Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
1 // Copyright (c) 2010 Google Inc. All Rights Reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 // * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following disclaimer
11 // in the documentation and/or other materials provided with the
12 // distribution.
13 // * Neither the name of Google Inc. nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 // CFI reader author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
31 // Implementation of dwarf2reader::LineInfo, dwarf2reader::CompilationUnit,
32 // and dwarf2reader::CallFrameInfo. See dwarf2reader.h for details.
34 #include "common/dwarf/dwarf2reader.h"
36 #include <assert.h>
37 #include <stdint.h>
38 #include <stdio.h>
39 #include <string.h>
41 #include <map>
42 #include <memory>
43 #include <stack>
44 #include <string>
45 #include <utility>
47 #include "common/dwarf/bytereader-inl.h"
48 #include "common/dwarf/bytereader.h"
49 #include "common/dwarf/line_state_machine.h"
50 #include "common/using_std_string.h"
52 namespace dwarf2reader {
54 CompilationUnit::CompilationUnit(const SectionMap& sections, uint64 offset,
55 ByteReader* reader, Dwarf2Handler* handler)
56 : offset_from_section_start_(offset), reader_(reader),
57 sections_(sections), handler_(handler), abbrevs_(NULL),
58 string_buffer_(NULL), string_buffer_length_(0) {}
60 // Read a DWARF2/3 abbreviation section.
61 // Each abbrev consists of a abbreviation number, a tag, a byte
62 // specifying whether the tag has children, and a list of
63 // attribute/form pairs.
64 // The list of forms is terminated by a 0 for the attribute, and a
65 // zero for the form. The entire abbreviation section is terminated
66 // by a zero for the code.
68 void CompilationUnit::ReadAbbrevs() {
69 if (abbrevs_)
70 return;
72 // First get the debug_abbrev section. ".debug_abbrev" is the name
73 // recommended in the DWARF spec, and used on Linux;
74 // "__debug_abbrev" is the name used in Mac OS X Mach-O files.
75 SectionMap::const_iterator iter = sections_.find(".debug_abbrev");
76 if (iter == sections_.end())
77 iter = sections_.find("__debug_abbrev");
78 assert(iter != sections_.end());
80 abbrevs_ = new std::vector<Abbrev>;
81 abbrevs_->resize(1);
83 // The only way to check whether we are reading over the end of the
84 // buffer would be to first compute the size of the leb128 data by
85 // reading it, then go back and read it again.
86 const char* abbrev_start = iter->second.first +
87 header_.abbrev_offset;
88 const char* abbrevptr = abbrev_start;
89 #ifndef NDEBUG
90 const uint64 abbrev_length = iter->second.second - header_.abbrev_offset;
91 #endif
93 while (1) {
94 CompilationUnit::Abbrev abbrev;
95 size_t len;
96 const uint64 number = reader_->ReadUnsignedLEB128(abbrevptr, &len);
98 if (number == 0)
99 break;
100 abbrev.number = number;
101 abbrevptr += len;
103 assert(abbrevptr < abbrev_start + abbrev_length);
104 const uint64 tag = reader_->ReadUnsignedLEB128(abbrevptr, &len);
105 abbrevptr += len;
106 abbrev.tag = static_cast<enum DwarfTag>(tag);
108 assert(abbrevptr < abbrev_start + abbrev_length);
109 abbrev.has_children = reader_->ReadOneByte(abbrevptr);
110 abbrevptr += 1;
112 assert(abbrevptr < abbrev_start + abbrev_length);
114 while (1) {
115 const uint64 nametemp = reader_->ReadUnsignedLEB128(abbrevptr, &len);
116 abbrevptr += len;
118 assert(abbrevptr < abbrev_start + abbrev_length);
119 const uint64 formtemp = reader_->ReadUnsignedLEB128(abbrevptr, &len);
120 abbrevptr += len;
121 if (nametemp == 0 && formtemp == 0)
122 break;
124 const enum DwarfAttribute name =
125 static_cast<enum DwarfAttribute>(nametemp);
126 const enum DwarfForm form = static_cast<enum DwarfForm>(formtemp);
127 abbrev.attributes.push_back(std::make_pair(name, form));
128 }
129 assert(abbrev.number == abbrevs_->size());
130 abbrevs_->push_back(abbrev);
131 }
132 }
134 // Skips a single DIE's attributes.
135 const char* CompilationUnit::SkipDIE(const char* start,
136 const Abbrev& abbrev) {
137 for (AttributeList::const_iterator i = abbrev.attributes.begin();
138 i != abbrev.attributes.end();
139 i++) {
140 start = SkipAttribute(start, i->second);
141 }
142 return start;
143 }
145 // Skips a single attribute form's data.
146 const char* CompilationUnit::SkipAttribute(const char* start,
147 enum DwarfForm form) {
148 size_t len;
150 switch (form) {
151 case DW_FORM_indirect:
152 form = static_cast<enum DwarfForm>(reader_->ReadUnsignedLEB128(start,
153 &len));
154 start += len;
155 return SkipAttribute(start, form);
157 case DW_FORM_flag_present:
158 return start;
159 case DW_FORM_data1:
160 case DW_FORM_flag:
161 case DW_FORM_ref1:
162 return start + 1;
163 case DW_FORM_ref2:
164 case DW_FORM_data2:
165 return start + 2;
166 case DW_FORM_ref4:
167 case DW_FORM_data4:
168 return start + 4;
169 case DW_FORM_ref8:
170 case DW_FORM_data8:
171 case DW_FORM_ref_sig8:
172 return start + 8;
173 case DW_FORM_string:
174 return start + strlen(start) + 1;
175 case DW_FORM_udata:
176 case DW_FORM_ref_udata:
177 reader_->ReadUnsignedLEB128(start, &len);
178 return start + len;
180 case DW_FORM_sdata:
181 reader_->ReadSignedLEB128(start, &len);
182 return start + len;
183 case DW_FORM_addr:
184 return start + reader_->AddressSize();
185 case DW_FORM_ref_addr:
186 // DWARF2 and 3 differ on whether ref_addr is address size or
187 // offset size.
188 assert(header_.version == 2 || header_.version == 3);
189 if (header_.version == 2) {
190 return start + reader_->AddressSize();
191 } else if (header_.version == 3) {
192 return start + reader_->OffsetSize();
193 }
195 case DW_FORM_block1:
196 return start + 1 + reader_->ReadOneByte(start);
197 case DW_FORM_block2:
198 return start + 2 + reader_->ReadTwoBytes(start);
199 case DW_FORM_block4:
200 return start + 4 + reader_->ReadFourBytes(start);
201 case DW_FORM_block:
202 case DW_FORM_exprloc: {
203 uint64 size = reader_->ReadUnsignedLEB128(start, &len);
204 return start + size + len;
205 }
206 case DW_FORM_strp:
207 case DW_FORM_sec_offset:
208 return start + reader_->OffsetSize();
209 }
210 fprintf(stderr,"Unhandled form type");
211 return NULL;
212 }
214 // Read a DWARF2/3 header.
215 // The header is variable length in DWARF3 (and DWARF2 as extended by
216 // most compilers), and consists of an length field, a version number,
217 // the offset in the .debug_abbrev section for our abbrevs, and an
218 // address size.
219 void CompilationUnit::ReadHeader() {
220 const char* headerptr = buffer_;
221 size_t initial_length_size;
223 assert(headerptr + 4 < buffer_ + buffer_length_);
224 const uint64 initial_length
225 = reader_->ReadInitialLength(headerptr, &initial_length_size);
226 headerptr += initial_length_size;
227 header_.length = initial_length;
229 assert(headerptr + 2 < buffer_ + buffer_length_);
230 header_.version = reader_->ReadTwoBytes(headerptr);
231 headerptr += 2;
233 assert(headerptr + reader_->OffsetSize() < buffer_ + buffer_length_);
234 header_.abbrev_offset = reader_->ReadOffset(headerptr);
235 headerptr += reader_->OffsetSize();
237 assert(headerptr + 1 < buffer_ + buffer_length_);
238 header_.address_size = reader_->ReadOneByte(headerptr);
239 reader_->SetAddressSize(header_.address_size);
240 headerptr += 1;
242 after_header_ = headerptr;
244 // This check ensures that we don't have to do checking during the
245 // reading of DIEs. header_.length does not include the size of the
246 // initial length.
247 assert(buffer_ + initial_length_size + header_.length <=
248 buffer_ + buffer_length_);
249 }
251 uint64 CompilationUnit::Start() {
252 // First get the debug_info section. ".debug_info" is the name
253 // recommended in the DWARF spec, and used on Linux; "__debug_info"
254 // is the name used in Mac OS X Mach-O files.
255 SectionMap::const_iterator iter = sections_.find(".debug_info");
256 if (iter == sections_.end())
257 iter = sections_.find("__debug_info");
258 assert(iter != sections_.end());
260 // Set up our buffer
261 buffer_ = iter->second.first + offset_from_section_start_;
262 buffer_length_ = iter->second.second - offset_from_section_start_;
264 // Read the header
265 ReadHeader();
267 // Figure out the real length from the end of the initial length to
268 // the end of the compilation unit, since that is the value we
269 // return.
270 uint64 ourlength = header_.length;
271 if (reader_->OffsetSize() == 8)
272 ourlength += 12;
273 else
274 ourlength += 4;
276 // See if the user wants this compilation unit, and if not, just return.
277 if (!handler_->StartCompilationUnit(offset_from_section_start_,
278 reader_->AddressSize(),
279 reader_->OffsetSize(),
280 header_.length,
281 header_.version))
282 return ourlength;
284 // Otherwise, continue by reading our abbreviation entries.
285 ReadAbbrevs();
287 // Set the string section if we have one. ".debug_str" is the name
288 // recommended in the DWARF spec, and used on Linux; "__debug_str"
289 // is the name used in Mac OS X Mach-O files.
290 iter = sections_.find(".debug_str");
291 if (iter == sections_.end())
292 iter = sections_.find("__debug_str");
293 if (iter != sections_.end()) {
294 string_buffer_ = iter->second.first;
295 string_buffer_length_ = iter->second.second;
296 }
298 // Now that we have our abbreviations, start processing DIE's.
299 ProcessDIEs();
301 return ourlength;
302 }
304 // If one really wanted, you could merge SkipAttribute and
305 // ProcessAttribute
306 // This is all boring data manipulation and calling of the handler.
307 const char* CompilationUnit::ProcessAttribute(
308 uint64 dieoffset, const char* start, enum DwarfAttribute attr,
309 enum DwarfForm form) {
310 size_t len;
312 switch (form) {
313 // DW_FORM_indirect is never used because it is such a space
314 // waster.
315 case DW_FORM_indirect:
316 form = static_cast<enum DwarfForm>(reader_->ReadUnsignedLEB128(start,
317 &len));
318 start += len;
319 return ProcessAttribute(dieoffset, start, attr, form);
321 case DW_FORM_flag_present:
322 handler_->ProcessAttributeUnsigned(dieoffset, attr, form, 1);
323 return start;
324 case DW_FORM_data1:
325 case DW_FORM_flag:
326 handler_->ProcessAttributeUnsigned(dieoffset, attr, form,
327 reader_->ReadOneByte(start));
328 return start + 1;
329 case DW_FORM_data2:
330 handler_->ProcessAttributeUnsigned(dieoffset, attr, form,
331 reader_->ReadTwoBytes(start));
332 return start + 2;
333 case DW_FORM_data4:
334 handler_->ProcessAttributeUnsigned(dieoffset, attr, form,
335 reader_->ReadFourBytes(start));
336 return start + 4;
337 case DW_FORM_data8:
338 handler_->ProcessAttributeUnsigned(dieoffset, attr, form,
339 reader_->ReadEightBytes(start));
340 return start + 8;
341 case DW_FORM_string: {
342 const char* str = start;
343 handler_->ProcessAttributeString(dieoffset, attr, form,
344 str);
345 return start + strlen(str) + 1;
346 }
347 case DW_FORM_udata:
348 handler_->ProcessAttributeUnsigned(dieoffset, attr, form,
349 reader_->ReadUnsignedLEB128(start,
350 &len));
351 return start + len;
353 case DW_FORM_sdata:
354 handler_->ProcessAttributeSigned(dieoffset, attr, form,
355 reader_->ReadSignedLEB128(start, &len));
356 return start + len;
357 case DW_FORM_addr:
358 handler_->ProcessAttributeUnsigned(dieoffset, attr, form,
359 reader_->ReadAddress(start));
360 return start + reader_->AddressSize();
361 case DW_FORM_sec_offset:
362 handler_->ProcessAttributeUnsigned(dieoffset, attr, form,
363 reader_->ReadOffset(start));
364 return start + reader_->OffsetSize();
366 case DW_FORM_ref1:
367 handler_->ProcessAttributeReference(dieoffset, attr, form,
368 reader_->ReadOneByte(start)
369 + offset_from_section_start_);
370 return start + 1;
371 case DW_FORM_ref2:
372 handler_->ProcessAttributeReference(dieoffset, attr, form,
373 reader_->ReadTwoBytes(start)
374 + offset_from_section_start_);
375 return start + 2;
376 case DW_FORM_ref4:
377 handler_->ProcessAttributeReference(dieoffset, attr, form,
378 reader_->ReadFourBytes(start)
379 + offset_from_section_start_);
380 return start + 4;
381 case DW_FORM_ref8:
382 handler_->ProcessAttributeReference(dieoffset, attr, form,
383 reader_->ReadEightBytes(start)
384 + offset_from_section_start_);
385 return start + 8;
386 case DW_FORM_ref_udata:
387 handler_->ProcessAttributeReference(dieoffset, attr, form,
388 reader_->ReadUnsignedLEB128(start,
389 &len)
390 + offset_from_section_start_);
391 return start + len;
392 case DW_FORM_ref_addr:
393 // DWARF2 and 3 differ on whether ref_addr is address size or
394 // offset size.
395 assert(header_.version == 2 || header_.version == 3);
396 if (header_.version == 2) {
397 handler_->ProcessAttributeReference(dieoffset, attr, form,
398 reader_->ReadAddress(start));
399 return start + reader_->AddressSize();
400 } else if (header_.version == 3) {
401 handler_->ProcessAttributeReference(dieoffset, attr, form,
402 reader_->ReadOffset(start));
403 return start + reader_->OffsetSize();
404 }
405 break;
406 case DW_FORM_ref_sig8:
407 handler_->ProcessAttributeSignature(dieoffset, attr, form,
408 reader_->ReadEightBytes(start));
409 return start + 8;
411 case DW_FORM_block1: {
412 uint64 datalen = reader_->ReadOneByte(start);
413 handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 1,
414 datalen);
415 return start + 1 + datalen;
416 }
417 case DW_FORM_block2: {
418 uint64 datalen = reader_->ReadTwoBytes(start);
419 handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 2,
420 datalen);
421 return start + 2 + datalen;
422 }
423 case DW_FORM_block4: {
424 uint64 datalen = reader_->ReadFourBytes(start);
425 handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 4,
426 datalen);
427 return start + 4 + datalen;
428 }
429 case DW_FORM_block:
430 case DW_FORM_exprloc: {
431 uint64 datalen = reader_->ReadUnsignedLEB128(start, &len);
432 handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + len,
433 datalen);
434 return start + datalen + len;
435 }
436 case DW_FORM_strp: {
437 assert(string_buffer_ != NULL);
439 const uint64 offset = reader_->ReadOffset(start);
440 assert(string_buffer_ + offset < string_buffer_ + string_buffer_length_);
442 const char* str = string_buffer_ + offset;
443 handler_->ProcessAttributeString(dieoffset, attr, form,
444 str);
445 return start + reader_->OffsetSize();
446 }
447 }
448 fprintf(stderr, "Unhandled form type\n");
449 return NULL;
450 }
452 const char* CompilationUnit::ProcessDIE(uint64 dieoffset,
453 const char* start,
454 const Abbrev& abbrev) {
455 for (AttributeList::const_iterator i = abbrev.attributes.begin();
456 i != abbrev.attributes.end();
457 i++) {
458 start = ProcessAttribute(dieoffset, start, i->first, i->second);
459 }
460 return start;
461 }
463 void CompilationUnit::ProcessDIEs() {
464 const char* dieptr = after_header_;
465 size_t len;
467 // lengthstart is the place the length field is based on.
468 // It is the point in the header after the initial length field
469 const char* lengthstart = buffer_;
471 // In 64 bit dwarf, the initial length is 12 bytes, because of the
472 // 0xffffffff at the start.
473 if (reader_->OffsetSize() == 8)
474 lengthstart += 12;
475 else
476 lengthstart += 4;
478 std::stack<uint64> die_stack;
480 while (dieptr < (lengthstart + header_.length)) {
481 // We give the user the absolute offset from the beginning of
482 // debug_info, since they need it to deal with ref_addr forms.
483 uint64 absolute_offset = (dieptr - buffer_) + offset_from_section_start_;
485 uint64 abbrev_num = reader_->ReadUnsignedLEB128(dieptr, &len);
487 dieptr += len;
489 // Abbrev == 0 represents the end of a list of children, or padding
490 // at the end of the compilation unit.
491 if (abbrev_num == 0) {
492 if (die_stack.size() == 0)
493 // If it is padding, then we are done with the compilation unit's DIEs.
494 return;
495 const uint64 offset = die_stack.top();
496 die_stack.pop();
497 handler_->EndDIE(offset);
498 continue;
499 }
501 const Abbrev& abbrev = abbrevs_->at(static_cast<size_t>(abbrev_num));
502 const enum DwarfTag tag = abbrev.tag;
503 if (!handler_->StartDIE(absolute_offset, tag)) {
504 dieptr = SkipDIE(dieptr, abbrev);
505 } else {
506 dieptr = ProcessDIE(absolute_offset, dieptr, abbrev);
507 }
509 if (abbrev.has_children) {
510 die_stack.push(absolute_offset);
511 } else {
512 handler_->EndDIE(absolute_offset);
513 }
514 }
515 }
517 LineInfo::LineInfo(const char* buffer, uint64 buffer_length,
518 ByteReader* reader, LineInfoHandler* handler):
519 handler_(handler), reader_(reader), buffer_(buffer),
520 buffer_length_(buffer_length) {
521 header_.std_opcode_lengths = NULL;
522 }
524 uint64 LineInfo::Start() {
525 ReadHeader();
526 ReadLines();
527 return after_header_ - buffer_;
528 }
530 // The header for a debug_line section is mildly complicated, because
531 // the line info is very tightly encoded.
532 void LineInfo::ReadHeader() {
533 const char* lineptr = buffer_;
534 size_t initial_length_size;
536 const uint64 initial_length
537 = reader_->ReadInitialLength(lineptr, &initial_length_size);
539 lineptr += initial_length_size;
540 header_.total_length = initial_length;
541 assert(buffer_ + initial_length_size + header_.total_length <=
542 buffer_ + buffer_length_);
544 // Address size *must* be set by CU ahead of time.
545 assert(reader_->AddressSize() != 0);
547 header_.version = reader_->ReadTwoBytes(lineptr);
548 lineptr += 2;
550 header_.prologue_length = reader_->ReadOffset(lineptr);
551 lineptr += reader_->OffsetSize();
553 header_.min_insn_length = reader_->ReadOneByte(lineptr);
554 lineptr += 1;
556 header_.default_is_stmt = reader_->ReadOneByte(lineptr);
557 lineptr += 1;
559 header_.line_base = *reinterpret_cast<const int8*>(lineptr);
560 lineptr += 1;
562 header_.line_range = reader_->ReadOneByte(lineptr);
563 lineptr += 1;
565 header_.opcode_base = reader_->ReadOneByte(lineptr);
566 lineptr += 1;
568 header_.std_opcode_lengths = new std::vector<unsigned char>;
569 header_.std_opcode_lengths->resize(header_.opcode_base + 1);
570 (*header_.std_opcode_lengths)[0] = 0;
571 for (int i = 1; i < header_.opcode_base; i++) {
572 (*header_.std_opcode_lengths)[i] = reader_->ReadOneByte(lineptr);
573 lineptr += 1;
574 }
576 // It is legal for the directory entry table to be empty.
577 if (*lineptr) {
578 uint32 dirindex = 1;
579 while (*lineptr) {
580 const char* dirname = lineptr;
581 handler_->DefineDir(dirname, dirindex);
582 lineptr += strlen(dirname) + 1;
583 dirindex++;
584 }
585 }
586 lineptr++;
588 // It is also legal for the file entry table to be empty.
589 if (*lineptr) {
590 uint32 fileindex = 1;
591 size_t len;
592 while (*lineptr) {
593 const char* filename = lineptr;
594 lineptr += strlen(filename) + 1;
596 uint64 dirindex = reader_->ReadUnsignedLEB128(lineptr, &len);
597 lineptr += len;
599 uint64 mod_time = reader_->ReadUnsignedLEB128(lineptr, &len);
600 lineptr += len;
602 uint64 filelength = reader_->ReadUnsignedLEB128(lineptr, &len);
603 lineptr += len;
604 handler_->DefineFile(filename, fileindex, static_cast<uint32>(dirindex),
605 mod_time, filelength);
606 fileindex++;
607 }
608 }
609 lineptr++;
611 after_header_ = lineptr;
612 }
614 /* static */
615 bool LineInfo::ProcessOneOpcode(ByteReader* reader,
616 LineInfoHandler* handler,
617 const struct LineInfoHeader &header,
618 const char* start,
619 struct LineStateMachine* lsm,
620 size_t* len,
621 uintptr pc,
622 bool *lsm_passes_pc) {
623 size_t oplen = 0;
624 size_t templen;
625 uint8 opcode = reader->ReadOneByte(start);
626 oplen++;
627 start++;
629 // If the opcode is great than the opcode_base, it is a special
630 // opcode. Most line programs consist mainly of special opcodes.
631 if (opcode >= header.opcode_base) {
632 opcode -= header.opcode_base;
633 const int64 advance_address = (opcode / header.line_range)
634 * header.min_insn_length;
635 const int32 advance_line = (opcode % header.line_range)
636 + header.line_base;
638 // Check if the lsm passes "pc". If so, mark it as passed.
639 if (lsm_passes_pc &&
640 lsm->address <= pc && pc < lsm->address + advance_address) {
641 *lsm_passes_pc = true;
642 }
644 lsm->address += advance_address;
645 lsm->line_num += advance_line;
646 lsm->basic_block = true;
647 *len = oplen;
648 return true;
649 }
651 // Otherwise, we have the regular opcodes
652 switch (opcode) {
653 case DW_LNS_copy: {
654 lsm->basic_block = false;
655 *len = oplen;
656 return true;
657 }
659 case DW_LNS_advance_pc: {
660 uint64 advance_address = reader->ReadUnsignedLEB128(start, &templen);
661 oplen += templen;
663 // Check if the lsm passes "pc". If so, mark it as passed.
664 if (lsm_passes_pc && lsm->address <= pc &&
665 pc < lsm->address + header.min_insn_length * advance_address) {
666 *lsm_passes_pc = true;
667 }
669 lsm->address += header.min_insn_length * advance_address;
670 }
671 break;
672 case DW_LNS_advance_line: {
673 const int64 advance_line = reader->ReadSignedLEB128(start, &templen);
674 oplen += templen;
675 lsm->line_num += static_cast<int32>(advance_line);
677 // With gcc 4.2.1, we can get the line_no here for the first time
678 // since DW_LNS_advance_line is called after DW_LNE_set_address is
679 // called. So we check if the lsm passes "pc" here, not in
680 // DW_LNE_set_address.
681 if (lsm_passes_pc && lsm->address == pc) {
682 *lsm_passes_pc = true;
683 }
684 }
685 break;
686 case DW_LNS_set_file: {
687 const uint64 fileno = reader->ReadUnsignedLEB128(start, &templen);
688 oplen += templen;
689 lsm->file_num = static_cast<uint32>(fileno);
690 }
691 break;
692 case DW_LNS_set_column: {
693 const uint64 colno = reader->ReadUnsignedLEB128(start, &templen);
694 oplen += templen;
695 lsm->column_num = static_cast<uint32>(colno);
696 }
697 break;
698 case DW_LNS_negate_stmt: {
699 lsm->is_stmt = !lsm->is_stmt;
700 }
701 break;
702 case DW_LNS_set_basic_block: {
703 lsm->basic_block = true;
704 }
705 break;
706 case DW_LNS_fixed_advance_pc: {
707 const uint16 advance_address = reader->ReadTwoBytes(start);
708 oplen += 2;
710 // Check if the lsm passes "pc". If so, mark it as passed.
711 if (lsm_passes_pc &&
712 lsm->address <= pc && pc < lsm->address + advance_address) {
713 *lsm_passes_pc = true;
714 }
716 lsm->address += advance_address;
717 }
718 break;
719 case DW_LNS_const_add_pc: {
720 const int64 advance_address = header.min_insn_length
721 * ((255 - header.opcode_base)
722 / header.line_range);
724 // Check if the lsm passes "pc". If so, mark it as passed.
725 if (lsm_passes_pc &&
726 lsm->address <= pc && pc < lsm->address + advance_address) {
727 *lsm_passes_pc = true;
728 }
730 lsm->address += advance_address;
731 }
732 break;
733 case DW_LNS_extended_op: {
734 const uint64 extended_op_len = reader->ReadUnsignedLEB128(start,
735 &templen);
736 start += templen;
737 oplen += templen + extended_op_len;
739 const uint64 extended_op = reader->ReadOneByte(start);
740 start++;
742 switch (extended_op) {
743 case DW_LNE_end_sequence: {
744 lsm->end_sequence = true;
745 *len = oplen;
746 return true;
747 }
748 break;
749 case DW_LNE_set_address: {
750 // With gcc 4.2.1, we cannot tell the line_no here since
751 // DW_LNE_set_address is called before DW_LNS_advance_line is
752 // called. So we do not check if the lsm passes "pc" here. See
753 // also the comment in DW_LNS_advance_line.
754 uint64 address = reader->ReadAddress(start);
755 lsm->address = address;
756 }
757 break;
758 case DW_LNE_define_file: {
759 const char* filename = start;
761 templen = strlen(filename) + 1;
762 start += templen;
764 uint64 dirindex = reader->ReadUnsignedLEB128(start, &templen);
765 oplen += templen;
767 const uint64 mod_time = reader->ReadUnsignedLEB128(start,
768 &templen);
769 oplen += templen;
771 const uint64 filelength = reader->ReadUnsignedLEB128(start,
772 &templen);
773 oplen += templen;
775 if (handler) {
776 handler->DefineFile(filename, -1, static_cast<uint32>(dirindex),
777 mod_time, filelength);
778 }
779 }
780 break;
781 }
782 }
783 break;
785 default: {
786 // Ignore unknown opcode silently
787 if (header.std_opcode_lengths) {
788 for (int i = 0; i < (*header.std_opcode_lengths)[opcode]; i++) {
789 reader->ReadUnsignedLEB128(start, &templen);
790 start += templen;
791 oplen += templen;
792 }
793 }
794 }
795 break;
796 }
797 *len = oplen;
798 return false;
799 }
801 void LineInfo::ReadLines() {
802 struct LineStateMachine lsm;
804 // lengthstart is the place the length field is based on.
805 // It is the point in the header after the initial length field
806 const char* lengthstart = buffer_;
808 // In 64 bit dwarf, the initial length is 12 bytes, because of the
809 // 0xffffffff at the start.
810 if (reader_->OffsetSize() == 8)
811 lengthstart += 12;
812 else
813 lengthstart += 4;
815 const char* lineptr = after_header_;
816 lsm.Reset(header_.default_is_stmt);
818 // The LineInfoHandler interface expects each line's length along
819 // with its address, but DWARF only provides addresses (sans
820 // length), and an end-of-sequence address; one infers the length
821 // from the next address. So we report a line only when we get the
822 // next line's address, or the end-of-sequence address.
823 bool have_pending_line = false;
824 uint64 pending_address = 0;
825 uint32 pending_file_num = 0, pending_line_num = 0, pending_column_num = 0;
827 while (lineptr < lengthstart + header_.total_length) {
828 size_t oplength;
829 bool add_row = ProcessOneOpcode(reader_, handler_, header_,
830 lineptr, &lsm, &oplength, (uintptr)-1,
831 NULL);
832 if (add_row) {
833 if (have_pending_line)
834 handler_->AddLine(pending_address, lsm.address - pending_address,
835 pending_file_num, pending_line_num,
836 pending_column_num);
837 if (lsm.end_sequence) {
838 lsm.Reset(header_.default_is_stmt);
839 have_pending_line = false;
840 } else {
841 pending_address = lsm.address;
842 pending_file_num = lsm.file_num;
843 pending_line_num = lsm.line_num;
844 pending_column_num = lsm.column_num;
845 have_pending_line = true;
846 }
847 }
848 lineptr += oplength;
849 }
851 after_header_ = lengthstart + header_.total_length;
852 }
854 // A DWARF rule for recovering the address or value of a register, or
855 // computing the canonical frame address. There is one subclass of this for
856 // each '*Rule' member function in CallFrameInfo::Handler.
857 //
858 // It's annoying that we have to handle Rules using pointers (because
859 // the concrete instances can have an arbitrary size). They're small,
860 // so it would be much nicer if we could just handle them by value
861 // instead of fretting about ownership and destruction.
862 //
863 // It seems like all these could simply be instances of std::tr1::bind,
864 // except that we need instances to be EqualityComparable, too.
865 //
866 // This could logically be nested within State, but then the qualified names
867 // get horrendous.
868 class CallFrameInfo::Rule {
869 public:
870 virtual ~Rule() { }
872 // Tell HANDLER that, at ADDRESS in the program, REGISTER can be
873 // recovered using this rule. If REGISTER is kCFARegister, then this rule
874 // describes how to compute the canonical frame address. Return what the
875 // HANDLER member function returned.
876 virtual bool Handle(Handler *handler,
877 uint64 address, int register) const = 0;
879 // Equality on rules. We use these to decide which rules we need
880 // to report after a DW_CFA_restore_state instruction.
881 virtual bool operator==(const Rule &rhs) const = 0;
883 bool operator!=(const Rule &rhs) const { return ! (*this == rhs); }
885 // Return a pointer to a copy of this rule.
886 virtual Rule *Copy() const = 0;
888 // If this is a base+offset rule, change its base register to REG.
889 // Otherwise, do nothing. (Ugly, but required for DW_CFA_def_cfa_register.)
890 virtual void SetBaseRegister(unsigned reg) { }
892 // If this is a base+offset rule, change its offset to OFFSET. Otherwise,
893 // do nothing. (Ugly, but required for DW_CFA_def_cfa_offset.)
894 virtual void SetOffset(long long offset) { }
896 // A RTTI workaround, to make it possible to implement equality
897 // comparisons on classes derived from this one.
898 enum CFIRTag {
899 CFIR_UNDEFINED_RULE,
900 CFIR_SAME_VALUE_RULE,
901 CFIR_OFFSET_RULE,
902 CFIR_VAL_OFFSET_RULE,
903 CFIR_REGISTER_RULE,
904 CFIR_EXPRESSION_RULE,
905 CFIR_VAL_EXPRESSION_RULE
906 };
908 // Produce the tag that identifies the child class of this object.
909 virtual CFIRTag getTag() const = 0;
910 };
912 // Rule: the value the register had in the caller cannot be recovered.
913 class CallFrameInfo::UndefinedRule: public CallFrameInfo::Rule {
914 public:
915 UndefinedRule() { }
916 ~UndefinedRule() { }
917 CFIRTag getTag() const { return CFIR_UNDEFINED_RULE; }
918 bool Handle(Handler *handler, uint64 address, int reg) const {
919 return handler->UndefinedRule(address, reg);
920 }
921 bool operator==(const Rule &rhs) const {
922 if (rhs.getTag() != CFIR_UNDEFINED_RULE) return false;
923 return true;
924 }
925 Rule *Copy() const { return new UndefinedRule(*this); }
926 };
928 // Rule: the register's value is the same as that it had in the caller.
929 class CallFrameInfo::SameValueRule: public CallFrameInfo::Rule {
930 public:
931 SameValueRule() { }
932 ~SameValueRule() { }
933 CFIRTag getTag() const { return CFIR_SAME_VALUE_RULE; }
934 bool Handle(Handler *handler, uint64 address, int reg) const {
935 return handler->SameValueRule(address, reg);
936 }
937 bool operator==(const Rule &rhs) const {
938 if (rhs.getTag() != CFIR_SAME_VALUE_RULE) return false;
939 return true;
940 }
941 Rule *Copy() const { return new SameValueRule(*this); }
942 };
944 // Rule: the register is saved at OFFSET from BASE_REGISTER. BASE_REGISTER
945 // may be CallFrameInfo::Handler::kCFARegister.
946 class CallFrameInfo::OffsetRule: public CallFrameInfo::Rule {
947 public:
948 OffsetRule(int base_register, long offset)
949 : base_register_(base_register), offset_(offset) { }
950 ~OffsetRule() { }
951 CFIRTag getTag() const { return CFIR_OFFSET_RULE; }
952 bool Handle(Handler *handler, uint64 address, int reg) const {
953 return handler->OffsetRule(address, reg, base_register_, offset_);
954 }
955 bool operator==(const Rule &rhs) const {
956 if (rhs.getTag() != CFIR_OFFSET_RULE) return false;
957 const OffsetRule *our_rhs = static_cast<const OffsetRule *>(&rhs);
958 return (base_register_ == our_rhs->base_register_ &&
959 offset_ == our_rhs->offset_);
960 }
961 Rule *Copy() const { return new OffsetRule(*this); }
962 // We don't actually need SetBaseRegister or SetOffset here, since they
963 // are only ever applied to CFA rules, for DW_CFA_def_cfa_offset, and it
964 // doesn't make sense to use OffsetRule for computing the CFA: it
965 // computes the address at which a register is saved, not a value.
966 private:
967 int base_register_;
968 long offset_;
969 };
971 // Rule: the value the register had in the caller is the value of
972 // BASE_REGISTER plus offset. BASE_REGISTER may be
973 // CallFrameInfo::Handler::kCFARegister.
974 class CallFrameInfo::ValOffsetRule: public CallFrameInfo::Rule {
975 public:
976 ValOffsetRule(int base_register, long offset)
977 : base_register_(base_register), offset_(offset) { }
978 ~ValOffsetRule() { }
979 CFIRTag getTag() const { return CFIR_VAL_OFFSET_RULE; }
980 bool Handle(Handler *handler, uint64 address, int reg) const {
981 return handler->ValOffsetRule(address, reg, base_register_, offset_);
982 }
983 bool operator==(const Rule &rhs) const {
984 if (rhs.getTag() != CFIR_VAL_OFFSET_RULE) return false;
985 const ValOffsetRule *our_rhs = static_cast<const ValOffsetRule *>(&rhs);
986 return (base_register_ == our_rhs->base_register_ &&
987 offset_ == our_rhs->offset_);
988 }
989 Rule *Copy() const { return new ValOffsetRule(*this); }
990 void SetBaseRegister(unsigned reg) { base_register_ = reg; }
991 void SetOffset(long long offset) { offset_ = offset; }
992 private:
993 int base_register_;
994 long offset_;
995 };
997 // Rule: the register has been saved in another register REGISTER_NUMBER_.
998 class CallFrameInfo::RegisterRule: public CallFrameInfo::Rule {
999 public:
1000 explicit RegisterRule(int register_number)
1001 : register_number_(register_number) { }
1002 ~RegisterRule() { }
1003 CFIRTag getTag() const { return CFIR_REGISTER_RULE; }
1004 bool Handle(Handler *handler, uint64 address, int reg) const {
1005 return handler->RegisterRule(address, reg, register_number_);
1006 }
1007 bool operator==(const Rule &rhs) const {
1008 if (rhs.getTag() != CFIR_REGISTER_RULE) return false;
1009 const RegisterRule *our_rhs = static_cast<const RegisterRule *>(&rhs);
1010 return (register_number_ == our_rhs->register_number_);
1011 }
1012 Rule *Copy() const { return new RegisterRule(*this); }
1013 private:
1014 int register_number_;
1015 };
1017 // Rule: EXPRESSION evaluates to the address at which the register is saved.
1018 class CallFrameInfo::ExpressionRule: public CallFrameInfo::Rule {
1019 public:
1020 explicit ExpressionRule(const string &expression)
1021 : expression_(expression) { }
1022 ~ExpressionRule() { }
1023 CFIRTag getTag() const { return CFIR_EXPRESSION_RULE; }
1024 bool Handle(Handler *handler, uint64 address, int reg) const {
1025 return handler->ExpressionRule(address, reg, expression_);
1026 }
1027 bool operator==(const Rule &rhs) const {
1028 if (rhs.getTag() != CFIR_EXPRESSION_RULE) return false;
1029 const ExpressionRule *our_rhs = static_cast<const ExpressionRule *>(&rhs);
1030 return (expression_ == our_rhs->expression_);
1031 }
1032 Rule *Copy() const { return new ExpressionRule(*this); }
1033 private:
1034 string expression_;
1035 };
1037 // Rule: EXPRESSION evaluates to the address at which the register is saved.
1038 class CallFrameInfo::ValExpressionRule: public CallFrameInfo::Rule {
1039 public:
1040 explicit ValExpressionRule(const string &expression)
1041 : expression_(expression) { }
1042 ~ValExpressionRule() { }
1043 CFIRTag getTag() const { return CFIR_VAL_EXPRESSION_RULE; }
1044 bool Handle(Handler *handler, uint64 address, int reg) const {
1045 return handler->ValExpressionRule(address, reg, expression_);
1046 }
1047 bool operator==(const Rule &rhs) const {
1048 if (rhs.getTag() != CFIR_VAL_EXPRESSION_RULE) return false;
1049 const ValExpressionRule *our_rhs =
1050 static_cast<const ValExpressionRule *>(&rhs);
1051 return (expression_ == our_rhs->expression_);
1052 }
1053 Rule *Copy() const { return new ValExpressionRule(*this); }
1054 private:
1055 string expression_;
1056 };
1058 // A map from register numbers to rules.
1059 class CallFrameInfo::RuleMap {
1060 public:
1061 RuleMap() : cfa_rule_(NULL) { }
1062 RuleMap(const RuleMap &rhs) : cfa_rule_(NULL) { *this = rhs; }
1063 ~RuleMap() { Clear(); }
1065 RuleMap &operator=(const RuleMap &rhs);
1067 // Set the rule for computing the CFA to RULE. Take ownership of RULE.
1068 void SetCFARule(Rule *rule) { delete cfa_rule_; cfa_rule_ = rule; }
1070 // Return the current CFA rule. Unlike RegisterRule, this RuleMap retains
1071 // ownership of the rule. We use this for DW_CFA_def_cfa_offset and
1072 // DW_CFA_def_cfa_register, and for detecting references to the CFA before
1073 // a rule for it has been established.
1074 Rule *CFARule() const { return cfa_rule_; }
1076 // Return the rule for REG, or NULL if there is none. The caller takes
1077 // ownership of the result.
1078 Rule *RegisterRule(int reg) const;
1080 // Set the rule for computing REG to RULE. Take ownership of RULE.
1081 void SetRegisterRule(int reg, Rule *rule);
1083 // Make all the appropriate calls to HANDLER as if we were changing from
1084 // this RuleMap to NEW_RULES at ADDRESS. We use this to implement
1085 // DW_CFA_restore_state, where lots of rules can change simultaneously.
1086 // Return true if all handlers returned true; otherwise, return false.
1087 bool HandleTransitionTo(Handler *handler, uint64 address,
1088 const RuleMap &new_rules) const;
1090 private:
1091 // A map from register numbers to Rules.
1092 typedef std::map<int, Rule *> RuleByNumber;
1094 // Remove all register rules and clear cfa_rule_.
1095 void Clear();
1097 // The rule for computing the canonical frame address. This RuleMap owns
1098 // this rule.
1099 Rule *cfa_rule_;
1101 // A map from register numbers to postfix expressions to recover
1102 // their values. This RuleMap owns the Rules the map refers to.
1103 RuleByNumber registers_;
1104 };
1106 CallFrameInfo::RuleMap &CallFrameInfo::RuleMap::operator=(const RuleMap &rhs) {
1107 Clear();
1108 // Since each map owns the rules it refers to, assignment must copy them.
1109 if (rhs.cfa_rule_) cfa_rule_ = rhs.cfa_rule_->Copy();
1110 for (RuleByNumber::const_iterator it = rhs.registers_.begin();
1111 it != rhs.registers_.end(); it++)
1112 registers_[it->first] = it->second->Copy();
1113 return *this;
1114 }
1116 CallFrameInfo::Rule *CallFrameInfo::RuleMap::RegisterRule(int reg) const {
1117 assert(reg != Handler::kCFARegister);
1118 RuleByNumber::const_iterator it = registers_.find(reg);
1119 if (it != registers_.end())
1120 return it->second->Copy();
1121 else
1122 return NULL;
1123 }
1125 void CallFrameInfo::RuleMap::SetRegisterRule(int reg, Rule *rule) {
1126 assert(reg != Handler::kCFARegister);
1127 assert(rule);
1128 Rule **slot = ®isters_[reg];
1129 delete *slot;
1130 *slot = rule;
1131 }
1133 bool CallFrameInfo::RuleMap::HandleTransitionTo(
1134 Handler *handler,
1135 uint64 address,
1136 const RuleMap &new_rules) const {
1137 // Transition from cfa_rule_ to new_rules.cfa_rule_.
1138 if (cfa_rule_ && new_rules.cfa_rule_) {
1139 if (*cfa_rule_ != *new_rules.cfa_rule_ &&
1140 !new_rules.cfa_rule_->Handle(handler, address,
1141 Handler::kCFARegister))
1142 return false;
1143 } else if (cfa_rule_) {
1144 // this RuleMap has a CFA rule but new_rules doesn't.
1145 // CallFrameInfo::Handler has no way to handle this --- and shouldn't;
1146 // it's garbage input. The instruction interpreter should have
1147 // detected this and warned, so take no action here.
1148 } else if (new_rules.cfa_rule_) {
1149 // This shouldn't be possible: NEW_RULES is some prior state, and
1150 // there's no way to remove entries.
1151 assert(0);
1152 } else {
1153 // Both CFA rules are empty. No action needed.
1154 }
1156 // Traverse the two maps in order by register number, and report
1157 // whatever differences we find.
1158 RuleByNumber::const_iterator old_it = registers_.begin();
1159 RuleByNumber::const_iterator new_it = new_rules.registers_.begin();
1160 while (old_it != registers_.end() && new_it != new_rules.registers_.end()) {
1161 if (old_it->first < new_it->first) {
1162 // This RuleMap has an entry for old_it->first, but NEW_RULES
1163 // doesn't.
1164 //
1165 // This isn't really the right thing to do, but since CFI generally
1166 // only mentions callee-saves registers, and GCC's convention for
1167 // callee-saves registers is that they are unchanged, it's a good
1168 // approximation.
1169 if (!handler->SameValueRule(address, old_it->first))
1170 return false;
1171 old_it++;
1172 } else if (old_it->first > new_it->first) {
1173 // NEW_RULES has entry for new_it->first, but this RuleMap
1174 // doesn't. This shouldn't be possible: NEW_RULES is some prior
1175 // state, and there's no way to remove entries.
1176 assert(0);
1177 } else {
1178 // Both maps have an entry for this register. Report the new
1179 // rule if it is different.
1180 if (*old_it->second != *new_it->second &&
1181 !new_it->second->Handle(handler, address, new_it->first))
1182 return false;
1183 new_it++, old_it++;
1184 }
1185 }
1186 // Finish off entries from this RuleMap with no counterparts in new_rules.
1187 while (old_it != registers_.end()) {
1188 if (!handler->SameValueRule(address, old_it->first))
1189 return false;
1190 old_it++;
1191 }
1192 // Since we only make transitions from a rule set to some previously
1193 // saved rule set, and we can only add rules to the map, NEW_RULES
1194 // must have fewer rules than *this.
1195 assert(new_it == new_rules.registers_.end());
1197 return true;
1198 }
1200 // Remove all register rules and clear cfa_rule_.
1201 void CallFrameInfo::RuleMap::Clear() {
1202 delete cfa_rule_;
1203 cfa_rule_ = NULL;
1204 for (RuleByNumber::iterator it = registers_.begin();
1205 it != registers_.end(); it++)
1206 delete it->second;
1207 registers_.clear();
1208 }
1210 // The state of the call frame information interpreter as it processes
1211 // instructions from a CIE and FDE.
1212 class CallFrameInfo::State {
1213 public:
1214 // Create a call frame information interpreter state with the given
1215 // reporter, reader, handler, and initial call frame info address.
1216 State(ByteReader *reader, Handler *handler, Reporter *reporter,
1217 uint64 address)
1218 : reader_(reader), handler_(handler), reporter_(reporter),
1219 address_(address), entry_(NULL), cursor_(NULL) { }
1221 // Interpret instructions from CIE, save the resulting rule set for
1222 // DW_CFA_restore instructions, and return true. On error, report
1223 // the problem to reporter_ and return false.
1224 bool InterpretCIE(const CIE &cie);
1226 // Interpret instructions from FDE, and return true. On error,
1227 // report the problem to reporter_ and return false.
1228 bool InterpretFDE(const FDE &fde);
1230 private:
1231 // The operands of a CFI instruction, for ParseOperands.
1232 struct Operands {
1233 unsigned register_number; // A register number.
1234 uint64 offset; // An offset or address.
1235 long signed_offset; // A signed offset.
1236 string expression; // A DWARF expression.
1237 };
1239 // Parse CFI instruction operands from STATE's instruction stream as
1240 // described by FORMAT. On success, populate OPERANDS with the
1241 // results, and return true. On failure, report the problem and
1242 // return false.
1243 //
1244 // Each character of FORMAT should be one of the following:
1245 //
1246 // 'r' unsigned LEB128 register number (OPERANDS->register_number)
1247 // 'o' unsigned LEB128 offset (OPERANDS->offset)
1248 // 's' signed LEB128 offset (OPERANDS->signed_offset)
1249 // 'a' machine-size address (OPERANDS->offset)
1250 // (If the CIE has a 'z' augmentation string, 'a' uses the
1251 // encoding specified by the 'R' argument.)
1252 // '1' a one-byte offset (OPERANDS->offset)
1253 // '2' a two-byte offset (OPERANDS->offset)
1254 // '4' a four-byte offset (OPERANDS->offset)
1255 // '8' an eight-byte offset (OPERANDS->offset)
1256 // 'e' a DW_FORM_block holding a (OPERANDS->expression)
1257 // DWARF expression
1258 bool ParseOperands(const char *format, Operands *operands);
1260 // Interpret one CFI instruction from STATE's instruction stream, update
1261 // STATE, report any rule changes to handler_, and return true. On
1262 // failure, report the problem and return false.
1263 bool DoInstruction();
1265 // The following Do* member functions are subroutines of DoInstruction,
1266 // factoring out the actual work of operations that have several
1267 // different encodings.
1269 // Set the CFA rule to be the value of BASE_REGISTER plus OFFSET, and
1270 // return true. On failure, report and return false. (Used for
1271 // DW_CFA_def_cfa and DW_CFA_def_cfa_sf.)
1272 bool DoDefCFA(unsigned base_register, long offset);
1274 // Change the offset of the CFA rule to OFFSET, and return true. On
1275 // failure, report and return false. (Subroutine for
1276 // DW_CFA_def_cfa_offset and DW_CFA_def_cfa_offset_sf.)
1277 bool DoDefCFAOffset(long offset);
1279 // Specify that REG can be recovered using RULE, and return true. On
1280 // failure, report and return false.
1281 bool DoRule(unsigned reg, Rule *rule);
1283 // Specify that REG can be found at OFFSET from the CFA, and return true.
1284 // On failure, report and return false. (Subroutine for DW_CFA_offset,
1285 // DW_CFA_offset_extended, and DW_CFA_offset_extended_sf.)
1286 bool DoOffset(unsigned reg, long offset);
1288 // Specify that the caller's value for REG is the CFA plus OFFSET,
1289 // and return true. On failure, report and return false. (Subroutine
1290 // for DW_CFA_val_offset and DW_CFA_val_offset_sf.)
1291 bool DoValOffset(unsigned reg, long offset);
1293 // Restore REG to the rule established in the CIE, and return true. On
1294 // failure, report and return false. (Subroutine for DW_CFA_restore and
1295 // DW_CFA_restore_extended.)
1296 bool DoRestore(unsigned reg);
1298 // Return the section offset of the instruction at cursor. For use
1299 // in error messages.
1300 uint64 CursorOffset() { return entry_->offset + (cursor_ - entry_->start); }
1302 // Report that entry_ is incomplete, and return false. For brevity.
1303 bool ReportIncomplete() {
1304 reporter_->Incomplete(entry_->offset, entry_->kind);
1305 return false;
1306 }
1308 // For reading multi-byte values with the appropriate endianness.
1309 ByteReader *reader_;
1311 // The handler to which we should report the data we find.
1312 Handler *handler_;
1314 // For reporting problems in the info we're parsing.
1315 Reporter *reporter_;
1317 // The code address to which the next instruction in the stream applies.
1318 uint64 address_;
1320 // The entry whose instructions we are currently processing. This is
1321 // first a CIE, and then an FDE.
1322 const Entry *entry_;
1324 // The next instruction to process.
1325 const char *cursor_;
1327 // The current set of rules.
1328 RuleMap rules_;
1330 // The set of rules established by the CIE, used by DW_CFA_restore
1331 // and DW_CFA_restore_extended. We set this after interpreting the
1332 // CIE's instructions.
1333 RuleMap cie_rules_;
1335 // A stack of saved states, for DW_CFA_remember_state and
1336 // DW_CFA_restore_state.
1337 std::stack<RuleMap> saved_rules_;
1338 };
1340 bool CallFrameInfo::State::InterpretCIE(const CIE &cie) {
1341 entry_ = &cie;
1342 cursor_ = entry_->instructions;
1343 while (cursor_ < entry_->end)
1344 if (!DoInstruction())
1345 return false;
1346 // Note the rules established by the CIE, for use by DW_CFA_restore
1347 // and DW_CFA_restore_extended.
1348 cie_rules_ = rules_;
1349 return true;
1350 }
1352 bool CallFrameInfo::State::InterpretFDE(const FDE &fde) {
1353 entry_ = &fde;
1354 cursor_ = entry_->instructions;
1355 while (cursor_ < entry_->end)
1356 if (!DoInstruction())
1357 return false;
1358 return true;
1359 }
1361 bool CallFrameInfo::State::ParseOperands(const char *format,
1362 Operands *operands) {
1363 size_t len;
1364 const char *operand;
1366 for (operand = format; *operand; operand++) {
1367 size_t bytes_left = entry_->end - cursor_;
1368 switch (*operand) {
1369 case 'r':
1370 operands->register_number = reader_->ReadUnsignedLEB128(cursor_, &len);
1371 if (len > bytes_left) return ReportIncomplete();
1372 cursor_ += len;
1373 break;
1375 case 'o':
1376 operands->offset = reader_->ReadUnsignedLEB128(cursor_, &len);
1377 if (len > bytes_left) return ReportIncomplete();
1378 cursor_ += len;
1379 break;
1381 case 's':
1382 operands->signed_offset = reader_->ReadSignedLEB128(cursor_, &len);
1383 if (len > bytes_left) return ReportIncomplete();
1384 cursor_ += len;
1385 break;
1387 case 'a':
1388 operands->offset =
1389 reader_->ReadEncodedPointer(cursor_, entry_->cie->pointer_encoding,
1390 &len);
1391 if (len > bytes_left) return ReportIncomplete();
1392 cursor_ += len;
1393 break;
1395 case '1':
1396 if (1 > bytes_left) return ReportIncomplete();
1397 operands->offset = static_cast<unsigned char>(*cursor_++);
1398 break;
1400 case '2':
1401 if (2 > bytes_left) return ReportIncomplete();
1402 operands->offset = reader_->ReadTwoBytes(cursor_);
1403 cursor_ += 2;
1404 break;
1406 case '4':
1407 if (4 > bytes_left) return ReportIncomplete();
1408 operands->offset = reader_->ReadFourBytes(cursor_);
1409 cursor_ += 4;
1410 break;
1412 case '8':
1413 if (8 > bytes_left) return ReportIncomplete();
1414 operands->offset = reader_->ReadEightBytes(cursor_);
1415 cursor_ += 8;
1416 break;
1418 case 'e': {
1419 size_t expression_length = reader_->ReadUnsignedLEB128(cursor_, &len);
1420 if (len > bytes_left || expression_length > bytes_left - len)
1421 return ReportIncomplete();
1422 cursor_ += len;
1423 operands->expression = string(cursor_, expression_length);
1424 cursor_ += expression_length;
1425 break;
1426 }
1428 default:
1429 assert(0);
1430 }
1431 }
1433 return true;
1434 }
1436 bool CallFrameInfo::State::DoInstruction() {
1437 CIE *cie = entry_->cie;
1438 Operands ops;
1440 // Our entry's kind should have been set by now.
1441 assert(entry_->kind != kUnknown);
1443 // We shouldn't have been invoked unless there were more
1444 // instructions to parse.
1445 assert(cursor_ < entry_->end);
1447 unsigned opcode = *cursor_++;
1448 if ((opcode & 0xc0) != 0) {
1449 switch (opcode & 0xc0) {
1450 // Advance the address.
1451 case DW_CFA_advance_loc: {
1452 size_t code_offset = opcode & 0x3f;
1453 address_ += code_offset * cie->code_alignment_factor;
1454 break;
1455 }
1457 // Find a register at an offset from the CFA.
1458 case DW_CFA_offset:
1459 if (!ParseOperands("o", &ops) ||
1460 !DoOffset(opcode & 0x3f, ops.offset * cie->data_alignment_factor))
1461 return false;
1462 break;
1464 // Restore the rule established for a register by the CIE.
1465 case DW_CFA_restore:
1466 if (!DoRestore(opcode & 0x3f)) return false;
1467 break;
1469 // The 'if' above should have excluded this possibility.
1470 default:
1471 assert(0);
1472 }
1474 // Return here, so the big switch below won't be indented.
1475 return true;
1476 }
1478 switch (opcode) {
1479 // Set the address.
1480 case DW_CFA_set_loc:
1481 if (!ParseOperands("a", &ops)) return false;
1482 address_ = ops.offset;
1483 break;
1485 // Advance the address.
1486 case DW_CFA_advance_loc1:
1487 if (!ParseOperands("1", &ops)) return false;
1488 address_ += ops.offset * cie->code_alignment_factor;
1489 break;
1491 // Advance the address.
1492 case DW_CFA_advance_loc2:
1493 if (!ParseOperands("2", &ops)) return false;
1494 address_ += ops.offset * cie->code_alignment_factor;
1495 break;
1497 // Advance the address.
1498 case DW_CFA_advance_loc4:
1499 if (!ParseOperands("4", &ops)) return false;
1500 address_ += ops.offset * cie->code_alignment_factor;
1501 break;
1503 // Advance the address.
1504 case DW_CFA_MIPS_advance_loc8:
1505 if (!ParseOperands("8", &ops)) return false;
1506 address_ += ops.offset * cie->code_alignment_factor;
1507 break;
1509 // Compute the CFA by adding an offset to a register.
1510 case DW_CFA_def_cfa:
1511 if (!ParseOperands("ro", &ops) ||
1512 !DoDefCFA(ops.register_number, ops.offset))
1513 return false;
1514 break;
1516 // Compute the CFA by adding an offset to a register.
1517 case DW_CFA_def_cfa_sf:
1518 if (!ParseOperands("rs", &ops) ||
1519 !DoDefCFA(ops.register_number,
1520 ops.signed_offset * cie->data_alignment_factor))
1521 return false;
1522 break;
1524 // Change the base register used to compute the CFA.
1525 case DW_CFA_def_cfa_register: {
1526 Rule *cfa_rule = rules_.CFARule();
1527 if (!cfa_rule) {
1528 reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
1529 return false;
1530 }
1531 if (!ParseOperands("r", &ops)) return false;
1532 cfa_rule->SetBaseRegister(ops.register_number);
1533 if (!cfa_rule->Handle(handler_, address_,
1534 Handler::kCFARegister))
1535 return false;
1536 break;
1537 }
1539 // Change the offset used to compute the CFA.
1540 case DW_CFA_def_cfa_offset:
1541 if (!ParseOperands("o", &ops) ||
1542 !DoDefCFAOffset(ops.offset))
1543 return false;
1544 break;
1546 // Change the offset used to compute the CFA.
1547 case DW_CFA_def_cfa_offset_sf:
1548 if (!ParseOperands("s", &ops) ||
1549 !DoDefCFAOffset(ops.signed_offset * cie->data_alignment_factor))
1550 return false;
1551 break;
1553 // Specify an expression whose value is the CFA.
1554 case DW_CFA_def_cfa_expression: {
1555 if (!ParseOperands("e", &ops))
1556 return false;
1557 Rule *rule = new ValExpressionRule(ops.expression);
1558 rules_.SetCFARule(rule);
1559 if (!rule->Handle(handler_, address_,
1560 Handler::kCFARegister))
1561 return false;
1562 break;
1563 }
1565 // The register's value cannot be recovered.
1566 case DW_CFA_undefined: {
1567 if (!ParseOperands("r", &ops) ||
1568 !DoRule(ops.register_number, new UndefinedRule()))
1569 return false;
1570 break;
1571 }
1573 // The register's value is unchanged from its value in the caller.
1574 case DW_CFA_same_value: {
1575 if (!ParseOperands("r", &ops) ||
1576 !DoRule(ops.register_number, new SameValueRule()))
1577 return false;
1578 break;
1579 }
1581 // Find a register at an offset from the CFA.
1582 case DW_CFA_offset_extended:
1583 if (!ParseOperands("ro", &ops) ||
1584 !DoOffset(ops.register_number,
1585 ops.offset * cie->data_alignment_factor))
1586 return false;
1587 break;
1589 // The register is saved at an offset from the CFA.
1590 case DW_CFA_offset_extended_sf:
1591 if (!ParseOperands("rs", &ops) ||
1592 !DoOffset(ops.register_number,
1593 ops.signed_offset * cie->data_alignment_factor))
1594 return false;
1595 break;
1597 // The register is saved at an offset from the CFA.
1598 case DW_CFA_GNU_negative_offset_extended:
1599 if (!ParseOperands("ro", &ops) ||
1600 !DoOffset(ops.register_number,
1601 -ops.offset * cie->data_alignment_factor))
1602 return false;
1603 break;
1605 // The register's value is the sum of the CFA plus an offset.
1606 case DW_CFA_val_offset:
1607 if (!ParseOperands("ro", &ops) ||
1608 !DoValOffset(ops.register_number,
1609 ops.offset * cie->data_alignment_factor))
1610 return false;
1611 break;
1613 // The register's value is the sum of the CFA plus an offset.
1614 case DW_CFA_val_offset_sf:
1615 if (!ParseOperands("rs", &ops) ||
1616 !DoValOffset(ops.register_number,
1617 ops.signed_offset * cie->data_alignment_factor))
1618 return false;
1619 break;
1621 // The register has been saved in another register.
1622 case DW_CFA_register: {
1623 if (!ParseOperands("ro", &ops) ||
1624 !DoRule(ops.register_number, new RegisterRule(ops.offset)))
1625 return false;
1626 break;
1627 }
1629 // An expression yields the address at which the register is saved.
1630 case DW_CFA_expression: {
1631 if (!ParseOperands("re", &ops) ||
1632 !DoRule(ops.register_number, new ExpressionRule(ops.expression)))
1633 return false;
1634 break;
1635 }
1637 // An expression yields the caller's value for the register.
1638 case DW_CFA_val_expression: {
1639 if (!ParseOperands("re", &ops) ||
1640 !DoRule(ops.register_number, new ValExpressionRule(ops.expression)))
1641 return false;
1642 break;
1643 }
1645 // Restore the rule established for a register by the CIE.
1646 case DW_CFA_restore_extended:
1647 if (!ParseOperands("r", &ops) ||
1648 !DoRestore( ops.register_number))
1649 return false;
1650 break;
1652 // Save the current set of rules on a stack.
1653 case DW_CFA_remember_state:
1654 saved_rules_.push(rules_);
1655 break;
1657 // Pop the current set of rules off the stack.
1658 case DW_CFA_restore_state: {
1659 if (saved_rules_.empty()) {
1660 reporter_->EmptyStateStack(entry_->offset, entry_->kind,
1661 CursorOffset());
1662 return false;
1663 }
1664 const RuleMap &new_rules = saved_rules_.top();
1665 if (rules_.CFARule() && !new_rules.CFARule()) {
1666 reporter_->ClearingCFARule(entry_->offset, entry_->kind,
1667 CursorOffset());
1668 return false;
1669 }
1670 rules_.HandleTransitionTo(handler_, address_, new_rules);
1671 rules_ = new_rules;
1672 saved_rules_.pop();
1673 break;
1674 }
1676 // No operation. (Padding instruction.)
1677 case DW_CFA_nop:
1678 break;
1680 // A SPARC register window save: Registers 8 through 15 (%o0-%o7)
1681 // are saved in registers 24 through 31 (%i0-%i7), and registers
1682 // 16 through 31 (%l0-%l7 and %i0-%i7) are saved at CFA offsets
1683 // (0-15 * the register size). The register numbers must be
1684 // hard-coded. A GNU extension, and not a pretty one.
1685 case DW_CFA_GNU_window_save: {
1686 // Save %o0-%o7 in %i0-%i7.
1687 for (int i = 8; i < 16; i++)
1688 if (!DoRule(i, new RegisterRule(i + 16)))
1689 return false;
1690 // Save %l0-%l7 and %i0-%i7 at the CFA.
1691 for (int i = 16; i < 32; i++)
1692 // Assume that the byte reader's address size is the same as
1693 // the architecture's register size. !@#%*^ hilarious.
1694 if (!DoRule(i, new OffsetRule(Handler::kCFARegister,
1695 (i - 16) * reader_->AddressSize())))
1696 return false;
1697 break;
1698 }
1700 // I'm not sure what this is. GDB doesn't use it for unwinding.
1701 case DW_CFA_GNU_args_size:
1702 if (!ParseOperands("o", &ops)) return false;
1703 break;
1705 // An opcode we don't recognize.
1706 default: {
1707 reporter_->BadInstruction(entry_->offset, entry_->kind, CursorOffset());
1708 return false;
1709 }
1710 }
1712 return true;
1713 }
1715 bool CallFrameInfo::State::DoDefCFA(unsigned base_register, long offset) {
1716 Rule *rule = new ValOffsetRule(base_register, offset);
1717 rules_.SetCFARule(rule);
1718 return rule->Handle(handler_, address_,
1719 Handler::kCFARegister);
1720 }
1722 bool CallFrameInfo::State::DoDefCFAOffset(long offset) {
1723 Rule *cfa_rule = rules_.CFARule();
1724 if (!cfa_rule) {
1725 reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
1726 return false;
1727 }
1728 cfa_rule->SetOffset(offset);
1729 return cfa_rule->Handle(handler_, address_,
1730 Handler::kCFARegister);
1731 }
1733 bool CallFrameInfo::State::DoRule(unsigned reg, Rule *rule) {
1734 rules_.SetRegisterRule(reg, rule);
1735 return rule->Handle(handler_, address_, reg);
1736 }
1738 bool CallFrameInfo::State::DoOffset(unsigned reg, long offset) {
1739 if (!rules_.CFARule()) {
1740 reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
1741 return false;
1742 }
1743 return DoRule(reg,
1744 new OffsetRule(Handler::kCFARegister, offset));
1745 }
1747 bool CallFrameInfo::State::DoValOffset(unsigned reg, long offset) {
1748 if (!rules_.CFARule()) {
1749 reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
1750 return false;
1751 }
1752 return DoRule(reg,
1753 new ValOffsetRule(Handler::kCFARegister, offset));
1754 }
1756 bool CallFrameInfo::State::DoRestore(unsigned reg) {
1757 // DW_CFA_restore and DW_CFA_restore_extended don't make sense in a CIE.
1758 if (entry_->kind == kCIE) {
1759 reporter_->RestoreInCIE(entry_->offset, CursorOffset());
1760 return false;
1761 }
1762 Rule *rule = cie_rules_.RegisterRule(reg);
1763 if (!rule) {
1764 // This isn't really the right thing to do, but since CFI generally
1765 // only mentions callee-saves registers, and GCC's convention for
1766 // callee-saves registers is that they are unchanged, it's a good
1767 // approximation.
1768 rule = new SameValueRule();
1769 }
1770 return DoRule(reg, rule);
1771 }
1773 bool CallFrameInfo::ReadEntryPrologue(const char *cursor, Entry *entry) {
1774 const char *buffer_end = buffer_ + buffer_length_;
1776 // Initialize enough of ENTRY for use in error reporting.
1777 entry->offset = cursor - buffer_;
1778 entry->start = cursor;
1779 entry->kind = kUnknown;
1780 entry->end = NULL;
1782 // Read the initial length. This sets reader_'s offset size.
1783 size_t length_size;
1784 uint64 length = reader_->ReadInitialLength(cursor, &length_size);
1785 if (length_size > size_t(buffer_end - cursor))
1786 return ReportIncomplete(entry);
1787 cursor += length_size;
1789 // In a .eh_frame section, a length of zero marks the end of the series
1790 // of entries.
1791 if (length == 0 && eh_frame_) {
1792 entry->kind = kTerminator;
1793 entry->end = cursor;
1794 return true;
1795 }
1797 // Validate the length.
1798 if (length > size_t(buffer_end - cursor))
1799 return ReportIncomplete(entry);
1801 // The length is the number of bytes after the initial length field;
1802 // we have that position handy at this point, so compute the end
1803 // now. (If we're parsing 64-bit-offset DWARF on a 32-bit machine,
1804 // and the length didn't fit in a size_t, we would have rejected it
1805 // above.)
1806 entry->end = cursor + length;
1808 // Parse the next field: either the offset of a CIE or a CIE id.
1809 size_t offset_size = reader_->OffsetSize();
1810 if (offset_size > size_t(entry->end - cursor)) return ReportIncomplete(entry);
1811 entry->id = reader_->ReadOffset(cursor);
1813 // Don't advance cursor past id field yet; in .eh_frame data we need
1814 // the id's position to compute the section offset of an FDE's CIE.
1816 // Now we can decide what kind of entry this is.
1817 if (eh_frame_) {
1818 // In .eh_frame data, an ID of zero marks the entry as a CIE, and
1819 // anything else is an offset from the id field of the FDE to the start
1820 // of the CIE.
1821 if (entry->id == 0) {
1822 entry->kind = kCIE;
1823 } else {
1824 entry->kind = kFDE;
1825 // Turn the offset from the id into an offset from the buffer's start.
1826 entry->id = (cursor - buffer_) - entry->id;
1827 }
1828 } else {
1829 // In DWARF CFI data, an ID of ~0 (of the appropriate width, given the
1830 // offset size for the entry) marks the entry as a CIE, and anything
1831 // else is the offset of the CIE from the beginning of the section.
1832 if (offset_size == 4)
1833 entry->kind = (entry->id == 0xffffffff) ? kCIE : kFDE;
1834 else {
1835 assert(offset_size == 8);
1836 entry->kind = (entry->id == 0xffffffffffffffffULL) ? kCIE : kFDE;
1837 }
1838 }
1840 // Now advance cursor past the id.
1841 cursor += offset_size;
1843 // The fields specific to this kind of entry start here.
1844 entry->fields = cursor;
1846 entry->cie = NULL;
1848 return true;
1849 }
1851 bool CallFrameInfo::ReadCIEFields(CIE *cie) {
1852 const char *cursor = cie->fields;
1853 size_t len;
1855 assert(cie->kind == kCIE);
1857 // Prepare for early exit.
1858 cie->version = 0;
1859 cie->augmentation.clear();
1860 cie->code_alignment_factor = 0;
1861 cie->data_alignment_factor = 0;
1862 cie->return_address_register = 0;
1863 cie->has_z_augmentation = false;
1864 cie->pointer_encoding = DW_EH_PE_absptr;
1865 cie->instructions = 0;
1867 // Parse the version number.
1868 if (cie->end - cursor < 1)
1869 return ReportIncomplete(cie);
1870 cie->version = reader_->ReadOneByte(cursor);
1871 cursor++;
1873 // If we don't recognize the version, we can't parse any more fields of the
1874 // CIE. For DWARF CFI, we handle versions 1 through 3 (there was never a
1875 // version 2 of CFI data). For .eh_frame, we handle versions 1 and 3 as well;
1876 // the difference between those versions seems to be the same as for
1877 // .debug_frame.
1878 if (cie->version < 1 || cie->version > 3) {
1879 reporter_->UnrecognizedVersion(cie->offset, cie->version);
1880 return false;
1881 }
1883 const char *augmentation_start = cursor;
1884 const void *augmentation_end =
1885 memchr(augmentation_start, '\0', cie->end - augmentation_start);
1886 if (! augmentation_end) return ReportIncomplete(cie);
1887 cursor = static_cast<const char *>(augmentation_end);
1888 cie->augmentation = string(augmentation_start,
1889 cursor - augmentation_start);
1890 // Skip the terminating '\0'.
1891 cursor++;
1893 // Is this CFI augmented?
1894 if (!cie->augmentation.empty()) {
1895 // Is it an augmentation we recognize?
1896 if (cie->augmentation[0] == DW_Z_augmentation_start) {
1897 // Linux C++ ABI 'z' augmentation, used for exception handling data.
1898 cie->has_z_augmentation = true;
1899 } else {
1900 // Not an augmentation we recognize. Augmentations can have arbitrary
1901 // effects on the form of rest of the content, so we have to give up.
1902 reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
1903 return false;
1904 }
1905 }
1907 // Parse the code alignment factor.
1908 cie->code_alignment_factor = reader_->ReadUnsignedLEB128(cursor, &len);
1909 if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
1910 cursor += len;
1912 // Parse the data alignment factor.
1913 cie->data_alignment_factor = reader_->ReadSignedLEB128(cursor, &len);
1914 if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
1915 cursor += len;
1917 // Parse the return address register. This is a ubyte in version 1, and
1918 // a ULEB128 in version 3.
1919 if (cie->version == 1) {
1920 if (cursor >= cie->end) return ReportIncomplete(cie);
1921 cie->return_address_register = uint8(*cursor++);
1922 } else {
1923 cie->return_address_register = reader_->ReadUnsignedLEB128(cursor, &len);
1924 if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
1925 cursor += len;
1926 }
1928 // If we have a 'z' augmentation string, find the augmentation data and
1929 // use the augmentation string to parse it.
1930 if (cie->has_z_augmentation) {
1931 uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &len);
1932 if (size_t(cie->end - cursor) < len + data_size)
1933 return ReportIncomplete(cie);
1934 cursor += len;
1935 const char *data = cursor;
1936 cursor += data_size;
1937 const char *data_end = cursor;
1939 cie->has_z_lsda = false;
1940 cie->has_z_personality = false;
1941 cie->has_z_signal_frame = false;
1943 // Walk the augmentation string, and extract values from the
1944 // augmentation data as the string directs.
1945 for (size_t i = 1; i < cie->augmentation.size(); i++) {
1946 switch (cie->augmentation[i]) {
1947 case DW_Z_has_LSDA:
1948 // The CIE's augmentation data holds the language-specific data
1949 // area pointer's encoding, and the FDE's augmentation data holds
1950 // the pointer itself.
1951 cie->has_z_lsda = true;
1952 // Fetch the LSDA encoding from the augmentation data.
1953 if (data >= data_end) return ReportIncomplete(cie);
1954 cie->lsda_encoding = DwarfPointerEncoding(*data++);
1955 if (!reader_->ValidEncoding(cie->lsda_encoding)) {
1956 reporter_->InvalidPointerEncoding(cie->offset, cie->lsda_encoding);
1957 return false;
1958 }
1959 // Don't check if the encoding is usable here --- we haven't
1960 // read the FDE's fields yet, so we're not prepared for
1961 // DW_EH_PE_funcrel, although that's a fine encoding for the
1962 // LSDA to use, since it appears in the FDE.
1963 break;
1965 case DW_Z_has_personality_routine:
1966 // The CIE's augmentation data holds the personality routine
1967 // pointer's encoding, followed by the pointer itself.
1968 cie->has_z_personality = true;
1969 // Fetch the personality routine pointer's encoding from the
1970 // augmentation data.
1971 if (data >= data_end) return ReportIncomplete(cie);
1972 cie->personality_encoding = DwarfPointerEncoding(*data++);
1973 if (!reader_->ValidEncoding(cie->personality_encoding)) {
1974 reporter_->InvalidPointerEncoding(cie->offset,
1975 cie->personality_encoding);
1976 return false;
1977 }
1978 if (!reader_->UsableEncoding(cie->personality_encoding)) {
1979 reporter_->UnusablePointerEncoding(cie->offset,
1980 cie->personality_encoding);
1981 return false;
1982 }
1983 // Fetch the personality routine's pointer itself from the data.
1984 cie->personality_address =
1985 reader_->ReadEncodedPointer(data, cie->personality_encoding,
1986 &len);
1987 if (len > size_t(data_end - data))
1988 return ReportIncomplete(cie);
1989 data += len;
1990 break;
1992 case DW_Z_has_FDE_address_encoding:
1993 // The CIE's augmentation data holds the pointer encoding to use
1994 // for addresses in the FDE.
1995 if (data >= data_end) return ReportIncomplete(cie);
1996 cie->pointer_encoding = DwarfPointerEncoding(*data++);
1997 if (!reader_->ValidEncoding(cie->pointer_encoding)) {
1998 reporter_->InvalidPointerEncoding(cie->offset,
1999 cie->pointer_encoding);
2000 return false;
2001 }
2002 if (!reader_->UsableEncoding(cie->pointer_encoding)) {
2003 reporter_->UnusablePointerEncoding(cie->offset,
2004 cie->pointer_encoding);
2005 return false;
2006 }
2007 break;
2009 case DW_Z_is_signal_trampoline:
2010 // Frames using this CIE are signal delivery frames.
2011 cie->has_z_signal_frame = true;
2012 break;
2014 default:
2015 // An augmentation we don't recognize.
2016 reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
2017 return false;
2018 }
2019 }
2020 }
2022 // The CIE's instructions start here.
2023 cie->instructions = cursor;
2025 return true;
2026 }
2028 bool CallFrameInfo::ReadFDEFields(FDE *fde) {
2029 const char *cursor = fde->fields;
2030 size_t size;
2032 fde->address = reader_->ReadEncodedPointer(cursor, fde->cie->pointer_encoding,
2033 &size);
2034 if (size > size_t(fde->end - cursor))
2035 return ReportIncomplete(fde);
2036 cursor += size;
2037 reader_->SetFunctionBase(fde->address);
2039 // For the length, we strip off the upper nybble of the encoding used for
2040 // the starting address.
2041 DwarfPointerEncoding length_encoding =
2042 DwarfPointerEncoding(fde->cie->pointer_encoding & 0x0f);
2043 fde->size = reader_->ReadEncodedPointer(cursor, length_encoding, &size);
2044 if (size > size_t(fde->end - cursor))
2045 return ReportIncomplete(fde);
2046 cursor += size;
2048 // If the CIE has a 'z' augmentation string, then augmentation data
2049 // appears here.
2050 if (fde->cie->has_z_augmentation) {
2051 uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &size);
2052 if (size_t(fde->end - cursor) < size + data_size)
2053 return ReportIncomplete(fde);
2054 cursor += size;
2056 // In the abstract, we should walk the augmentation string, and extract
2057 // items from the FDE's augmentation data as we encounter augmentation
2058 // string characters that specify their presence: the ordering of items
2059 // in the augmentation string determines the arrangement of values in
2060 // the augmentation data.
2061 //
2062 // In practice, there's only ever one value in FDE augmentation data
2063 // that we support --- the LSDA pointer --- and we have to bail if we
2064 // see any unrecognized augmentation string characters. So if there is
2065 // anything here at all, we know what it is, and where it starts.
2066 if (fde->cie->has_z_lsda) {
2067 // Check whether the LSDA's pointer encoding is usable now: only once
2068 // we've parsed the FDE's starting address do we call reader_->
2069 // SetFunctionBase, so that the DW_EH_PE_funcrel encoding becomes
2070 // usable.
2071 if (!reader_->UsableEncoding(fde->cie->lsda_encoding)) {
2072 reporter_->UnusablePointerEncoding(fde->cie->offset,
2073 fde->cie->lsda_encoding);
2074 return false;
2075 }
2077 fde->lsda_address =
2078 reader_->ReadEncodedPointer(cursor, fde->cie->lsda_encoding, &size);
2079 if (size > data_size)
2080 return ReportIncomplete(fde);
2081 // Ideally, we would also complain here if there were unconsumed
2082 // augmentation data.
2083 }
2085 cursor += data_size;
2086 }
2088 // The FDE's instructions start after those.
2089 fde->instructions = cursor;
2091 return true;
2092 }
2094 bool CallFrameInfo::Start() {
2095 const char *buffer_end = buffer_ + buffer_length_;
2096 const char *cursor;
2097 bool all_ok = true;
2098 const char *entry_end;
2099 bool ok;
2101 // Traverse all the entries in buffer_, skipping CIEs and offering
2102 // FDEs to the handler.
2103 for (cursor = buffer_; cursor < buffer_end;
2104 cursor = entry_end, all_ok = all_ok && ok) {
2105 FDE fde;
2107 // Make it easy to skip this entry with 'continue': assume that
2108 // things are not okay until we've checked all the data, and
2109 // prepare the address of the next entry.
2110 ok = false;
2112 // Read the entry's prologue.
2113 if (!ReadEntryPrologue(cursor, &fde)) {
2114 if (!fde.end) {
2115 // If we couldn't even figure out this entry's extent, then we
2116 // must stop processing entries altogether.
2117 all_ok = false;
2118 break;
2119 }
2120 entry_end = fde.end;
2121 continue;
2122 }
2124 // The next iteration picks up after this entry.
2125 entry_end = fde.end;
2127 // Did we see an .eh_frame terminating mark?
2128 if (fde.kind == kTerminator) {
2129 // If there appears to be more data left in the section after the
2130 // terminating mark, warn the user. But this is just a warning;
2131 // we leave all_ok true.
2132 if (fde.end < buffer_end) reporter_->EarlyEHTerminator(fde.offset);
2133 break;
2134 }
2136 // In this loop, we skip CIEs. We only parse them fully when we
2137 // parse an FDE that refers to them. This limits our memory
2138 // consumption (beyond the buffer itself) to that needed to
2139 // process the largest single entry.
2140 if (fde.kind != kFDE) {
2141 ok = true;
2142 continue;
2143 }
2145 // Validate the CIE pointer.
2146 if (fde.id > buffer_length_) {
2147 reporter_->CIEPointerOutOfRange(fde.offset, fde.id);
2148 continue;
2149 }
2151 CIE cie;
2153 // Parse this FDE's CIE header.
2154 if (!ReadEntryPrologue(buffer_ + fde.id, &cie))
2155 continue;
2156 // This had better be an actual CIE.
2157 if (cie.kind != kCIE) {
2158 reporter_->BadCIEId(fde.offset, fde.id);
2159 continue;
2160 }
2161 if (!ReadCIEFields(&cie))
2162 continue;
2164 // We now have the values that govern both the CIE and the FDE.
2165 cie.cie = &cie;
2166 fde.cie = &cie;
2168 // Parse the FDE's header.
2169 if (!ReadFDEFields(&fde))
2170 continue;
2172 // Call Entry to ask the consumer if they're interested.
2173 if (!handler_->Entry(fde.offset, fde.address, fde.size,
2174 cie.version, cie.augmentation,
2175 cie.return_address_register)) {
2176 // The handler isn't interested in this entry. That's not an error.
2177 ok = true;
2178 continue;
2179 }
2181 if (cie.has_z_augmentation) {
2182 // Report the personality routine address, if we have one.
2183 if (cie.has_z_personality) {
2184 if (!handler_
2185 ->PersonalityRoutine(cie.personality_address,
2186 IsIndirectEncoding(cie.personality_encoding)))
2187 continue;
2188 }
2190 // Report the language-specific data area address, if we have one.
2191 if (cie.has_z_lsda) {
2192 if (!handler_
2193 ->LanguageSpecificDataArea(fde.lsda_address,
2194 IsIndirectEncoding(cie.lsda_encoding)))
2195 continue;
2196 }
2198 // If this is a signal-handling frame, report that.
2199 if (cie.has_z_signal_frame) {
2200 if (!handler_->SignalHandler())
2201 continue;
2202 }
2203 }
2205 // Interpret the CIE's instructions, and then the FDE's instructions.
2206 State state(reader_, handler_, reporter_, fde.address);
2207 ok = state.InterpretCIE(cie) && state.InterpretFDE(fde);
2209 // Tell the ByteReader that the function start address from the
2210 // FDE header is no longer valid.
2211 reader_->ClearFunctionBase();
2213 // Report the end of the entry.
2214 handler_->End();
2215 }
2217 return all_ok;
2218 }
2220 const char *CallFrameInfo::KindName(EntryKind kind) {
2221 if (kind == CallFrameInfo::kUnknown)
2222 return "entry";
2223 else if (kind == CallFrameInfo::kCIE)
2224 return "common information entry";
2225 else if (kind == CallFrameInfo::kFDE)
2226 return "frame description entry";
2227 else {
2228 assert (kind == CallFrameInfo::kTerminator);
2229 return ".eh_frame sequence terminator";
2230 }
2231 }
2233 bool CallFrameInfo::ReportIncomplete(Entry *entry) {
2234 reporter_->Incomplete(entry->offset, entry->kind);
2235 return false;
2236 }
2238 void CallFrameInfo::Reporter::Incomplete(uint64 offset,
2239 CallFrameInfo::EntryKind kind) {
2240 fprintf(stderr,
2241 "%s: CFI %s at offset 0x%llx in '%s': entry ends early\n",
2242 filename_.c_str(), CallFrameInfo::KindName(kind), offset,
2243 section_.c_str());
2244 }
2246 void CallFrameInfo::Reporter::EarlyEHTerminator(uint64 offset) {
2247 fprintf(stderr,
2248 "%s: CFI at offset 0x%llx in '%s': saw end-of-data marker"
2249 " before end of section contents\n",
2250 filename_.c_str(), offset, section_.c_str());
2251 }
2253 void CallFrameInfo::Reporter::CIEPointerOutOfRange(uint64 offset,
2254 uint64 cie_offset) {
2255 fprintf(stderr,
2256 "%s: CFI frame description entry at offset 0x%llx in '%s':"
2257 " CIE pointer is out of range: 0x%llx\n",
2258 filename_.c_str(), offset, section_.c_str(), cie_offset);
2259 }
2261 void CallFrameInfo::Reporter::BadCIEId(uint64 offset, uint64 cie_offset) {
2262 fprintf(stderr,
2263 "%s: CFI frame description entry at offset 0x%llx in '%s':"
2264 " CIE pointer does not point to a CIE: 0x%llx\n",
2265 filename_.c_str(), offset, section_.c_str(), cie_offset);
2266 }
2268 void CallFrameInfo::Reporter::UnrecognizedVersion(uint64 offset, int version) {
2269 fprintf(stderr,
2270 "%s: CFI frame description entry at offset 0x%llx in '%s':"
2271 " CIE specifies unrecognized version: %d\n",
2272 filename_.c_str(), offset, section_.c_str(), version);
2273 }
2275 void CallFrameInfo::Reporter::UnrecognizedAugmentation(uint64 offset,
2276 const string &aug) {
2277 fprintf(stderr,
2278 "%s: CFI frame description entry at offset 0x%llx in '%s':"
2279 " CIE specifies unrecognized augmentation: '%s'\n",
2280 filename_.c_str(), offset, section_.c_str(), aug.c_str());
2281 }
2283 void CallFrameInfo::Reporter::InvalidPointerEncoding(uint64 offset,
2284 uint8 encoding) {
2285 fprintf(stderr,
2286 "%s: CFI common information entry at offset 0x%llx in '%s':"
2287 " 'z' augmentation specifies invalid pointer encoding: 0x%02x\n",
2288 filename_.c_str(), offset, section_.c_str(), encoding);
2289 }
2291 void CallFrameInfo::Reporter::UnusablePointerEncoding(uint64 offset,
2292 uint8 encoding) {
2293 fprintf(stderr,
2294 "%s: CFI common information entry at offset 0x%llx in '%s':"
2295 " 'z' augmentation specifies a pointer encoding for which"
2296 " we have no base address: 0x%02x\n",
2297 filename_.c_str(), offset, section_.c_str(), encoding);
2298 }
2300 void CallFrameInfo::Reporter::RestoreInCIE(uint64 offset, uint64 insn_offset) {
2301 fprintf(stderr,
2302 "%s: CFI common information entry at offset 0x%llx in '%s':"
2303 " the DW_CFA_restore instruction at offset 0x%llx"
2304 " cannot be used in a common information entry\n",
2305 filename_.c_str(), offset, section_.c_str(), insn_offset);
2306 }
2308 void CallFrameInfo::Reporter::BadInstruction(uint64 offset,
2309 CallFrameInfo::EntryKind kind,
2310 uint64 insn_offset) {
2311 fprintf(stderr,
2312 "%s: CFI %s at offset 0x%llx in section '%s':"
2313 " the instruction at offset 0x%llx is unrecognized\n",
2314 filename_.c_str(), CallFrameInfo::KindName(kind),
2315 offset, section_.c_str(), insn_offset);
2316 }
2318 void CallFrameInfo::Reporter::NoCFARule(uint64 offset,
2319 CallFrameInfo::EntryKind kind,
2320 uint64 insn_offset) {
2321 fprintf(stderr,
2322 "%s: CFI %s at offset 0x%llx in section '%s':"
2323 " the instruction at offset 0x%llx assumes that a CFA rule has"
2324 " been set, but none has been set\n",
2325 filename_.c_str(), CallFrameInfo::KindName(kind), offset,
2326 section_.c_str(), insn_offset);
2327 }
2329 void CallFrameInfo::Reporter::EmptyStateStack(uint64 offset,
2330 CallFrameInfo::EntryKind kind,
2331 uint64 insn_offset) {
2332 fprintf(stderr,
2333 "%s: CFI %s at offset 0x%llx in section '%s':"
2334 " the DW_CFA_restore_state instruction at offset 0x%llx"
2335 " should pop a saved state from the stack, but the stack is empty\n",
2336 filename_.c_str(), CallFrameInfo::KindName(kind), offset,
2337 section_.c_str(), insn_offset);
2338 }
2340 void CallFrameInfo::Reporter::ClearingCFARule(uint64 offset,
2341 CallFrameInfo::EntryKind kind,
2342 uint64 insn_offset) {
2343 fprintf(stderr,
2344 "%s: CFI %s at offset 0x%llx in section '%s':"
2345 " the DW_CFA_restore_state instruction at offset 0x%llx"
2346 " would clear the CFA rule in effect\n",
2347 filename_.c_str(), CallFrameInfo::KindName(kind), offset,
2348 section_.c_str(), insn_offset);
2349 }
2351 } // namespace dwarf2reader