) |
|
1296 bool DoRestore(unsigned reg); |
|
1297 |
|
1298 // Return the section offset of the instruction at cursor. For use |
|
1299 // in error messages. |
|
1300 uint64 CursorOffset() { return entry_->offset + (cursor_ - entry_->start); } |
|
1301 |
|
1302 // Report that entry_ is incomplete, and return false. For brevity. |
|
1303 bool ReportIncomplete() { |
|
1304 reporter_->Incomplete(entry_->offset, entry_->kind); |
|
1305 return false; |
|
1306 } |
|
1307 |
|
1308 // For reading multi-byte values with the appropriate endianness. |
|
1309 ByteReader *reader_; |
|
1310 |
|
1311 // The handler to which we should report the data we find. |
|
1312 Handler *handler_; |
|
1313 |
|
1314 // For reporting problems in the info we're parsing. |
|
1315 Reporter *reporter_; |
|
1316 |
|
1317 // The code address to which the next instruction in the stream applies. |
|
1318 uint64 address_; |
|
1319 |
|
1320 // The entry whose instructions we are currently processing. This is |
|
1321 // first a CIE, and then an FDE. |
|
1322 const Entry *entry_; |
|
1323 |
|
1324 // The next instruction to process. |
|
1325 const char *cursor_; |
|
1326 |
|
1327 // The current set of rules. |
|
1328 RuleMap rules_; |
|
1329 |
|
1330 // The set of rules established by the CIE, used by DW_CFA_restore |
|
1331 // and DW_CFA_restore_extended. We set this after interpreting the |
|
1332 // CIE's instructions. |
|
1333 RuleMap cie_rules_; |
|
1334 |
|
1335 // A stack of saved states, for DW_CFA_remember_state and |
|
1336 // DW_CFA_restore_state. |
|
1337 std::stack<RuleMap> saved_rules_; |
|
1338 }; |
|
1339 |
|
1340 bool CallFrameInfo::State::InterpretCIE(const CIE &cie) { |
|
1341 entry_ = &cie; |
|
1342 cursor_ = entry_->instructions; |
|
1343 while (cursor_ < entry_->end) |
|
1344 if (!DoInstruction()) |
|
1345 return false; |
|
1346 // Note the rules established by the CIE, for use by DW_CFA_restore |
|
1347 // and DW_CFA_restore_extended. |
|
1348 cie_rules_ = rules_; |
|
1349 return true; |
|
1350 } |
|
1351 |
|
1352 bool CallFrameInfo::State::InterpretFDE(const FDE &fde) { |
|
1353 entry_ = &fde; |
|
1354 cursor_ = entry_->instructions; |
|
1355 while (cursor_ < entry_->end) |
|
1356 if (!DoInstruction()) |
|
1357 return false; |
|
1358 return true; |
|
1359 } |
|
1360 |
|
1361 bool CallFrameInfo::State::ParseOperands(const char *format, |
|
1362 Operands *operands) { |
|
1363 size_t len; |
|
1364 const char *operand; |
|
1365 |
|
1366 for (operand = format; *operand; operand++) { |
|
1367 size_t bytes_left = entry_->end - cursor_; |
|
1368 switch (*operand) { |
|
1369 case 'r': |
|
1370 operands->register_number = reader_->ReadUnsignedLEB128(cursor_, &len); |
|
1371 if (len > bytes_left) return ReportIncomplete(); |
|
1372 cursor_ += len; |
|
1373 break; |
|
1374 |
|
1375 case 'o': |
|
1376 operands->offset = reader_->ReadUnsignedLEB128(cursor_, &len); |
|
1377 if (len > bytes_left) return ReportIncomplete(); |
|
1378 cursor_ += len; |
|
1379 break; |
|
1380 |
|
1381 case 's': |
|
1382 operands->signed_offset = reader_->ReadSignedLEB128(cursor_, &len); |
|
1383 if (len > bytes_left) return ReportIncomplete(); |
|
1384 cursor_ += len; |
|
1385 break; |
|
1386 |
|
1387 case 'a': |
|
1388 operands->offset = |
|
1389 reader_->ReadEncodedPointer(cursor_, entry_->cie->pointer_encoding, |
|
1390 &len); |
|
1391 if (len > bytes_left) return ReportIncomplete(); |
|
1392 cursor_ += len; |
|
1393 break; |
|
1394 |
|
1395 case '1': |
|
1396 if (1 > bytes_left) return ReportIncomplete(); |
|
1397 operands->offset = static_cast<unsigned char>(*cursor_++); |
|
1398 break; |
|
1399 |
|
1400 case '2': |
|
1401 if (2 > bytes_left) return ReportIncomplete(); |
|
1402 operands->offset = reader_->ReadTwoBytes(cursor_); |
|
1403 cursor_ += 2; |
|
1404 break; |
|
1405 |
|
1406 case '4': |
|
1407 if (4 > bytes_left) return ReportIncomplete(); |
|
1408 operands->offset = reader_->ReadFourBytes(cursor_); |
|
1409 cursor_ += 4; |
|
1410 break; |
|
1411 |
|
1412 case '8': |
|
1413 if (8 > bytes_left) return ReportIncomplete(); |
|
1414 operands->offset = reader_->ReadEightBytes(cursor_); |
|
1415 cursor_ += 8; |
|
1416 break; |
|
1417 |
|
1418 case 'e': { |
|
1419 size_t expression_length = reader_->ReadUnsignedLEB128(cursor_, &len); |
|
1420 if (len > bytes_left || expression_length > bytes_left - len) |
|
1421 return ReportIncomplete(); |
|
1422 cursor_ += len; |
|
1423 operands->expression = string(cursor_, expression_length); |
|
1424 cursor_ += expression_length; |
|
1425 break; |
|
1426 } |
|
1427 |
|
1428 default: |
|
1429 assert(0); |
|
1430 } |
|
1431 } |
|
1432 |
|
1433 return true; |
|
1434 } |
|
1435 |
|
1436 bool CallFrameInfo::State::DoInstruction() { |
|
1437 CIE *cie = entry_->cie; |
|
1438 Operands ops; |
|
1439 |
|
1440 // Our entry's kind should have been set by now. |
|
1441 assert(entry_->kind != kUnknown); |
|
1442 |
|
1443 // We shouldn't have been invoked unless there were more |
|
1444 // instructions to parse. |
|
1445 assert(cursor_ < entry_->end); |
|
1446 |
|
1447 unsigned opcode = *cursor_++; |
|
1448 if ((opcode & 0xc0) != 0) { |
|
1449 switch (opcode & 0xc0) { |
|
1450 // Advance the address. |
|
1451 case DW_CFA_advance_loc: { |
|
1452 size_t code_offset = opcode & 0x3f; |
|
1453 address_ += code_offset * cie->code_alignment_factor; |
|
1454 break; |
|
1455 } |
|
1456 |
|
1457 // Find a register at an offset from the CFA. |
|
1458 case DW_CFA_offset: |
|
1459 if (!ParseOperands("o", &ops) || |
|
1460 !DoOffset(opcode & 0x3f, ops.offset * cie->data_alignment_factor)) |
|
1461 return false; |
|
1462 break; |
|
1463 |
|
1464 // Restore the rule established for a register by the CIE. |
|
1465 case DW_CFA_restore: |
|
1466 if (!DoRestore(opcode & 0x3f)) return false; |
|
1467 break; |
|
1468 |
|
1469 // The 'if' above should have excluded this possibility. |
|
1470 default: |
|
1471 assert(0); |
|
1472 } |
|
1473 |
|
1474 // Return here, so the big switch below won't be indented. |
|
1475 return true; |
|
1476 } |
|
1477 |
|
1478 switch (opcode) { |
|
1479 // Set the address. |
|
1480 case DW_CFA_set_loc: |
|
1481 if (!ParseOperands("a", &ops)) return false; |
|
1482 address_ = ops.offset; |
|
1483 break; |
|
1484 |
|
1485 // Advance the address. |
|
1486 case DW_CFA_advance_loc1: |
|
1487 if (!ParseOperands("1", &ops)) return false; |
|
1488 address_ += ops.offset * cie->code_alignment_factor; |
|
1489 break; |
|
1490 |
|
1491 // Advance the address. |
|
1492 case DW_CFA_advance_loc2: |
|
1493 if (!ParseOperands("2", &ops)) return false; |
|
1494 address_ += ops.offset * cie->code_alignment_factor; |
|
1495 break; |
|
1496 |
|
1497 // Advance the address. |
|
1498 case DW_CFA_advance_loc4: |
|
1499 if (!ParseOperands("4", &ops)) return false; |
|
1500 address_ += ops.offset * cie->code_alignment_factor; |
|
1501 break; |
|
1502 |
|
1503 // Advance the address. |
|
1504 case DW_CFA_MIPS_advance_loc8: |
|
1505 if (!ParseOperands("8", &ops)) return false; |
|
1506 address_ += ops.offset * cie->code_alignment_factor; |
|
1507 break; |
|
1508 |
|
1509 // Compute the CFA by adding an offset to a register. |
|
1510 case DW_CFA_def_cfa: |
|
1511 if (!ParseOperands("ro", &ops) || |
|
1512 !DoDefCFA(ops.register_number, ops.offset)) |
|
1513 return false; |
|
1514 break; |
|
1515 |
|
1516 // Compute the CFA by adding an offset to a register. |
|
1517 case DW_CFA_def_cfa_sf: |
|
1518 if (!ParseOperands("rs", &ops) || |
|
1519 !DoDefCFA(ops.register_number, |
|
1520 ops.signed_offset * cie->data_alignment_factor)) |
|
1521 return false; |
|
1522 break; |
|
1523 |
|
1524 // Change the base register used to compute the CFA. |
|
1525 case DW_CFA_def_cfa_register: { |
|
1526 Rule *cfa_rule = rules_.CFARule(); |
|
1527 if (!cfa_rule) { |
|
1528 reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); |
|
1529 return false; |
|
1530 } |
|
1531 if (!ParseOperands("r", &ops)) return false; |
|
1532 cfa_rule->SetBaseRegister(ops.register_number); |
|
1533 if (!cfa_rule->Handle(handler_, address_, |
|
1534 Handler::kCFARegister)) |
|
1535 return false; |
|
1536 break; |
|
1537 } |
|
1538 |
|
1539 // Change the offset used to compute the CFA. |
|
1540 case DW_CFA_def_cfa_offset: |
|
1541 if (!ParseOperands("o", &ops) || |
|
1542 !DoDefCFAOffset(ops.offset)) |
|
1543 return false; |
|
1544 break; |
|
1545 |
|
1546 // Change the offset used to compute the CFA. |
|
1547 case DW_CFA_def_cfa_offset_sf: |
|
1548 if (!ParseOperands("s", &ops) || |
|
1549 !DoDefCFAOffset(ops.signed_offset * cie->data_alignment_factor)) |
|
1550 return false; |
|
1551 break; |
|
1552 |
|
1553 // Specify an expression whose value is the CFA. |
|
1554 case DW_CFA_def_cfa_expression: { |
|
1555 if (!ParseOperands("e", &ops)) |
|
1556 return false; |
|
1557 Rule *rule = new ValExpressionRule(ops.expression); |
|
1558 rules_.SetCFARule(rule); |
|
1559 if (!rule->Handle(handler_, address_, |
|
1560 Handler::kCFARegister)) |
|
1561 return false; |
|
1562 break; |
|
1563 } |
|
1564 |
|
1565 // The register's value cannot be recovered. |
|
1566 case DW_CFA_undefined: { |
|
1567 if (!ParseOperands("r", &ops) || |
|
1568 !DoRule(ops.register_number, new UndefinedRule())) |
|
1569 return false; |
|
1570 break; |
|
1571 } |
|
1572 |
|
1573 // The register's value is unchanged from its value in the caller. |
|
1574 case DW_CFA_same_value: { |
|
1575 if (!ParseOperands("r", &ops) || |
|
1576 !DoRule(ops.register_number, new SameValueRule())) |
|
1577 return false; |
|
1578 break; |
|
1579 } |
|
1580 |
|
1581 // Find a register at an offset from the CFA. |
|
1582 case DW_CFA_offset_extended: |
|
1583 if (!ParseOperands("ro", &ops) || |
|
1584 !DoOffset(ops.register_number, |
|
1585 ops.offset * cie->data_alignment_factor)) |
|
1586 return false; |
|
1587 break; |
|
1588 |
|
1589 // The register is saved at an offset from the CFA. |
|
1590 case DW_CFA_offset_extended_sf: |
|
1591 if (!ParseOperands("rs", &ops) || |
|
1592 !DoOffset(ops.register_number, |
|
1593 ops.signed_offset * cie->data_alignment_factor)) |
|
1594 return false; |
|
1595 break; |
|
1596 |
|
1597 // The register is saved at an offset from the CFA. |
|
1598 case DW_CFA_GNU_negative_offset_extended: |
|
1599 if (!ParseOperands("ro", &ops) || |
|
1600 !DoOffset(ops.register_number, |
|
1601 -ops.offset * cie->data_alignment_factor)) |
|
1602 return false; |
|
1603 break; |
|
1604 |
|
1605 // The register's value is the sum of the CFA plus an offset. |
|
1606 case DW_CFA_val_offset: |
|
1607 if (!ParseOperands("ro", &ops) || |
|
1608 !DoValOffset(ops.register_number, |
|
1609 ops.offset * cie->data_alignment_factor)) |
|
1610 return false; |
|
1611 break; |
|
1612 |
|
1613 // The register's value is the sum of the CFA plus an offset. |
|
1614 case DW_CFA_val_offset_sf: |
|
1615 if (!ParseOperands("rs", &ops) || |
|
1616 !DoValOffset(ops.register_number, |
|
1617 ops.signed_offset * cie->data_alignment_factor)) |
|
1618 return false; |
|
1619 break; |
|
1620 |
|
1621 // The register has been saved in another register. |
|
1622 case DW_CFA_register: { |
|
1623 if (!ParseOperands("ro", &ops) || |
|
1624 !DoRule(ops.register_number, new RegisterRule(ops.offset))) |
|
1625 return false; |
|
1626 break; |
|
1627 } |
|
1628 |
|
1629 // An expression yields the address at which the register is saved. |
|
1630 case DW_CFA_expression: { |
|
1631 if (!ParseOperands("re", &ops) || |
|
1632 !DoRule(ops.register_number, new ExpressionRule(ops.expression))) |
|
1633 return false; |
|
1634 break; |
|
1635 } |
|
1636 |
|
1637 // An expression yields the caller's value for the register. |
|
1638 case DW_CFA_val_expression: { |
|
1639 if (!ParseOperands("re", &ops) || |
|
1640 !DoRule(ops.register_number, new ValExpressionRule(ops.expression))) |
|
1641 return false; |
|
1642 break; |
|
1643 } |
|
1644 |
|
1645 // Restore the rule established for a register by the CIE. |
|
1646 case DW_CFA_restore_extended: |
|
1647 if (!ParseOperands("r", &ops) || |
|
1648 !DoRestore( ops.register_number)) |
|
1649 return false; |
|
1650 break; |
|
1651 |
|
1652 // Save the current set of rules on a stack. |
|
1653 case DW_CFA_remember_state: |
|
1654 saved_rules_.push(rules_); |
|
1655 break; |
|
1656 |
|
1657 // Pop the current set of rules off the stack. |
|
1658 case DW_CFA_restore_state: { |
|
1659 if (saved_rules_.empty()) { |
|
1660 reporter_->EmptyStateStack(entry_->offset, entry_->kind, |
|
1661 CursorOffset()); |
|
1662 return false; |
|
1663 } |
|
1664 const RuleMap &new_rules = saved_rules_.top(); |
|
1665 if (rules_.CFARule() && !new_rules.CFARule()) { |
|
1666 reporter_->ClearingCFARule(entry_->offset, entry_->kind, |
|
1667 CursorOffset()); |
|
1668 return false; |
|
1669 } |
|
1670 rules_.HandleTransitionTo(handler_, address_, new_rules); |
|
1671 rules_ = new_rules; |
|
1672 saved_rules_.pop(); |
|
1673 break; |
|
1674 } |
|
1675 |
|
1676 // No operation. (Padding instruction.) |
|
1677 case DW_CFA_nop: |
|
1678 break; |
|
1679 |
|
1680 // A SPARC register window save: Registers 8 through 15 (%o0-%o7) |
|
1681 // are saved in registers 24 through 31 (%i0-%i7), and registers |
|
1682 // 16 through 31 (%l0-%l7 and %i0-%i7) are saved at CFA offsets |
|
1683 // (0-15 * the register size). The register numbers must be |
|
1684 // hard-coded. A GNU extension, and not a pretty one. |
|
1685 case DW_CFA_GNU_window_save: { |
|
1686 // Save %o0-%o7 in %i0-%i7. |
|
1687 for (int i = 8; i < 16; i++) |
|
1688 if (!DoRule(i, new RegisterRule(i + 16))) |
|
1689 return false; |
|
1690 // Save %l0-%l7 and %i0-%i7 at the CFA. |
|
1691 for (int i = 16; i < 32; i++) |
|
1692 // Assume that the byte reader's address size is the same as |
|
1693 // the architecture's register size. !@#%*^ hilarious. |
|
1694 if (!DoRule(i, new OffsetRule(Handler::kCFARegister, |
|
1695 (i - 16) * reader_->AddressSize()))) |
|
1696 return false; |
|
1697 break; |
|
1698 } |
|
1699 |
|
1700 // I'm not sure what this is. GDB doesn't use it for unwinding. |
|
1701 case DW_CFA_GNU_args_size: |
|
1702 if (!ParseOperands("o", &ops)) return false; |
|
1703 break; |
|
1704 |
|
1705 // An opcode we don't recognize. |
|
1706 default: { |
|
1707 reporter_->BadInstruction(entry_->offset, entry_->kind, CursorOffset()); |
|
1708 return false; |
|
1709 } |
|
1710 } |
|
1711 |
|
1712 return true; |
|
1713 } |
|
1714 |
|
1715 bool CallFrameInfo::State::DoDefCFA(unsigned base_register, long offset) { |
|
1716 Rule *rule = new ValOffsetRule(base_register, offset); |
|
1717 rules_.SetCFARule(rule); |
|
1718 return rule->Handle(handler_, address_, |
|
1719 Handler::kCFARegister); |
|
1720 } |
|
1721 |
|
1722 bool CallFrameInfo::State::DoDefCFAOffset(long offset) { |
|
1723 Rule *cfa_rule = rules_.CFARule(); |
|
1724 if (!cfa_rule) { |
|
1725 reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); |
|
1726 return false; |
|
1727 } |
|
1728 cfa_rule->SetOffset(offset); |
|
1729 return cfa_rule->Handle(handler_, address_, |
|
1730 Handler::kCFARegister); |
|
1731 } |
|
1732 |
|
1733 bool CallFrameInfo::State::DoRule(unsigned reg, Rule *rule) { |
|
1734 rules_.SetRegisterRule(reg, rule); |
|
1735 return rule->Handle(handler_, address_, reg); |
|
1736 } |
|
1737 |
|
1738 bool CallFrameInfo::State::DoOffset(unsigned reg, long offset) { |
|
1739 if (!rules_.CFARule()) { |
|
1740 reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); |
|
1741 return false; |
|
1742 } |
|
1743 return DoRule(reg, |
|
1744 new OffsetRule(Handler::kCFARegister, offset)); |
|
1745 } |
|
1746 |
|
1747 bool CallFrameInfo::State::DoValOffset(unsigned reg, long offset) { |
|
1748 if (!rules_.CFARule()) { |
|
1749 reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); |
|
1750 return false; |
|
1751 } |
|
1752 return DoRule(reg, |
|
1753 new ValOffsetRule(Handler::kCFARegister, offset)); |
|
1754 } |
|
1755 |
|
1756 bool CallFrameInfo::State::DoRestore(unsigned reg) { |
|
1757 // DW_CFA_restore and DW_CFA_restore_extended don't make sense in a CIE. |
|
1758 if (entry_->kind == kCIE) { |
|
1759 reporter_->RestoreInCIE(entry_->offset, CursorOffset()); |
|
1760 return false; |
|
1761 } |
|
1762 Rule *rule = cie_rules_.RegisterRule(reg); |
|
1763 if (!rule) { |
|
1764 // This isn't really the right thing to do, but since CFI generally |
|
1765 // only mentions callee-saves registers, and GCC's convention for |
|
1766 // callee-saves registers is that they are unchanged, it's a good |
|
1767 // approximation. |
|
1768 rule = new SameValueRule(); |
|
1769 } |
|
1770 return DoRule(reg, rule); |
|
1771 } |
|
1772 |
|
1773 bool CallFrameInfo::ReadEntryPrologue(const char *cursor, Entry *entry) { |
|
1774 const char *buffer_end = buffer_ + buffer_length_; |
|
1775 |
|
1776 // Initialize enough of ENTRY for use in error reporting. |
|
1777 entry->offset = cursor - buffer_; |
|
1778 entry->start = cursor; |
|
1779 entry->kind = kUnknown; |
|
1780 entry->end = NULL; |
|
1781 |
|
1782 // Read the initial length. This sets reader_'s offset size. |
|
1783 size_t length_size; |
|
1784 uint64 length = reader_->ReadInitialLength(cursor, &length_size); |
|
1785 if (length_size > size_t(buffer_end - cursor)) |
|
1786 return ReportIncomplete(entry); |
|
1787 cursor += length_size; |
|
1788 |
|
1789 // In a .eh_frame section, a length of zero marks the end of the series |
|
1790 // of entries. |
|
1791 if (length == 0 && eh_frame_) { |
|
1792 entry->kind = kTerminator; |
|
1793 entry->end = cursor; |
|
1794 return true; |
|
1795 } |
|
1796 |
|
1797 // Validate the length. |
|
1798 if (length > size_t(buffer_end - cursor)) |
|
1799 return ReportIncomplete(entry); |
|
1800 |
|
1801 // The length is the number of bytes after the initial length field; |
|
1802 // we have that position handy at this point, so compute the end |
|
1803 // now. (If we're parsing 64-bit-offset DWARF on a 32-bit machine, |
|
1804 // and the length didn't fit in a size_t, we would have rejected it |
|
1805 // above.) |
|
1806 entry->end = cursor + length; |
|
1807 |
|
1808 // Parse the next field: either the offset of a CIE or a CIE id. |
|
1809 size_t offset_size = reader_->OffsetSize(); |
|
1810 if (offset_size > size_t(entry->end - cursor)) return ReportIncomplete(entry); |
|
1811 entry->id = reader_->ReadOffset(cursor); |
|
1812 |
|
1813 // Don't advance cursor past id field yet; in .eh_frame data we need |
|
1814 // the id's position to compute the section offset of an FDE's CIE. |
|
1815 |
|
1816 // Now we can decide what kind of entry this is. |
|
1817 if (eh_frame_) { |
|
1818 // In .eh_frame data, an ID of zero marks the entry as a CIE, and |
|
1819 // anything else is an offset from the id field of the FDE to the start |
|
1820 // of the CIE. |
|
1821 if (entry->id == 0) { |
|
1822 entry->kind = kCIE; |
|
1823 } else { |
|
1824 entry->kind = kFDE; |
|
1825 // Turn the offset from the id into an offset from the buffer's start. |
|
1826 entry->id = (cursor - buffer_) - entry->id; |
|
1827 } |
|
1828 } else { |
|
1829 // In DWARF CFI data, an ID of ~0 (of the appropriate width, given the |
|
1830 // offset size for the entry) marks the entry as a CIE, and anything |
|
1831 // else is the offset of the CIE from the beginning of the section. |
|
1832 if (offset_size == 4) |
|
1833 entry->kind = (entry->id == 0xffffffff) ? kCIE : kFDE; |
|
1834 else { |
|
1835 assert(offset_size == 8); |
|
1836 entry->kind = (entry->id == 0xffffffffffffffffULL) ? kCIE : kFDE; |
|
1837 } |
|
1838 } |
|
1839 |
|
1840 // Now advance cursor past the id. |
|
1841 cursor += offset_size; |
|
1842 |
|
1843 // The fields specific to this kind of entry start here. |
|
1844 entry->fields = cursor; |
|
1845 |
|
1846 entry->cie = NULL; |
|
1847 |
|
1848 return true; |
|
1849 } |
|
1850 |
|
1851 bool CallFrameInfo::ReadCIEFields(CIE *cie) { |
|
1852 const char *cursor = cie->fields; |
|
1853 size_t len; |
|
1854 |
|
1855 assert(cie->kind == kCIE); |
|
1856 |
|
1857 // Prepare for early exit. |
|
1858 cie->version = 0; |
|
1859 cie->augmentation.clear(); |
|
1860 cie->code_alignment_factor = 0; |
|
1861 cie->data_alignment_factor = 0; |
|
1862 cie->return_address_register = 0; |
|
1863 cie->has_z_augmentation = false; |
|
1864 cie->pointer_encoding = DW_EH_PE_absptr; |
|
1865 cie->instructions = 0; |
|
1866 |
|
1867 // Parse the version number. |
|
1868 if (cie->end - cursor < 1) |
|
1869 return ReportIncomplete(cie); |
|
1870 cie->version = reader_->ReadOneByte(cursor); |
|
1871 cursor++; |
|
1872 |
|
1873 // If we don't recognize the version, we can't parse any more fields of the |
|
1874 // CIE. For DWARF CFI, we handle versions 1 through 3 (there was never a |
|
1875 // version 2 of CFI data). For .eh_frame, we handle versions 1 and 3 as well; |
|
1876 // the difference between those versions seems to be the same as for |
|
1877 // .debug_frame. |
|
1878 if (cie->version < 1 || cie->version > 3) { |
|
1879 reporter_->UnrecognizedVersion(cie->offset, cie->version); |
|
1880 return false; |
|
1881 } |
|
1882 |
|
1883 const char *augmentation_start = cursor; |
|
1884 const void *augmentation_end = |
|
1885 memchr(augmentation_start, '\0', cie->end - augmentation_start); |
|
1886 if (! augmentation_end) return ReportIncomplete(cie); |
|
1887 cursor = static_cast<const char *>(augmentation_end); |
|
1888 cie->augmentation = string(augmentation_start, |
|
1889 cursor - augmentation_start); |
|
1890 // Skip the terminating '\0'. |
|
1891 cursor++; |
|
1892 |
|
1893 // Is this CFI augmented? |
|
1894 if (!cie->augmentation.empty()) { |
|
1895 // Is it an augmentation we recognize? |
|
1896 if (cie->augmentation[0] == DW_Z_augmentation_start) { |
|
1897 // Linux C++ ABI 'z' augmentation, used for exception handling data. |
|
1898 cie->has_z_augmentation = true; |
|
1899 } else { |
|
1900 // Not an augmentation we recognize. Augmentations can have arbitrary |
|
1901 // effects on the form of rest of the content, so we have to give up. |
|
1902 reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation); |
|
1903 return false; |
|
1904 } |
|
1905 } |
|
1906 |
|
1907 // Parse the code alignment factor. |
|
1908 cie->code_alignment_factor = reader_->ReadUnsignedLEB128(cursor, &len); |
|
1909 if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); |
|
1910 cursor += len; |
|
1911 |
|
1912 // Parse the data alignment factor. |
|
1913 cie->data_alignment_factor = reader_->ReadSignedLEB128(cursor, &len); |
|
1914 if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); |
|
1915 cursor += len; |
|
1916 |
|
1917 // Parse the return address register. This is a ubyte in version 1, and |
|
1918 // a ULEB128 in version 3. |
|
1919 if (cie->version == 1) { |
|
1920 if (cursor >= cie->end) return ReportIncomplete(cie); |
|
1921 cie->return_address_register = uint8(*cursor++); |
|
1922 } else { |
|
1923 cie->return_address_register = reader_->ReadUnsignedLEB128(cursor, &len); |
|
1924 if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); |
|
1925 cursor += len; |
|
1926 } |
|
1927 |
|
1928 // If we have a 'z' augmentation string, find the augmentation data and |
|
1929 // use the augmentation string to parse it. |
|
1930 if (cie->has_z_augmentation) { |
|
1931 uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &len); |
|
1932 if (size_t(cie->end - cursor) < len + data_size) |
|
1933 return ReportIncomplete(cie); |
|
1934 cursor += len; |
|
1935 const char *data = cursor; |
|
1936 cursor += data_size; |
|
1937 const char *data_end = cursor; |
|
1938 |
|
1939 cie->has_z_lsda = false; |
|
1940 cie->has_z_personality = false; |
|
1941 cie->has_z_signal_frame = false; |
|
1942 |
|
1943 // Walk the augmentation string, and extract values from the |
|
1944 // augmentation data as the string directs. |
|
1945 for (size_t i = 1; i < cie->augmentation.size(); i++) { |
|
1946 switch (cie->augmentation[i]) { |
|
1947 case DW_Z_has_LSDA: |
|
1948 // The CIE's augmentation data holds the language-specific data |
|
1949 // area pointer's encoding, and the FDE's augmentation data holds |
|
1950 // the pointer itself. |
|
1951 cie->has_z_lsda = true; |
|
1952 // Fetch the LSDA encoding from the augmentation data. |
|
1953 if (data >= data_end) return ReportIncomplete(cie); |
|
1954 cie->lsda_encoding = DwarfPointerEncoding(*data++); |
|
1955 if (!reader_->ValidEncoding(cie->lsda_encoding)) { |
|
1956 reporter_->InvalidPointerEncoding(cie->offset, cie->lsda_encoding); |
|
1957 return false; |
|
1958 } |
|
1959 // Don't check if the encoding is usable here --- we haven't |
|
1960 // read the FDE's fields yet, so we're not prepared for |
|
1961 // DW_EH_PE_funcrel, although that's a fine encoding for the |
|
1962 // LSDA to use, since it appears in the FDE. |
|
1963 break; |
|
1964 |
|
1965 case DW_Z_has_personality_routine: |
|
1966 // The CIE's augmentation data holds the personality routine |
|
1967 // pointer's encoding, followed by the pointer itself. |
|
1968 cie->has_z_personality = true; |
|
1969 // Fetch the personality routine pointer's encoding from the |
|
1970 // augmentation data. |
|
1971 if (data >= data_end) return ReportIncomplete(cie); |
|
1972 cie->personality_encoding = DwarfPointerEncoding(*data++); |
|
1973 if (!reader_->ValidEncoding(cie->personality_encoding)) { |
|
1974 reporter_->InvalidPointerEncoding(cie->offset, |
|
1975 cie->personality_encoding); |
|
1976 return false; |
|
1977 } |
|
1978 if (!reader_->UsableEncoding(cie->personality_encoding)) { |
|
1979 reporter_->UnusablePointerEncoding(cie->offset, |
|
1980 cie->personality_encoding); |
|
1981 return false; |
|
1982 } |
|
1983 // Fetch the personality routine's pointer itself from the data. |
|
1984 cie->personality_address = |
|
1985 reader_->ReadEncodedPointer(data, cie->personality_encoding, |
|
1986 &len); |
|
1987 if (len > size_t(data_end - data)) |
|
1988 return ReportIncomplete(cie); |
|
1989 data += len; |
|
1990 break; |
|
1991 |
|
1992 case DW_Z_has_FDE_address_encoding: |
|
1993 // The CIE's augmentation data holds the pointer encoding to use |
|
1994 // for addresses in the FDE. |
|
1995 if (data >= data_end) return ReportIncomplete(cie); |
|
1996 cie->pointer_encoding = DwarfPointerEncoding(*data++); |
|
1997 if (!reader_->ValidEncoding(cie->pointer_encoding)) { |
|
1998 reporter_->InvalidPointerEncoding(cie->offset, |
|
1999 cie->pointer_encoding); |
|
2000 return false; |
|
2001 } |
|
2002 if (!reader_->UsableEncoding(cie->pointer_encoding)) { |
|
2003 reporter_->UnusablePointerEncoding(cie->offset, |
|
2004 cie->pointer_encoding); |
|
2005 return false; |
|
2006 } |
|
2007 break; |
|
2008 |
|
2009 case DW_Z_is_signal_trampoline: |
|
2010 // Frames using this CIE are signal delivery frames. |
|
2011 cie->has_z_signal_frame = true; |
|
2012 break; |
|
2013 |
|
2014 default: |
|
2015 // An augmentation we don't recognize. |
|
2016 reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation); |
|
2017 return false; |
|
2018 } |
|
2019 } |
|
2020 } |
|
2021 |
|
2022 // The CIE's instructions start here. |
|
2023 cie->instructions = cursor; |
|
2024 |
|
2025 return true; |
|
2026 } |
|
2027 |
|
2028 bool CallFrameInfo::ReadFDEFields(FDE *fde) { |
|
2029 const char *cursor = fde->fields; |
|
2030 size_t size; |
|
2031 |
|
2032 fde->address = reader_->ReadEncodedPointer(cursor, fde->cie->pointer_encoding, |
|
2033 &size); |
|
2034 if (size > size_t(fde->end - cursor)) |
|
2035 return ReportIncomplete(fde); |
|
2036 cursor += size; |
|
2037 reader_->SetFunctionBase(fde->address); |
|
2038 |
|
2039 // For the length, we strip off the upper nybble of the encoding used for |
|
2040 // the starting address. |
|
2041 DwarfPointerEncoding length_encoding = |
|
2042 DwarfPointerEncoding(fde->cie->pointer_encoding & 0x0f); |
|
2043 fde->size = reader_->ReadEncodedPointer(cursor, length_encoding, &size); |
|
2044 if (size > size_t(fde->end - cursor)) |
|
2045 return ReportIncomplete(fde); |
|
2046 cursor += size; |
|
2047 |
|
2048 // If the CIE has a 'z' augmentation string, then augmentation data |
|
2049 // appears here. |
|
2050 if (fde->cie->has_z_augmentation) { |
|
2051 uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &size); |
|
2052 if (size_t(fde->end - cursor) < size + data_size) |
|
2053 return ReportIncomplete(fde); |
|
2054 cursor += size; |
|
2055 |
|
2056 // In the abstract, we should walk the augmentation string, and extract |
|
2057 // items from the FDE's augmentation data as we encounter augmentation |
|
2058 // string characters that specify their presence: the ordering of items |
|
2059 // in the augmentation string determines the arrangement of values in |
|
2060 // the augmentation data. |
|
2061 // |
|
2062 // In practice, there's only ever one value in FDE augmentation data |
|
2063 // that we support --- the LSDA pointer --- and we have to bail if we |
|
2064 // see any unrecognized augmentation string characters. So if there is |
|
2065 // anything here at all, we know what it is, and where it starts. |
|
2066 if (fde->cie->has_z_lsda) { |
|
2067 // Check whether the LSDA's pointer encoding is usable now: only once |
|
2068 // we've parsed the FDE's starting address do we call reader_-> |
|
2069 // SetFunctionBase, so that the DW_EH_PE_funcrel encoding becomes |
|
2070 // usable. |
|
2071 if (!reader_->UsableEncoding(fde->cie->lsda_encoding)) { |
|
2072 reporter_->UnusablePointerEncoding(fde->cie->offset, |
|
2073 fde->cie->lsda_encoding); |
|
2074 return false; |
|
2075 } |
|
2076 |
|
2077 fde->lsda_address = |
|
2078 reader_->ReadEncodedPointer(cursor, fde->cie->lsda_encoding, &size); |
|
2079 if (size > data_size) |
|
2080 return ReportIncomplete(fde); |
|
2081 // Ideally, we would also complain here if there were unconsumed |
|
2082 // augmentation data. |
|
2083 } |
|
2084 |
|
2085 cursor += data_size; |
|
2086 } |
|
2087 |
|
2088 // The FDE's instructions start after those. |
|
2089 fde->instructions = cursor; |
|
2090 |
|
2091 return true; |
|
2092 } |
|
2093 |
|
2094 bool CallFrameInfo::Start() { |
|
2095 const char *buffer_end = buffer_ + buffer_length_; |
|
2096 const char *cursor; |
|
2097 bool all_ok = true; |
|
2098 const char *entry_end; |
|
2099 bool ok; |
|
2100 |
|
2101 // Traverse all the entries in buffer_, skipping CIEs and offering |
|
2102 // FDEs to the handler. |
|
2103 for (cursor = buffer_; cursor < buffer_end; |
|
2104 cursor = entry_end, all_ok = all_ok && ok) { |
|
2105 FDE fde; |
|
2106 |
|
2107 // Make it easy to skip this entry with 'continue': assume that |
|
2108 // things are not okay until we've checked all the data, and |
|
2109 // prepare the address of the next entry. |
|
2110 ok = false; |
|
2111 |
|
2112 // Read the entry's prologue. |
|
2113 if (!ReadEntryPrologue(cursor, &fde)) { |
|
2114 if (!fde.end) { |
|
2115 // If we couldn't even figure out this entry's extent, then we |
|
2116 // must stop processing entries altogether. |
|
2117 all_ok = false; |
|
2118 break; |
|
2119 } |
|
2120 entry_end = fde.end; |
|
2121 continue; |
|
2122 } |
|
2123 |
|
2124 // The next iteration picks up after this entry. |
|
2125 entry_end = fde.end; |
|
2126 |
|
2127 // Did we see an .eh_frame terminating mark? |
|
2128 if (fde.kind == kTerminator) { |
|
2129 // If there appears to be more data left in the section after the |
|
2130 // terminating mark, warn the user. But this is just a warning; |
|
2131 // we leave all_ok true. |
|
2132 if (fde.end < buffer_end) reporter_->EarlyEHTerminator(fde.offset); |
|
2133 break; |
|
2134 } |
|
2135 |
|
2136 // In this loop, we skip CIEs. We only parse them fully when we |
|
2137 // parse an FDE that refers to them. This limits our memory |
|
2138 // consumption (beyond the buffer itself) to that needed to |
|
2139 // process the largest single entry. |
|
2140 if (fde.kind != kFDE) { |
|
2141 ok = true; |
|
2142 continue; |
|
2143 } |
|
2144 |
|
2145 // Validate the CIE pointer. |
|
2146 if (fde.id > buffer_length_) { |
|
2147 reporter_->CIEPointerOutOfRange(fde.offset, fde.id); |
|
2148 continue; |
|
2149 } |
|
2150 |
|
2151 CIE cie; |
|
2152 |
|
2153 // Parse this FDE's CIE header. |
|
2154 if (!ReadEntryPrologue(buffer_ + fde.id, &cie)) |
|
2155 continue; |
|
2156 // This had better be an actual CIE. |
|
2157 if (cie.kind != kCIE) { |
|
2158 reporter_->BadCIEId(fde.offset, fde.id); |
|
2159 continue; |
|
2160 } |
|
2161 if (!ReadCIEFields(&cie)) |
|
2162 continue; |
|
2163 |
|
2164 // We now have the values that govern both the CIE and the FDE. |
|
2165 cie.cie = &cie; |
|
2166 fde.cie = &cie; |
|
2167 |
|
2168 // Parse the FDE's header. |
|
2169 if (!ReadFDEFields(&fde)) |
|
2170 continue; |
|
2171 |
|
2172 // Call Entry to ask the consumer if they're interested. |
|
2173 if (!handler_->Entry(fde.offset, fde.address, fde.size, |
|
2174 cie.version, cie.augmentation, |
|
2175 cie.return_address_register)) { |
|
2176 // The handler isn't interested in this entry. That's not an error. |
|
2177 ok = true; |
|
2178 continue; |
|
2179 } |
|
2180 |
|
2181 if (cie.has_z_augmentation) { |
|
2182 // Report the personality routine address, if we have one. |
|
2183 if (cie.has_z_personality) { |
|
2184 if (!handler_ |
|
2185 ->PersonalityRoutine(cie.personality_address, |
|
2186 IsIndirectEncoding(cie.personality_encoding))) |
|
2187 continue; |
|
2188 } |
|
2189 |
|
2190 // Report the language-specific data area address, if we have one. |
|
2191 if (cie.has_z_lsda) { |
|
2192 if (!handler_ |
|
2193 ->LanguageSpecificDataArea(fde.lsda_address, |
|
2194 IsIndirectEncoding(cie.lsda_encoding))) |
|
2195 continue; |
|
2196 } |
|
2197 |
|
2198 // If this is a signal-handling frame, report that. |
|
2199 if (cie.has_z_signal_frame) { |
|
2200 if (!handler_->SignalHandler()) |
|
2201 continue; |
|
2202 } |
|
2203 } |
|
2204 |
|
2205 // Interpret the CIE's instructions, and then the FDE's instructions. |
|
2206 State state(reader_, handler_, reporter_, fde.address); |
|
2207 ok = state.InterpretCIE(cie) && state.InterpretFDE(fde); |
|
2208 |
|
2209 // Tell the ByteReader that the function start address from the |
|
2210 // FDE header is no longer valid. |
|
2211 reader_->ClearFunctionBase(); |
|
2212 |
|
2213 // Report the end of the entry. |
|
2214 handler_->End(); |
|
2215 } |
|
2216 |
|
2217 return all_ok; |
|
2218 } |
|
2219 |
|
2220 const char *CallFrameInfo::KindName(EntryKind kind) { |
|
2221 if (kind == CallFrameInfo::kUnknown) |
|
2222 return "entry"; |
|
2223 else if (kind == CallFrameInfo::kCIE) |
|
2224 return "common information entry"; |
|
2225 else if (kind == CallFrameInfo::kFDE) |
|
2226 return "frame description entry"; |
|
2227 else { |
|
2228 assert (kind == CallFrameInfo::kTerminator); |
|
2229 return ".eh_frame sequence terminator"; |
|
2230 } |
|
2231 } |
|
2232 |
|
2233 bool CallFrameInfo::ReportIncomplete(Entry *entry) { |
|
2234 reporter_->Incomplete(entry->offset, entry->kind); |
|
2235 return false; |
|
2236 } |
|
2237 |
|
2238 void CallFrameInfo::Reporter::Incomplete(uint64 offset, |
|
2239 CallFrameInfo::EntryKind kind) { |
|
2240 fprintf(stderr, |
|
2241 "%s: CFI %s at offset 0x%llx in '%s': entry ends early\n", |
|
2242 filename_.c_str(), CallFrameInfo::KindName(kind), offset, |
|
2243 section_.c_str()); |
|
2244 } |
|
2245 |
|
2246 void CallFrameInfo::Reporter::EarlyEHTerminator(uint64 offset) { |
|
2247 fprintf(stderr, |
|
2248 "%s: CFI at offset 0x%llx in '%s': saw end-of-data marker" |
|
2249 " before end of section contents\n", |
|
2250 filename_.c_str(), offset, section_.c_str()); |
|
2251 } |
|
2252 |
|
2253 void CallFrameInfo::Reporter::CIEPointerOutOfRange(uint64 offset, |
|
2254 uint64 cie_offset) { |
|
2255 fprintf(stderr, |
|
2256 "%s: CFI frame description entry at offset 0x%llx in '%s':" |
|
2257 " CIE pointer is out of range: 0x%llx\n", |
|
2258 filename_.c_str(), offset, section_.c_str(), cie_offset); |
|
2259 } |
|
2260 |
|
2261 void CallFrameInfo::Reporter::BadCIEId(uint64 offset, uint64 cie_offset) { |
|
2262 fprintf(stderr, |
|
2263 "%s: CFI frame description entry at offset 0x%llx in '%s':" |
|
2264 " CIE pointer does not point to a CIE: 0x%llx\n", |
|
2265 filename_.c_str(), offset, section_.c_str(), cie_offset); |
|
2266 } |
|
2267 |
|
2268 void CallFrameInfo::Reporter::UnrecognizedVersion(uint64 offset, int version) { |
|
2269 fprintf(stderr, |
|
2270 "%s: CFI frame description entry at offset 0x%llx in '%s':" |
|
2271 " CIE specifies unrecognized version: %d\n", |
|
2272 filename_.c_str(), offset, section_.c_str(), version); |
|
2273 } |
|
2274 |
|
2275 void CallFrameInfo::Reporter::UnrecognizedAugmentation(uint64 offset, |
|
2276 const string &aug) { |
|
2277 fprintf(stderr, |
|
2278 "%s: CFI frame description entry at offset 0x%llx in '%s':" |
|
2279 " CIE specifies unrecognized augmentation: '%s'\n", |
|
2280 filename_.c_str(), offset, section_.c_str(), aug.c_str()); |
|
2281 } |
|
2282 |
|
2283 void CallFrameInfo::Reporter::InvalidPointerEncoding(uint64 offset, |
|
2284 uint8 encoding) { |
|
2285 fprintf(stderr, |
|
2286 "%s: CFI common information entry at offset 0x%llx in '%s':" |
|
2287 " 'z' augmentation specifies invalid pointer encoding: 0x%02x\n", |
|
2288 filename_.c_str(), offset, section_.c_str(), encoding); |
|
2289 } |
|
2290 |
|
2291 void CallFrameInfo::Reporter::UnusablePointerEncoding(uint64 offset, |
|
2292 uint8 encoding) { |
|
2293 fprintf(stderr, |
|
2294 "%s: CFI common information entry at offset 0x%llx in '%s':" |
|
2295 " 'z' augmentation specifies a pointer encoding for which" |
|
2296 " we have no base address: 0x%02x\n", |
|
2297 filename_.c_str(), offset, section_.c_str(), encoding); |
|
2298 } |
|
2299 |
|
2300 void CallFrameInfo::Reporter::RestoreInCIE(uint64 offset, uint64 insn_offset) { |
|
2301 fprintf(stderr, |
|
2302 "%s: CFI common information entry at offset 0x%llx in '%s':" |
|
2303 " the DW_CFA_restore instruction at offset 0x%llx" |
|
2304 " cannot be used in a common information entry\n", |
|
2305 filename_.c_str(), offset, section_.c_str(), insn_offset); |
|
2306 } |
|
2307 |
|
2308 void CallFrameInfo::Reporter::BadInstruction(uint64 offset, |
|
2309 CallFrameInfo::EntryKind kind, |
|
2310 uint64 insn_offset) { |
|
2311 fprintf(stderr, |
|
2312 "%s: CFI %s at offset 0x%llx in section '%s':" |
|
2313 " the instruction at offset 0x%llx is unrecognized\n", |
|
2314 filename_.c_str(), CallFrameInfo::KindName(kind), |
|
2315 offset, section_.c_str(), insn_offset); |
|
2316 } |
|
2317 |
|
2318 void CallFrameInfo::Reporter::NoCFARule(uint64 offset, |
|
2319 CallFrameInfo::EntryKind kind, |
|
2320 uint64 insn_offset) { |
|
2321 fprintf(stderr, |
|
2322 "%s: CFI %s at offset 0x%llx in section '%s':" |
|
2323 " the instruction at offset 0x%llx assumes that a CFA rule has" |
|
2324 " been set, but none has been set\n", |
|
2325 filename_.c_str(), CallFrameInfo::KindName(kind), offset, |
|
2326 section_.c_str(), insn_offset); |
|
2327 } |
|
2328 |
|
2329 void CallFrameInfo::Reporter::EmptyStateStack(uint64 offset, |
|
2330 CallFrameInfo::EntryKind kind, |
|
2331 uint64 insn_offset) { |
|
2332 fprintf(stderr, |
|
2333 "%s: CFI %s at offset 0x%llx in section '%s':" |
|
2334 " the DW_CFA_restore_state instruction at offset 0x%llx" |
|
2335 " should pop a saved state from the stack, but the stack is empty\n", |
|
2336 filename_.c_str(), CallFrameInfo::KindName(kind), offset, |
|
2337 section_.c_str(), insn_offset); |
|
2338 } |
|
2339 |
|
2340 void CallFrameInfo::Reporter::ClearingCFARule(uint64 offset, |
|
2341 CallFrameInfo::EntryKind kind, |
|
2342 uint64 insn_offset) { |
|
2343 fprintf(stderr, |
|
2344 "%s: CFI %s at offset 0x%llx in section '%s':" |
|
2345 " the DW_CFA_restore_state instruction at offset 0x%llx" |
|
2346 " would clear the CFA rule in effect\n", |
|
2347 filename_.c_str(), CallFrameInfo::KindName(kind), offset, |
|
2348 section_.c_str(), insn_offset); |
|
2349 } |
|
2350 |
|
2351 } // namespace dwarf2reader |