|
1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- |
|
2 * This Source Code Form is subject to the terms of the Mozilla Public |
|
3 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
5 |
|
6 #include "PathHelpers.h" |
|
7 |
|
8 namespace mozilla { |
|
9 namespace gfx { |
|
10 |
|
11 void |
|
12 AppendRoundedRectToPath(PathBuilder* aPathBuilder, |
|
13 const Rect& aRect, |
|
14 // paren's needed due to operator precedence: |
|
15 const Size(& aCornerRadii)[4], |
|
16 bool aDrawClockwise) |
|
17 { |
|
18 // For CW drawing, this looks like: |
|
19 // |
|
20 // ...******0** 1 C |
|
21 // **** |
|
22 // *** 2 |
|
23 // ** |
|
24 // * |
|
25 // * |
|
26 // 3 |
|
27 // * |
|
28 // * |
|
29 // |
|
30 // Where 0, 1, 2, 3 are the control points of the Bezier curve for |
|
31 // the corner, and C is the actual corner point. |
|
32 // |
|
33 // At the start of the loop, the current point is assumed to be |
|
34 // the point adjacent to the top left corner on the top |
|
35 // horizontal. Note that corner indices start at the top left and |
|
36 // continue clockwise, whereas in our loop i = 0 refers to the top |
|
37 // right corner. |
|
38 // |
|
39 // When going CCW, the control points are swapped, and the first |
|
40 // corner that's drawn is the top left (along with the top segment). |
|
41 // |
|
42 // There is considerable latitude in how one chooses the four |
|
43 // control points for a Bezier curve approximation to an ellipse. |
|
44 // For the overall path to be continuous and show no corner at the |
|
45 // endpoints of the arc, points 0 and 3 must be at the ends of the |
|
46 // straight segments of the rectangle; points 0, 1, and C must be |
|
47 // collinear; and points 3, 2, and C must also be collinear. This |
|
48 // leaves only two free parameters: the ratio of the line segments |
|
49 // 01 and 0C, and the ratio of the line segments 32 and 3C. See |
|
50 // the following papers for extensive discussion of how to choose |
|
51 // these ratios: |
|
52 // |
|
53 // Dokken, Tor, et al. "Good approximation of circles by |
|
54 // curvature-continuous Bezier curves." Computer-Aided |
|
55 // Geometric Design 7(1990) 33--41. |
|
56 // Goldapp, Michael. "Approximation of circular arcs by cubic |
|
57 // polynomials." Computer-Aided Geometric Design 8(1991) 227--238. |
|
58 // Maisonobe, Luc. "Drawing an elliptical arc using polylines, |
|
59 // quadratic, or cubic Bezier curves." |
|
60 // http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf |
|
61 // |
|
62 // We follow the approach in section 2 of Goldapp (least-error, |
|
63 // Hermite-type approximation) and make both ratios equal to |
|
64 // |
|
65 // 2 2 + n - sqrt(2n + 28) |
|
66 // alpha = - * --------------------- |
|
67 // 3 n - 4 |
|
68 // |
|
69 // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ). |
|
70 // |
|
71 // This is the result of Goldapp's equation (10b) when the angle |
|
72 // swept out by the arc is pi/2, and the parameter "a-bar" is the |
|
73 // expression given immediately below equation (21). |
|
74 // |
|
75 // Using this value, the maximum radial error for a circle, as a |
|
76 // fraction of the radius, is on the order of 0.2 x 10^-3. |
|
77 // Neither Dokken nor Goldapp discusses error for a general |
|
78 // ellipse; Maisonobe does, but his choice of control points |
|
79 // follows different constraints, and Goldapp's expression for |
|
80 // 'alpha' gives much smaller radial error, even for very flat |
|
81 // ellipses, than Maisonobe's equivalent. |
|
82 // |
|
83 // For the various corners and for each axis, the sign of this |
|
84 // constant changes, or it might be 0 -- it's multiplied by the |
|
85 // appropriate multiplier from the list before using. |
|
86 |
|
87 const Float alpha = Float(0.55191497064665766025); |
|
88 |
|
89 typedef struct { Float a, b; } twoFloats; |
|
90 |
|
91 twoFloats cwCornerMults[4] = { { -1, 0 }, // cc == clockwise |
|
92 { 0, -1 }, |
|
93 { +1, 0 }, |
|
94 { 0, +1 } }; |
|
95 twoFloats ccwCornerMults[4] = { { +1, 0 }, // ccw == counter-clockwise |
|
96 { 0, -1 }, |
|
97 { -1, 0 }, |
|
98 { 0, +1 } }; |
|
99 |
|
100 twoFloats *cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults; |
|
101 |
|
102 Point cornerCoords[] = { aRect.TopLeft(), aRect.TopRight(), |
|
103 aRect.BottomRight(), aRect.BottomLeft() }; |
|
104 |
|
105 Point pc, p0, p1, p2, p3; |
|
106 |
|
107 // The indexes of the corners: |
|
108 const int kTopLeft = 0, kTopRight = 1; |
|
109 |
|
110 if (aDrawClockwise) { |
|
111 aPathBuilder->MoveTo(Point(aRect.X() + aCornerRadii[kTopLeft].width, |
|
112 aRect.Y())); |
|
113 } else { |
|
114 aPathBuilder->MoveTo(Point(aRect.X() + aRect.Width() - aCornerRadii[kTopRight].width, |
|
115 aRect.Y())); |
|
116 } |
|
117 |
|
118 for (int i = 0; i < 4; ++i) { |
|
119 // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw) |
|
120 int c = aDrawClockwise ? ((i+1) % 4) : ((4-i) % 4); |
|
121 |
|
122 // i+2 and i+3 respectively. These are used to index into the corner |
|
123 // multiplier table, and were deduced by calculating out the long form |
|
124 // of each corner and finding a pattern in the signs and values. |
|
125 int i2 = (i+2) % 4; |
|
126 int i3 = (i+3) % 4; |
|
127 |
|
128 pc = cornerCoords[c]; |
|
129 |
|
130 if (aCornerRadii[c].width > 0.0 && aCornerRadii[c].height > 0.0) { |
|
131 p0.x = pc.x + cornerMults[i].a * aCornerRadii[c].width; |
|
132 p0.y = pc.y + cornerMults[i].b * aCornerRadii[c].height; |
|
133 |
|
134 p3.x = pc.x + cornerMults[i3].a * aCornerRadii[c].width; |
|
135 p3.y = pc.y + cornerMults[i3].b * aCornerRadii[c].height; |
|
136 |
|
137 p1.x = p0.x + alpha * cornerMults[i2].a * aCornerRadii[c].width; |
|
138 p1.y = p0.y + alpha * cornerMults[i2].b * aCornerRadii[c].height; |
|
139 |
|
140 p2.x = p3.x - alpha * cornerMults[i3].a * aCornerRadii[c].width; |
|
141 p2.y = p3.y - alpha * cornerMults[i3].b * aCornerRadii[c].height; |
|
142 |
|
143 aPathBuilder->LineTo(p0); |
|
144 aPathBuilder->BezierTo(p1, p2, p3); |
|
145 } else { |
|
146 aPathBuilder->LineTo(pc); |
|
147 } |
|
148 } |
|
149 |
|
150 aPathBuilder->Close(); |
|
151 } |
|
152 |
|
153 void |
|
154 AppendEllipseToPath(PathBuilder* aPathBuilder, |
|
155 const Point& aCenter, |
|
156 const Size& aDimensions) |
|
157 { |
|
158 Size halfDim = aDimensions / 2.0; |
|
159 Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions); |
|
160 Size radii[] = { halfDim, halfDim, halfDim, halfDim }; |
|
161 |
|
162 AppendRoundedRectToPath(aPathBuilder, rect, radii); |
|
163 } |
|
164 |
|
165 } // namespace gfx |
|
166 } // namespace mozilla |
|
167 |