gfx/2d/PathHelpers.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/2d/PathHelpers.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,167 @@
     1.4 +/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
     1.5 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.6 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.7 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.8 +
     1.9 +#include "PathHelpers.h"
    1.10 +
    1.11 +namespace mozilla {
    1.12 +namespace gfx {
    1.13 +
    1.14 +void
    1.15 +AppendRoundedRectToPath(PathBuilder* aPathBuilder,
    1.16 +                        const Rect& aRect,
    1.17 +                        // paren's needed due to operator precedence:
    1.18 +                        const Size(& aCornerRadii)[4],
    1.19 +                        bool aDrawClockwise)
    1.20 +{
    1.21 +  // For CW drawing, this looks like:
    1.22 +  //
    1.23 +  //  ...******0**      1    C
    1.24 +  //              ****
    1.25 +  //                  ***    2
    1.26 +  //                     **
    1.27 +  //                       *
    1.28 +  //                        *
    1.29 +  //                         3
    1.30 +  //                         *
    1.31 +  //                         *
    1.32 +  //
    1.33 +  // Where 0, 1, 2, 3 are the control points of the Bezier curve for
    1.34 +  // the corner, and C is the actual corner point.
    1.35 +  //
    1.36 +  // At the start of the loop, the current point is assumed to be
    1.37 +  // the point adjacent to the top left corner on the top
    1.38 +  // horizontal.  Note that corner indices start at the top left and
    1.39 +  // continue clockwise, whereas in our loop i = 0 refers to the top
    1.40 +  // right corner.
    1.41 +  //
    1.42 +  // When going CCW, the control points are swapped, and the first
    1.43 +  // corner that's drawn is the top left (along with the top segment).
    1.44 +  //
    1.45 +  // There is considerable latitude in how one chooses the four
    1.46 +  // control points for a Bezier curve approximation to an ellipse.
    1.47 +  // For the overall path to be continuous and show no corner at the
    1.48 +  // endpoints of the arc, points 0 and 3 must be at the ends of the
    1.49 +  // straight segments of the rectangle; points 0, 1, and C must be
    1.50 +  // collinear; and points 3, 2, and C must also be collinear.  This
    1.51 +  // leaves only two free parameters: the ratio of the line segments
    1.52 +  // 01 and 0C, and the ratio of the line segments 32 and 3C.  See
    1.53 +  // the following papers for extensive discussion of how to choose
    1.54 +  // these ratios:
    1.55 +  //
    1.56 +  //   Dokken, Tor, et al. "Good approximation of circles by
    1.57 +  //      curvature-continuous Bezier curves."  Computer-Aided
    1.58 +  //      Geometric Design 7(1990) 33--41.
    1.59 +  //   Goldapp, Michael. "Approximation of circular arcs by cubic
    1.60 +  //      polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
    1.61 +  //   Maisonobe, Luc. "Drawing an elliptical arc using polylines,
    1.62 +  //      quadratic, or cubic Bezier curves."
    1.63 +  //      http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
    1.64 +  //
    1.65 +  // We follow the approach in section 2 of Goldapp (least-error,
    1.66 +  // Hermite-type approximation) and make both ratios equal to
    1.67 +  //
    1.68 +  //          2   2 + n - sqrt(2n + 28)
    1.69 +  //  alpha = - * ---------------------
    1.70 +  //          3           n - 4
    1.71 +  //
    1.72 +  // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
    1.73 +  //
    1.74 +  // This is the result of Goldapp's equation (10b) when the angle
    1.75 +  // swept out by the arc is pi/2, and the parameter "a-bar" is the
    1.76 +  // expression given immediately below equation (21).
    1.77 +  //
    1.78 +  // Using this value, the maximum radial error for a circle, as a
    1.79 +  // fraction of the radius, is on the order of 0.2 x 10^-3.
    1.80 +  // Neither Dokken nor Goldapp discusses error for a general
    1.81 +  // ellipse; Maisonobe does, but his choice of control points
    1.82 +  // follows different constraints, and Goldapp's expression for
    1.83 +  // 'alpha' gives much smaller radial error, even for very flat
    1.84 +  // ellipses, than Maisonobe's equivalent.
    1.85 +  //
    1.86 +  // For the various corners and for each axis, the sign of this
    1.87 +  // constant changes, or it might be 0 -- it's multiplied by the
    1.88 +  // appropriate multiplier from the list before using.
    1.89 +
    1.90 +  const Float alpha = Float(0.55191497064665766025);
    1.91 +
    1.92 +  typedef struct { Float a, b; } twoFloats;
    1.93 +
    1.94 +  twoFloats cwCornerMults[4] = { { -1,  0 },    // cc == clockwise
    1.95 +                                 {  0, -1 },
    1.96 +                                 { +1,  0 },
    1.97 +                                 {  0, +1 } };
    1.98 +  twoFloats ccwCornerMults[4] = { { +1,  0 },   // ccw == counter-clockwise
    1.99 +                                  {  0, -1 },
   1.100 +                                  { -1,  0 },
   1.101 +                                  {  0, +1 } };
   1.102 +
   1.103 +  twoFloats *cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;
   1.104 +
   1.105 +  Point cornerCoords[] = { aRect.TopLeft(), aRect.TopRight(),
   1.106 +                           aRect.BottomRight(), aRect.BottomLeft() };
   1.107 +
   1.108 +  Point pc, p0, p1, p2, p3;
   1.109 +
   1.110 +  // The indexes of the corners:
   1.111 +  const int kTopLeft = 0, kTopRight = 1;
   1.112 +
   1.113 +  if (aDrawClockwise) {
   1.114 +    aPathBuilder->MoveTo(Point(aRect.X() + aCornerRadii[kTopLeft].width,
   1.115 +                               aRect.Y()));
   1.116 +  } else {
   1.117 +    aPathBuilder->MoveTo(Point(aRect.X() + aRect.Width() - aCornerRadii[kTopRight].width,
   1.118 +                               aRect.Y()));
   1.119 +  }
   1.120 +
   1.121 +  for (int i = 0; i < 4; ++i) {
   1.122 +    // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
   1.123 +    int c = aDrawClockwise ? ((i+1) % 4) : ((4-i) % 4);
   1.124 +
   1.125 +    // i+2 and i+3 respectively.  These are used to index into the corner
   1.126 +    // multiplier table, and were deduced by calculating out the long form
   1.127 +    // of each corner and finding a pattern in the signs and values.
   1.128 +    int i2 = (i+2) % 4;
   1.129 +    int i3 = (i+3) % 4;
   1.130 +
   1.131 +    pc = cornerCoords[c];
   1.132 +
   1.133 +    if (aCornerRadii[c].width > 0.0 && aCornerRadii[c].height > 0.0) {
   1.134 +      p0.x = pc.x + cornerMults[i].a * aCornerRadii[c].width;
   1.135 +      p0.y = pc.y + cornerMults[i].b * aCornerRadii[c].height;
   1.136 +
   1.137 +      p3.x = pc.x + cornerMults[i3].a * aCornerRadii[c].width;
   1.138 +      p3.y = pc.y + cornerMults[i3].b * aCornerRadii[c].height;
   1.139 +
   1.140 +      p1.x = p0.x + alpha * cornerMults[i2].a * aCornerRadii[c].width;
   1.141 +      p1.y = p0.y + alpha * cornerMults[i2].b * aCornerRadii[c].height;
   1.142 +
   1.143 +      p2.x = p3.x - alpha * cornerMults[i3].a * aCornerRadii[c].width;
   1.144 +      p2.y = p3.y - alpha * cornerMults[i3].b * aCornerRadii[c].height;
   1.145 +
   1.146 +      aPathBuilder->LineTo(p0);
   1.147 +      aPathBuilder->BezierTo(p1, p2, p3);
   1.148 +    } else {
   1.149 +      aPathBuilder->LineTo(pc);
   1.150 +    }
   1.151 +  }
   1.152 +
   1.153 +  aPathBuilder->Close();
   1.154 +}
   1.155 +
   1.156 +void
   1.157 +AppendEllipseToPath(PathBuilder* aPathBuilder,
   1.158 +                    const Point& aCenter,
   1.159 +                    const Size& aDimensions)
   1.160 +{
   1.161 +  Size halfDim = aDimensions / 2.0;
   1.162 +  Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions);
   1.163 +  Size radii[] = { halfDim, halfDim, halfDim, halfDim };
   1.164 +
   1.165 +  AppendRoundedRectToPath(aPathBuilder, rect, radii);
   1.166 +}
   1.167 +
   1.168 +} // namespace gfx
   1.169 +} // namespace mozilla
   1.170 +

mercurial