|
1 // from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c |
|
2 /* |
|
3 * Roots3And4.c |
|
4 * |
|
5 * Utility functions to find cubic and quartic roots, |
|
6 * coefficients are passed like this: |
|
7 * |
|
8 * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0 |
|
9 * |
|
10 * The functions return the number of non-complex roots and |
|
11 * put the values into the s array. |
|
12 * |
|
13 * Author: Jochen Schwarze (schwarze@isa.de) |
|
14 * |
|
15 * Jan 26, 1990 Version for Graphics Gems |
|
16 * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic |
|
17 * (reported by Mark Podlipec), |
|
18 * Old-style function definitions, |
|
19 * IsZero() as a macro |
|
20 * Nov 23, 1990 Some systems do not declare acos() and cbrt() in |
|
21 * <math.h>, though the functions exist in the library. |
|
22 * If large coefficients are used, EQN_EPS should be |
|
23 * reduced considerably (e.g. to 1E-30), results will be |
|
24 * correct but multiple roots might be reported more |
|
25 * than once. |
|
26 */ |
|
27 |
|
28 #include "SkPathOpsCubic.h" |
|
29 #include "SkPathOpsQuad.h" |
|
30 #include "SkQuarticRoot.h" |
|
31 |
|
32 int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1, |
|
33 const double t0, const bool oneHint, double roots[4]) { |
|
34 #ifdef SK_DEBUG |
|
35 // create a string mathematica understands |
|
36 // GDB set print repe 15 # if repeated digits is a bother |
|
37 // set print elements 400 # if line doesn't fit |
|
38 char str[1024]; |
|
39 sk_bzero(str, sizeof(str)); |
|
40 SK_SNPRINTF(str, sizeof(str), |
|
41 "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", |
|
42 t4, t3, t2, t1, t0); |
|
43 SkPathOpsDebug::MathematicaIze(str, sizeof(str)); |
|
44 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA |
|
45 SkDebugf("%s\n", str); |
|
46 #endif |
|
47 #endif |
|
48 if (approximately_zero_when_compared_to(t4, t0) // 0 is one root |
|
49 && approximately_zero_when_compared_to(t4, t1) |
|
50 && approximately_zero_when_compared_to(t4, t2)) { |
|
51 if (approximately_zero_when_compared_to(t3, t0) |
|
52 && approximately_zero_when_compared_to(t3, t1) |
|
53 && approximately_zero_when_compared_to(t3, t2)) { |
|
54 return SkDQuad::RootsReal(t2, t1, t0, roots); |
|
55 } |
|
56 if (approximately_zero_when_compared_to(t4, t3)) { |
|
57 return SkDCubic::RootsReal(t3, t2, t1, t0, roots); |
|
58 } |
|
59 } |
|
60 if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1)) // 0 is one root |
|
61 // && approximately_zero_when_compared_to(t0, t2) |
|
62 && approximately_zero_when_compared_to(t0, t3) |
|
63 && approximately_zero_when_compared_to(t0, t4)) { |
|
64 int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots); |
|
65 for (int i = 0; i < num; ++i) { |
|
66 if (approximately_zero(roots[i])) { |
|
67 return num; |
|
68 } |
|
69 } |
|
70 roots[num++] = 0; |
|
71 return num; |
|
72 } |
|
73 if (oneHint) { |
|
74 SkASSERT(approximately_zero_double(t4 + t3 + t2 + t1 + t0)); // 1 is one root |
|
75 // note that -C == A + B + D + E |
|
76 int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); |
|
77 for (int i = 0; i < num; ++i) { |
|
78 if (approximately_equal(roots[i], 1)) { |
|
79 return num; |
|
80 } |
|
81 } |
|
82 roots[num++] = 1; |
|
83 return num; |
|
84 } |
|
85 return -1; |
|
86 } |
|
87 |
|
88 int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C, |
|
89 const double D, const double E, double s[4]) { |
|
90 double u, v; |
|
91 /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */ |
|
92 const double invA = 1 / A; |
|
93 const double a = B * invA; |
|
94 const double b = C * invA; |
|
95 const double c = D * invA; |
|
96 const double d = E * invA; |
|
97 /* substitute x = y - a/4 to eliminate cubic term: |
|
98 x^4 + px^2 + qx + r = 0 */ |
|
99 const double a2 = a * a; |
|
100 const double p = -3 * a2 / 8 + b; |
|
101 const double q = a2 * a / 8 - a * b / 2 + c; |
|
102 const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d; |
|
103 int num; |
|
104 if (approximately_zero(r)) { |
|
105 /* no absolute term: y(y^3 + py + q) = 0 */ |
|
106 num = SkDCubic::RootsReal(1, 0, p, q, s); |
|
107 s[num++] = 0; |
|
108 } else { |
|
109 /* solve the resolvent cubic ... */ |
|
110 double cubicRoots[3]; |
|
111 int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots); |
|
112 int index; |
|
113 /* ... and take one real solution ... */ |
|
114 double z; |
|
115 num = 0; |
|
116 int num2 = 0; |
|
117 for (index = firstCubicRoot; index < roots; ++index) { |
|
118 z = cubicRoots[index]; |
|
119 /* ... to build two quadric equations */ |
|
120 u = z * z - r; |
|
121 v = 2 * z - p; |
|
122 if (approximately_zero_squared(u)) { |
|
123 u = 0; |
|
124 } else if (u > 0) { |
|
125 u = sqrt(u); |
|
126 } else { |
|
127 continue; |
|
128 } |
|
129 if (approximately_zero_squared(v)) { |
|
130 v = 0; |
|
131 } else if (v > 0) { |
|
132 v = sqrt(v); |
|
133 } else { |
|
134 continue; |
|
135 } |
|
136 num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s); |
|
137 num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num); |
|
138 if (!((num | num2) & 1)) { |
|
139 break; // prefer solutions without single quad roots |
|
140 } |
|
141 } |
|
142 num += num2; |
|
143 if (!num) { |
|
144 return 0; // no valid cubic root |
|
145 } |
|
146 } |
|
147 /* resubstitute */ |
|
148 const double sub = a / 4; |
|
149 for (int i = 0; i < num; ++i) { |
|
150 s[i] -= sub; |
|
151 } |
|
152 // eliminate duplicates |
|
153 for (int i = 0; i < num - 1; ++i) { |
|
154 for (int j = i + 1; j < num; ) { |
|
155 if (AlmostDequalUlps(s[i], s[j])) { |
|
156 if (j < --num) { |
|
157 s[j] = s[num]; |
|
158 } |
|
159 } else { |
|
160 ++j; |
|
161 } |
|
162 } |
|
163 } |
|
164 return num; |
|
165 } |